Datasets for HIV which includes case counts, new cases, PrEP users, and rates for each as well as datasets for COVID-19 which includes cases, tests, and vaccinations were pre-processed including feature engineering to determine rates for COVID-19 prior to exporatory spatial data analysis (ESDA). The Social Vulnerability Index (SVI) geospatial data which contained county data by postal code was used to perform spatial join for the analysis. Spatial clustering, outlier detection, and local indicator of spatial autocorrelation (LISA) were calculated to create an interactive visualization showing significant spatial clusters or outliers in different regions or counties for HIV infection rate and COVID-19 infection rate. Lastly, using spatial weights, agglomerative cluster analysis was performed with 7 clusters showing key areas of California that experience higher social vulnerability regarding racial and ethnic minority status, socioeconomic status, and the exasperation of the spread of HIV and COVID-19.
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import geopandas as gpd
import seaborn as sns
from geopy.geocoders import Nominatim
import folium
from pysal.lib import weights
from pysal.explore import esda
from sklearn import cluster
%pwd
'/Users/cl/Documents/GEO448/Project'
# display all columns for every dataframe
pd.set_option("display.max_columns", 999)
# HIV-Dataset1: New HIV Cases by County
new_hiv_data = pd.read_excel('/Users/cl/Documents/GEO448/Project/AIDSVu_County_NewDX_2020.xlsx', header=3)
new_hiv_data
GEO ID | Year | State Abbreviation | State | County Name | New Diagnoses Rate | New Diagnoses Rate Stability | New Diagnoses Cases | New Diagnoses Male Rate | New Diagnoses Male Rate Stability | New Diagnoses Male Cases | New Diagnoses Female Rate | New Diagnoses Female Rate Stability | New Diagnoses Female Cases | New Diagnoses Black Rate | New Diagnoses Black Rate Stability | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Rate Stability | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Rate Stability | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Rate Stability | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Rate Stability | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Rate Stability | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Rate Stability | New Diagnoses Native Hawaiian/Pacific Islander Cases | New Diagnoses Age 13-24 Rate | New Diagnoses Age 13-24 Rate Stability | New Diagnoses Age 13-24 Cases | New Diagnoses Age 25-34 Rate | New Diagnoses Age 25-34 Rate Stability | New Diagnoses Age 25-34 Cases | New Diagnoses Age 35-44 Rate | New Diagnoses Age 35-44 Rate Stability | New Diagnoses Age 35-44 Cases | New Diagnoses Age 45-54 Rate | New Diagnoses Age 45-54 Rate Stability | New Diagnoses Age 45-54 Cases | New Diagnoses Age 55+ Rate | New Diagnoses Age 55+ Rate Stability | New Diagnoses Age 55+ Cases | New Diagnoses Heterosexual Contact Percent | New Diagnoses Heterosexual Contact Cases | New Diagnoses IDU Percent | New Diagnoses IDU Cases | New Diagnoses Other Transmission Category Percent | New Diagnoses Other Transmission Category Cases | New Diagnoses MSM Rate | New Diagnoses MSM Percent | New Diagnoses MSM Cases | New Diagnoses MSM/IDU Percent | New Diagnoses MSM/IDU Cases | 2013 NCHS Urbanicity Code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1001 | 2020 | AL | Alabama | Autauga County | 17.0 | N | 8 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1.0 | -1 | 0.0 | 0 | 3 |
1 | 1003 | 2020 | AL | Alabama | Baldwin County | 5.1 | N | 10 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 3.0 | N | 5 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | N | 0 | 27.5 | N | 7 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.6 | -1.0 | 8 | -1.0 | -1 | 4 |
2 | 1005 | 2020 | AL | Alabama | Barbour County | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1.0 | -1 | -1.0 | -1 | 6 |
3 | 1007 | 2020 | AL | Alabama | Bibb County | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1.0 | -1 | -1.0 | -1 | 2 |
4 | 1009 | 2020 | AL | Alabama | Blount County | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0 | 2 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
3216 | 72145 | 2020 | PR | Puerto Rico | Vega Baja Municipio | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1.0 | -1 | -1.0 | -1 | -9 |
3217 | 72147 | 2020 | PR | Puerto Rico | Vieques Municipio | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1.0 | -1 | -1.0 | -1 | -9 |
3218 | 72149 | 2020 | PR | Puerto Rico | Villalba Municipio | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | N | 0 | -1.0 | N | 0 | -1.0 | N | 0 | -1.0 | N | 0 | -1.0 | N | 0 | -1.0 | N | 0 | -1.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | 0.0 | 0 | 0.0 | 0 | -9 |
3219 | 72151 | 2020 | PR | Puerto Rico | Yabucoa Municipio | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1.0 | -1 | -1.0 | -1 | -9 |
3220 | 72153 | 2020 | PR | Puerto Rico | Yauco Municipio | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | N | 0 | -1.0 | N | 0 | -1.0 | N | 0 | -1.0 | N | 0 | -1.0 | N | 0 | -1.0 | N | 0 | -1.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | 0.0 | 0 | 0.0 | 0 | -9 |
3221 rows × 62 columns
# Sort by New Diagnoses Cases and Verify Top 20 counties in the U.S. with highest number of new cases:
new_hiv_data.sort_values(by=['New Diagnoses Cases'], ascending=False).head(20)
GEO ID | Year | State Abbreviation | State | County Name | New Diagnoses Rate | New Diagnoses Rate Stability | New Diagnoses Cases | New Diagnoses Male Rate | New Diagnoses Male Rate Stability | New Diagnoses Male Cases | New Diagnoses Female Rate | New Diagnoses Female Rate Stability | New Diagnoses Female Cases | New Diagnoses Black Rate | New Diagnoses Black Rate Stability | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Rate Stability | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Rate Stability | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Rate Stability | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Rate Stability | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Rate Stability | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Rate Stability | New Diagnoses Native Hawaiian/Pacific Islander Cases | New Diagnoses Age 13-24 Rate | New Diagnoses Age 13-24 Rate Stability | New Diagnoses Age 13-24 Cases | New Diagnoses Age 25-34 Rate | New Diagnoses Age 25-34 Rate Stability | New Diagnoses Age 25-34 Cases | New Diagnoses Age 35-44 Rate | New Diagnoses Age 35-44 Rate Stability | New Diagnoses Age 35-44 Cases | New Diagnoses Age 45-54 Rate | New Diagnoses Age 45-54 Rate Stability | New Diagnoses Age 45-54 Cases | New Diagnoses Age 55+ Rate | New Diagnoses Age 55+ Rate Stability | New Diagnoses Age 55+ Cases | New Diagnoses Heterosexual Contact Percent | New Diagnoses Heterosexual Contact Cases | New Diagnoses IDU Percent | New Diagnoses IDU Cases | New Diagnoses Other Transmission Category Percent | New Diagnoses Other Transmission Category Cases | New Diagnoses MSM Rate | New Diagnoses MSM Percent | New Diagnoses MSM Cases | New Diagnoses MSM/IDU Percent | New Diagnoses MSM/IDU Cases | 2013 NCHS Urbanicity Code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | 6037 | 2020 | CA | California | Los Angeles County | 16.4 | Y | 1382 | 30.0 | Y | 1239 | 3.3 | Y | 143 | 42.8 | Y | 295 | 11.5 | Y | 265 | 18.4 | Y | 724 | 4.3 | Y | 56 | 24.2 | N | 4 | 23.0 | Y | 37 | 5.2 | N | 1 | 14.6 | Y | 220 | 34.8 | Y | 565 | 21.3 | Y | 291 | 15.2 | Y | 197 | 4.1 | Y | 109 | 9.8 | 136 | 5.1 | 70 | 0.1 | 2 | 0.6 | 90.2 | 1118 | 4.5 | 56 | 1 |
2624 | 48201 | 2020 | TX | Texas | Harris County | 24.0 | Y | 921 | 41.0 | Y | 777 | 7.4 | Y | 144 | 58.0 | Y | 425 | 9.2 | Y | 106 | 22.4 | Y | 360 | 5.2 | Y | 15 | 13.2 | N | 1 | 29.5 | Y | 13 | 50.4 | N | 1 | 29.9 | Y | 234 | 46.1 | Y | 347 | 23.9 | Y | 163 | 16.1 | Y | 94 | 8.0 | Y | 83 | 18.7 | 172 | 3.8 | 35 | 0.3 | 3 | 0.6 | 89.4 | 695 | 2.1 | 16 | 1 |
363 | 12086 | 2020 | FL | Florida | Miami-Dade County | 33.7 | Y | 781 | 59.6 | Y | 666 | 9.6 | Y | 115 | 55.4 | Y | 188 | 22.3 | Y | 66 | 31.9 | Y | 519 | 8.2 | N | 3 | 50.2 | N | 1 | 20.9 | N | 3 | 182.8 | N | 1 | 25.7 | Y | 96 | 66.5 | Y | 251 | 53.8 | Y | 198 | 31.4 | Y | 121 | 14.2 | Y | 115 | 23.7 | 185 | 1.7 | 13 | 0.0 | 0 | 0.7 | 86.8 | 578 | 0.8 | 5 | 1 |
611 | 17031 | 2020 | IL | Illinois | Cook County | 17.9 | Y | 774 | 31.4 | Y | 653 | 5.4 | Y | 121 | 45.1 | Y | 444 | 5.3 | Y | 100 | 17.4 | Y | 182 | 4.9 | Y | 17 | 58.2 | N | 3 | 50.2 | Y | 28 | 0.0 | N | 0 | 26.5 | Y | 198 | 34.7 | Y | 289 | 19.2 | Y | 134 | 12.3 | Y | 77 | 5.4 | Y | 76 | 16.5 | 128 | 5.2 | 40 | 1.3 | 10 | 0.4 | 88.4 | 577 | 2.9 | 19 | 1 |
2580 | 48113 | 2020 | TX | Texas | Dallas County | 30.6 | Y | 658 | 50.5 | Y | 531 | 11.6 | Y | 127 | 63.6 | Y | 314 | 16.2 | Y | 106 | 25.8 | Y | 212 | 5.4 | N | 8 | 0.0 | N | 0 | 66.6 | Y | 17 | 101.3 | N | 1 | 31.4 | Y | 137 | 56.2 | Y | 248 | 35.0 | Y | 126 | 30.6 | Y | 98 | 8.3 | Y | 49 | 21.6 | 142 | 5.3 | 35 | 0.2 | 1 | 0.5 | 87.0 | 462 | 3.4 | 18 | 1 |
104 | 4013 | 2020 | AZ | Arizona | Maricopa County | 12.5 | Y | 477 | 21.8 | Y | 411 | 3.4 | Y | 66 | 36.7 | Y | 78 | 8.0 | Y | 175 | 16.4 | Y | 182 | 5.2 | N | 9 | 29.1 | Y | 18 | 14.0 | N | 10 | 65.4 | N | 5 | 13.0 | Y | 95 | 29.1 | Y | 196 | 12.4 | Y | 74 | 10.8 | Y | 61 | 4.0 | Y | 51 | 12.6 | 60 | 7.8 | 37 | 0.2 | 1 | 0.4 | 83.2 | 342 | 9.2 | 38 | 1 |
447 | 13121 | 2020 | GA | Georgia | Fulton County | 52.0 | Y | 477 | 93.8 | Y | 412 | 13.6 | Y | 65 | 97.0 | Y | 380 | 15.1 | Y | 57 | 47.7 | Y | 29 | 0.0 | N | 0 | 77.7 | N | 1 | 59.8 | N | 9 | 589.5 | N | 1 | 58.5 | Y | 102 | 113.6 | Y | 214 | 43.9 | Y | 67 | 36.4 | Y | 53 | 16.0 | Y | 41 | 20.3 | 97 | 1.5 | 7 | 0.2 | 1 | 0.7 | 87.1 | 359 | 3.2 | 13 | 1 |
326 | 12011 | 2020 | FL | Florida | Broward County | 27.6 | Y | 460 | 46.2 | Y | 372 | 10.2 | Y | 88 | 48.3 | Y | 221 | 15.9 | Y | 95 | 24.8 | Y | 129 | 14.3 | N | 9 | 30.5 | N | 1 | 21.8 | N | 5 | 0.0 | N | 0 | 26.8 | Y | 71 | 49.5 | Y | 129 | 40.2 | Y | 106 | 29.9 | Y | 79 | 12.3 | Y | 75 | 39.8 | 183 | 4.8 | 22 | 0.0 | 0 | 0.4 | 66.1 | 246 | 2.2 | 8 | 2 |
1852 | 36047 | 2020 | NY | New York | Kings County | 21.0 | Y | 444 | 34.8 | Y | 342 | 9.1 | Y | 102 | 42.3 | Y | 270 | 6.8 | Y | 53 | 25.2 | Y | 98 | 2.6 | N | 7 | 0.0 | N | 0 | 46.7 | Y | 16 | 0.0 | N | 0 | 25.1 | Y | 85 | 36.1 | Y | 168 | 24.1 | Y | 86 | 16.9 | Y | 49 | 8.5 | Y | 56 | 24.1 | 107 | 7.9 | 35 | 0.5 | 2 | 0.6 | 85.1 | 291 | 2.6 | 9 | 1 |
368 | 12095 | 2020 | FL | Florida | Orange County | 31.1 | Y | 369 | 51.8 | Y | 299 | 11.5 | Y | 70 | 71.9 | Y | 167 | 12.6 | Y | 61 | 35.5 | Y | 135 | 4.4 | N | 3 | 0.0 | N | 0 | 10.6 | N | 2 | 72.7 | N | 1 | 34.3 | Y | 78 | 50.7 | Y | 119 | 39.6 | Y | 81 | 24.9 | Y | 45 | 13.6 | Y | 46 | 28.5 | 105 | 2.4 | 9 | 0.0 | 0 | 0.5 | 83.6 | 250 | 2.0 | 6 | 1 |
1749 | 32003 | 2020 | NV | Nevada | Clark County | 17.7 | Y | 343 | 30.7 | Y | 295 | 4.9 | Y | 48 | 51.2 | Y | 116 | 11.1 | Y | 94 | 18.8 | Y | 108 | 9.1 | Y | 19 | 21.9 | N | 2 | 1.6 | N | 1 | 21.3 | N | 3 | 16.6 | Y | 56 | 37.9 | Y | 131 | 21.8 | Y | 70 | 18.3 | Y | 55 | 4.9 | Y | 31 | 14.6 | 50 | 6.4 | 22 | 0.3 | 1 | 0.6 | 85.8 | 253 | 6.1 | 18 | 1 |
1831 | 36005 | 2020 | NY | New York | Bronx County | 29.4 | Y | 338 | 47.5 | Y | 253 | 13.8 | Y | 85 | 44.6 | Y | 152 | 16.5 | Y | 18 | 25.6 | Y | 163 | 4.1 | N | 2 | 0.0 | N | 0 | 29.9 | N | 3 | 0.0 | N | 0 | 25.7 | Y | 58 | 57.1 | Y | 127 | 37.7 | Y | 67 | 27.4 | Y | 46 | 11.2 | Y | 40 | 26.0 | 88 | 9.8 | 33 | 0.3 | 1 | 1.1 | 83.8 | 212 | 2.0 | 5 | 1 |
2295 | 42101 | 2020 | PA | Pennsylvania | Philadelphia County | 24.9 | Y | 331 | 40.6 | Y | 251 | 11.3 | Y | 80 | 42.0 | Y | 221 | 9.5 | Y | 46 | 29.7 | Y | 55 | 2.9 | N | 3 | 70.1 | N | 2 | 17.8 | N | 4 | 0.0 | N | 0 | 29.3 | Y | 69 | 42.9 | Y | 131 | 30.8 | Y | 63 | 20.9 | Y | 36 | 7.8 | Y | 32 | 22.4 | 74 | 13.0 | 43 | 0.3 | 1 | 0.7 | 80.9 | 203 | 4.0 | 10 | 1 |
1869 | 36081 | 2020 | NY | New York | Queens County | 16.7 | Y | 316 | 29.7 | Y | 271 | 4.6 | Y | 45 | 23.3 | Y | 80 | 8.1 | Y | 39 | 28.9 | Y | 148 | 5.6 | Y | 29 | 14.9 | N | 1 | 56.8 | Y | 19 | 0.0 | N | 0 | 18.0 | Y | 50 | 34.4 | Y | 121 | 21.3 | Y | 64 | 14.8 | Y | 43 | 5.6 | Y | 38 | 16.5 | 52 | 7.0 | 22 | 0.3 | 1 | 0.7 | 87.8 | 238 | 1.1 | 3 | 1 |
1859 | 36061 | 2020 | NY | New York | New York County | 20.6 | Y | 296 | 38.2 | Y | 258 | 5.0 | Y | 38 | 64.1 | Y | 113 | 8.2 | Y | 57 | 28.4 | Y | 101 | 5.4 | N | 10 | 0.0 | N | 0 | 56.2 | Y | 14 | 173.2 | N | 1 | 20.3 | Y | 40 | 36.8 | Y | 130 | 21.9 | Y | 51 | 16.7 | Y | 32 | 9.3 | Y | 43 | 13.9 | 41 | 8.1 | 24 | 0.3 | 1 | 0.3 | 86.4 | 223 | 2.7 | 7 | 1 |
223 | 6073 | 2020 | CA | California | San Diego County | 10.5 | Y | 296 | 18.1 | Y | 257 | 2.8 | Y | 39 | 32.7 | Y | 44 | 6.2 | Y | 81 | 17.3 | Y | 157 | 2.0 | N | 7 | 0.0 | N | 0 | 8.6 | N | 7 | 0.0 | N | 0 | 6.5 | Y | 34 | 21.2 | Y | 116 | 16.0 | Y | 73 | 12.2 | Y | 49 | 2.7 | Y | 24 | 12.2 | 36 | 8.1 | 24 | 0.3 | 1 | 0.4 | 88.3 | 227 | 3.5 | 9 | 1 |
2743 | 48439 | 2020 | TX | Texas | Tarrant County | 16.8 | Y | 292 | 29.1 | Y | 244 | 5.4 | Y | 48 | 45.6 | Y | 135 | 7.7 | Y | 63 | 16.9 | Y | 81 | 5.8 | N | 6 | 0.0 | N | 0 | 25.0 | N | 7 | 0.0 | N | 0 | 21.5 | Y | 77 | 32.4 | Y | 103 | 16.8 | Y | 49 | 14.3 | Y | 38 | 5.0 | Y | 25 | 20.5 | 60 | 4.5 | 13 | 0.3 | 1 | 0.5 | 85.7 | 209 | 4.1 | 10 | 1 |
2538 | 48029 | 2020 | TX | Texas | Bexar County | 17.0 | Y | 282 | 29.0 | Y | 236 | 5.4 | Y | 46 | 30.1 | Y | 38 | 10.0 | Y | 47 | 19.0 | Y | 187 | 3.8 | N | 2 | 0.0 | N | 0 | 37.9 | N | 8 | 0.0 | N | 0 | 19.3 | Y | 67 | 32.8 | Y | 106 | 20.9 | Y | 59 | 11.3 | Y | 27 | 4.9 | Y | 23 | 15.6 | 44 | 8.2 | 23 | 0.4 | 1 | 0.4 | 87.7 | 207 | 2.5 | 6 | 1 |
431 | 13089 | 2020 | GA | Georgia | DeKalb County | 42.4 | Y | 269 | 73.3 | Y | 216 | 15.6 | Y | 53 | 61.9 | Y | 211 | 13.3 | Y | 26 | 52.6 | Y | 24 | 9.9 | N | 4 | 104.8 | N | 1 | 30.6 | N | 3 | 0.0 | N | 0 | 52.5 | Y | 57 | 84.7 | Y | 109 | 45.2 | Y | 49 | 35.2 | Y | 34 | 10.4 | Y | 20 | 24.9 | 67 | 3.7 | 10 | 0.0 | 0 | 0.8 | 87.0 | 188 | 2.3 | 5 | 2 |
216 | 6059 | 2020 | CA | California | Orange County | 9.8 | Y | 264 | 17.7 | Y | 233 | 2.3 | Y | 31 | 30.2 | Y | 14 | 6.5 | Y | 72 | 16.9 | Y | 145 | 4.5 | Y | 27 | 0.0 | N | 0 | 8.0 | N | 5 | 13.3 | N | 1 | 9.8 | Y | 47 | 23.5 | Y | 108 | 12.2 | Y | 50 | 6.3 | Y | 27 | 3.5 | Y | 32 | 15.5 | 41 | 7.2 | 19 | 0.0 | 0 | 0.4 | 82.0 | 191 | 6.0 | 14 | 1 |
Above, three counties in California are among the top 20 counties with the highest new cases of HIV infection with Los Angeles leading in the epidemic. Next, we will extract data for California only and look at counties in California specifically.
# Extract data for California Only:
cond = new_hiv_data['State'] == 'California'
ca_new_hiv_data = new_hiv_data[cond]
ca_new_hiv_data
GEO ID | Year | State Abbreviation | State | County Name | New Diagnoses Rate | New Diagnoses Rate Stability | New Diagnoses Cases | New Diagnoses Male Rate | New Diagnoses Male Rate Stability | New Diagnoses Male Cases | New Diagnoses Female Rate | New Diagnoses Female Rate Stability | New Diagnoses Female Cases | New Diagnoses Black Rate | New Diagnoses Black Rate Stability | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Rate Stability | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Rate Stability | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Rate Stability | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Rate Stability | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Rate Stability | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Rate Stability | New Diagnoses Native Hawaiian/Pacific Islander Cases | New Diagnoses Age 13-24 Rate | New Diagnoses Age 13-24 Rate Stability | New Diagnoses Age 13-24 Cases | New Diagnoses Age 25-34 Rate | New Diagnoses Age 25-34 Rate Stability | New Diagnoses Age 25-34 Cases | New Diagnoses Age 35-44 Rate | New Diagnoses Age 35-44 Rate Stability | New Diagnoses Age 35-44 Cases | New Diagnoses Age 45-54 Rate | New Diagnoses Age 45-54 Rate Stability | New Diagnoses Age 45-54 Cases | New Diagnoses Age 55+ Rate | New Diagnoses Age 55+ Rate Stability | New Diagnoses Age 55+ Cases | New Diagnoses Heterosexual Contact Percent | New Diagnoses Heterosexual Contact Cases | New Diagnoses IDU Percent | New Diagnoses IDU Cases | New Diagnoses Other Transmission Category Percent | New Diagnoses Other Transmission Category Cases | New Diagnoses MSM Rate | New Diagnoses MSM Percent | New Diagnoses MSM Cases | New Diagnoses MSM/IDU Percent | New Diagnoses MSM/IDU Cases | 2013 NCHS Urbanicity Code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
187 | 6001 | 2020 | CA | California | Alameda County | 11.1 | Y | 157 | 19.9 | Y | 138 | 2.6 | Y | 19 | 34.4 | Y | 50 | 6.0 | Y | 27 | 18.2 | Y | 54 | 3.9 | Y | 18 | 0.0 | N | 0 | 10.0 | N | 5 | 26.2 | N | 3 | 10.7 | Y | 24 | 26.2 | Y | 72 | 10.1 | Y | 26 | 7.4 | Y | 16 | 4.3 | Y | 19 | 15.9 | 25 | 6.4 | 10 | 0.0 | 0 | 0.3 | 85.5 | 118 | 2.9 | 4 | 1 |
188 | 6003 | 2020 | CA | California | Alpine County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
189 | 6005 | 2020 | CA | California | Amador County | -1.0 | -9 | -1 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
190 | 6007 | 2020 | CA | California | Butte County | 5.5 | N | 10 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 6.1 | N | 8 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.2 | -1.0 | 5 | 0.0 | 0 | 4 |
191 | 6009 | 2020 | CA | California | Calaveras County | -1.0 | -9 | -1 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
192 | 6011 | 2020 | CA | California | Colusa County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
193 | 6013 | 2020 | CA | California | Contra Costa County | 7.4 | Y | 72 | 13.1 | Y | 62 | 2.0 | N | 10 | 25.7 | Y | 22 | 4.2 | Y | 18 | 8.8 | Y | 21 | 4.4 | N | 8 | 0.0 | N | 0 | 5.9 | N | 2 | 21.3 | N | 1 | 5.3 | N | 9 | 22.7 | Y | 33 | 7.6 | Y | 12 | 7.0 | N | 11 | 2.0 | N | 7 | 15.3 | 11 | 1.4 | 1 | 0.0 | 0 | 0.1 | 91.9 | 57 | 3.2 | 2 | 2 |
194 | 6015 | 2020 | CA | California | Del Norte County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 5 |
195 | 6017 | 2020 | CA | California | El Dorado County | 3.6 | N | 6 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1.0 | -1 | 0.0 | 0 | 2 |
196 | 6019 | 2020 | CA | California | Fresno County | 15.0 | Y | 120 | 25.5 | Y | 101 | 4.7 | Y | 19 | 32.2 | Y | 12 | 10.6 | Y | 26 | 18.3 | Y | 75 | 5.8 | N | 5 | 20.1 | N | 1 | 7.9 | N | 1 | 0.0 | N | 0 | 14.3 | Y | 25 | 26.0 | Y | 40 | 21.6 | Y | 28 | 11.0 | Y | 12 | 6.5 | Y | 15 | 11.7 | 14 | 10.0 | 12 | 0.0 | 0 | 0.9 | 90.1 | 91 | 3.0 | 3 | 3 |
197 | 6021 | 2020 | CA | California | Glenn County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
198 | 6023 | 2020 | CA | California | Humboldt County | 4.3 | N | 5 | 8.7 | N | 5 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.2 | 100.0 | 5 | 0.0 | 0 | 5 |
199 | 6025 | 2020 | CA | California | Imperial County | 16.8 | Y | 24 | 25.9 | Y | 19 | 7.2 | N | 5 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 17.5 | Y | 21 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | N | 0 | 15.8 | N | 5 | 56.0 | Y | 15 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 1.6 | 94.7 | 18 | -1.0 | -1 | 4 |
200 | 6027 | 2020 | CA | California | Inyo County | -1.0 | -9 | -1 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
201 | 6029 | 2020 | CA | California | Kern County | 22.3 | Y | 160 | 38.8 | Y | 142 | 5.1 | Y | 18 | 50.0 | Y | 19 | 16.5 | Y | 41 | 25.3 | Y | 95 | 10.8 | N | 4 | 0.0 | N | 0 | 8.5 | N | 1 | 0.0 | N | 0 | 21.7 | Y | 35 | 44.7 | Y | 63 | 25.5 | Y | 30 | 19.4 | Y | 19 | 6.6 | Y | 13 | 7.5 | 12 | 13.1 | 21 | 0.0 | 0 | 1.5 | 85.2 | 121 | 4.9 | 7 | 3 |
202 | 6031 | 2020 | CA | California | Kings County | 6.5 | N | 8 | 11.6 | N | 8 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 0.7 | 75.0 | 6 | -1.0 | -1 | 4 |
203 | 6033 | 2020 | CA | California | Lake County | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1.0 | -1 | -1.0 | -1 | 5 |
204 | 6035 | 2020 | CA | California | Lassen County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 5 |
205 | 6037 | 2020 | CA | California | Los Angeles County | 16.4 | Y | 1382 | 30.0 | Y | 1239 | 3.3 | Y | 143 | 42.8 | Y | 295 | 11.5 | Y | 265 | 18.4 | Y | 724 | 4.3 | Y | 56 | 24.2 | N | 4 | 23.0 | Y | 37 | 5.2 | N | 1 | 14.6 | Y | 220 | 34.8 | Y | 565 | 21.3 | Y | 291 | 15.2 | Y | 197 | 4.1 | Y | 109 | 9.8 | 136 | 5.1 | 70 | 0.1 | 2 | 0.6 | 90.2 | 1118 | 4.5 | 56 | 1 |
206 | 6039 | 2020 | CA | California | Madera County | 6.3 | N | 8 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 7.1 | N | 5 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.7 | -1.0 | 7 | -1.0 | -1 | 4 |
207 | 6041 | 2020 | CA | California | Marin County | 6.3 | Y | 14 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 3.1 | N | 5 | 15.3 | N | 5 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | 22.3 | N | 5 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.1 | -1.0 | 10 | 0.0 | 0 | 2 |
208 | 6043 | 2020 | CA | California | Mariposa County | -1.0 | -9 | -1 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
209 | 6045 | 2020 | CA | California | Mendocino County | 6.8 | N | 5 | 13.9 | N | 5 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.5 | 100.0 | 5 | 0.0 | 0 | 5 |
210 | 6047 | 2020 | CA | California | Merced County | 14.0 | Y | 31 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 17.6 | N | 11 | 12.3 | Y | 16 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | N | 0 | 16.5 | N | 9 | 34.1 | Y | 14 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 1.3 | -1.0 | 25 | 0.0 | 0 | 3 |
211 | 6049 | 2020 | CA | California | Modoc County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
212 | 6051 | 2020 | CA | California | Mono County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
213 | 6053 | 2020 | CA | California | Monterey County | 3.1 | N | 11 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 4.1 | N | 8 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.2 | -1.0 | 6 | 0.0 | 0 | 3 |
214 | 6055 | 2020 | CA | California | Napa County | 4.3 | N | 5 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1.0 | -1 | -1.0 | -1 | 4 |
215 | 6057 | 2020 | CA | California | Nevada County | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1.0 | -1 | -1.0 | -1 | 5 |
216 | 6059 | 2020 | CA | California | Orange County | 9.8 | Y | 264 | 17.7 | Y | 233 | 2.3 | Y | 31 | 30.2 | Y | 14 | 6.5 | Y | 72 | 16.9 | Y | 145 | 4.5 | Y | 27 | 0.0 | N | 0 | 8.0 | N | 5 | 13.3 | N | 1 | 9.8 | Y | 47 | 23.5 | Y | 108 | 12.2 | Y | 50 | 6.3 | Y | 27 | 3.5 | Y | 32 | 15.5 | 41 | 7.2 | 19 | 0.0 | 0 | 0.4 | 82.0 | 191 | 6.0 | 14 | 1 |
217 | 6061 | 2020 | CA | California | Placer County | 5.6 | Y | 19 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 4.4 | N | 11 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | 13.7 | N | 6 | 9.3 | N | 5 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 0.1 | -1.0 | 11 | -1.0 | -1 | 2 |
218 | 6063 | 2020 | CA | California | Plumas County | -1.0 | -9 | -1 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
219 | 6065 | 2020 | CA | California | Riverside County | 11.6 | Y | 239 | 21.1 | Y | 216 | 2.2 | Y | 23 | 24.1 | Y | 32 | 9.3 | Y | 68 | 12.4 | Y | 123 | 6.9 | N | 10 | 0.0 | N | 0 | 14.7 | N | 6 | 0.0 | N | 0 | 9.1 | Y | 38 | 28.1 | Y | 98 | 13.2 | Y | 43 | 10.3 | Y | 31 | 4.3 | Y | 29 | 8.4 | 20 | 3.8 | 9 | 0.4 | 1 | 0.4 | 95.8 | 207 | 1.4 | 3 | 1 |
220 | 6067 | 2020 | CA | California | Sacramento County | 11.8 | Y | 153 | 19.5 | Y | 123 | 4.5 | Y | 30 | 43.5 | Y | 55 | 7.8 | Y | 46 | 11.4 | Y | 33 | 5.0 | N | 11 | 15.0 | N | 1 | 11.2 | N | 6 | 6.5 | N | 1 | 10.0 | Y | 23 | 19.5 | Y | 48 | 16.3 | Y | 35 | 12.7 | Y | 24 | 5.5 | Y | 23 | 19.6 | 30 | 12.4 | 19 | 0.7 | 1 | 0.4 | 76.4 | 94 | 8.1 | 10 | 1 |
221 | 6069 | 2020 | CA | California | San Benito County | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1.0 | -1 | -1.0 | -1 | 2 |
222 | 6071 | 2020 | CA | California | San Bernardino County | 14.7 | Y | 263 | 25.7 | Y | 227 | 4.0 | Y | 36 | 32.8 | Y | 48 | 8.7 | Y | 44 | 16.3 | Y | 154 | 7.7 | N | 11 | 0.0 | N | 0 | 15.5 | N | 5 | 18.2 | N | 1 | 15.3 | Y | 58 | 32.4 | Y | 110 | 16.3 | Y | 47 | 8.8 | Y | 23 | 4.9 | Y | 25 | 11.8 | 31 | 7.6 | 20 | 0.4 | 1 | 0.4 | 86.3 | 196 | 6.6 | 15 | 2 |
223 | 6073 | 2020 | CA | California | San Diego County | 10.5 | Y | 296 | 18.1 | Y | 257 | 2.8 | Y | 39 | 32.7 | Y | 44 | 6.2 | Y | 81 | 17.3 | Y | 157 | 2.0 | N | 7 | 0.0 | N | 0 | 8.6 | N | 7 | 0.0 | N | 0 | 6.5 | Y | 34 | 21.2 | Y | 116 | 16.0 | Y | 73 | 12.2 | Y | 49 | 2.7 | Y | 24 | 12.2 | 36 | 8.1 | 24 | 0.3 | 1 | 0.4 | 88.3 | 227 | 3.5 | 9 | 1 |
224 | 6075 | 2020 | CA | California | San Francisco County | 19.6 | Y | 153 | 33.8 | Y | 134 | 5.0 | Y | 19 | 69.1 | Y | 27 | 14.2 | Y | 45 | 54.5 | Y | 61 | 5.6 | Y | 16 | 130.3 | N | 2 | 4.3 | N | 1 | 35.1 | N | 1 | 19.4 | Y | 17 | 28.2 | Y | 56 | 24.5 | Y | 34 | 26.3 | Y | 29 | 7.0 | Y | 17 | 7.8 | 12 | 11.1 | 17 | 0.0 | 0 | 0.2 | 81.3 | 109 | 11.9 | 16 | 1 |
225 | 6077 | 2020 | CA | California | San Joaquin County | 13.3 | Y | 83 | 22.4 | Y | 69 | 4.5 | Y | 14 | 44.1 | Y | 20 | 11.1 | Y | 22 | 13.3 | Y | 33 | 7.6 | N | 8 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 14.4 | Y | 19 | 24.0 | Y | 26 | 18.5 | Y | 19 | 16.4 | Y | 15 | 2.1 | N | 4 | 16.9 | 14 | 9.6 | 8 | 0.0 | 0 | 1.0 | 84.1 | 58 | 4.3 | 3 | 3 |
226 | 6079 | 2020 | CA | California | San Luis Obispo County | 4.4 | N | 11 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 4.6 | N | 8 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.2 | -1.0 | 7 | -1.0 | -1 | 3 |
227 | 6081 | 2020 | CA | California | San Mateo County | 6.9 | Y | 45 | 13.1 | Y | 42 | 0.9 | N | 3 | 19.7 | N | 3 | 5.4 | Y | 14 | 12.9 | Y | 19 | 3.9 | N | 8 | 0.0 | N | 0 | 5.2 | N | 1 | 0.0 | N | 0 | 9.3 | N | 9 | 10.5 | Y | 12 | 10.9 | Y | 12 | 5.9 | N | 6 | 2.6 | N | 6 | 13.3 | 6 | 0.0 | 0 | 0.0 | 0 | 0.1 | 85.7 | 36 | 7.1 | 3 | 2 |
228 | 6083 | 2020 | CA | California | Santa Barbara County | 6.2 | Y | 23 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 2.9 | N | 5 | 9.5 | Y | 15 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 8.3 | N | 5 | 17.7 | N | 9 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.3 | -1.0 | 15 | -1.0 | -1 | 3 |
229 | 6085 | 2020 | CA | California | Santa Clara County | 6.5 | Y | 105 | 11.1 | Y | 91 | 1.8 | Y | 14 | 22.8 | N | 9 | 3.9 | Y | 20 | 16.1 | Y | 61 | 1.2 | N | 8 | 0.0 | N | 0 | 16.7 | N | 7 | 0.0 | N | 0 | 5.5 | Y | 15 | 13.4 | Y | 42 | 9.1 | Y | 25 | 5.9 | Y | 15 | 1.6 | N | 8 | 17.1 | 18 | 2.9 | 3 | 1.0 | 1 | 0.2 | 86.8 | 79 | 4.4 | 4 | 1 |
230 | 6087 | 2020 | CA | California | Santa Cruz County | 5.5 | Y | 13 | 5.2 | N | 6 | 5.9 | N | 7 | 0.0 | N | 0 | 5.7 | N | 8 | 6.9 | N | 5 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 15.4 | N | 5 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 38.5 | 5 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1.0 | -1 | 0.0 | 0 | 3 |
231 | 6089 | 2020 | CA | California | Shasta County | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1.0 | -1 | -1.0 | -1 | 4 |
232 | 6091 | 2020 | CA | California | Sierra County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
233 | 6093 | 2020 | CA | California | Siskiyou County | -1.0 | -9 | -1 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
234 | 6095 | 2020 | CA | California | Solano County | 12.2 | Y | 46 | 17.2 | Y | 32 | 7.4 | Y | 14 | 24.6 | Y | 13 | 6.9 | N | 10 | 11.4 | N | 11 | 9.8 | N | 6 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 9.2 | N | 6 | 27.7 | Y | 18 | 27.2 | Y | 16 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 28.3 | 13 | -1.0 | -1 | 0.0 | 0 | 0.7 | 93.8 | 30 | -1.0 | -1 | 3 |
235 | 6097 | 2020 | CA | California | Sonoma County | 8.7 | Y | 37 | 13.6 | Y | 28 | 4.1 | N | 9 | -1.0 | -9 | -1 | 6.9 | Y | 19 | 11.2 | Y | 12 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 17.8 | N | 11 | 17.5 | N | 11 | 11.7 | N | 7 | -1.0 | -9 | -1 | 24.3 | 9 | -1.0 | -1 | 0.0 | 0 | 0.2 | 75.0 | 21 | -1.0 | -1 | 3 |
236 | 6099 | 2020 | CA | California | Stanislaus County | 6.1 | Y | 27 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 5.8 | N | 11 | 6.9 | Y | 14 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 9.6 | N | 9 | 10.0 | N | 8 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 3.7 | N | 5 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.3 | -1.0 | 19 | -1.0 | -1 | 3 |
237 | 6101 | 2020 | CA | California | Sutter County | 7.6 | N | 6 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1.0 | -1 | 0.0 | 0 | 4 |
238 | 6103 | 2020 | CA | California | Tehama County | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1.0 | -1 | -1.0 | -1 | 5 |
239 | 6105 | 2020 | CA | California | Trinity County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
240 | 6107 | 2020 | CA | California | Tulare County | 7.9 | Y | 29 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 8.2 | N | 9 | 8.2 | Y | 19 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | 6.8 | N | 6 | 16.4 | N | 11 | 9.9 | N | 6 | 11.8 | N | 6 | 0.0 | N | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.6 | -1.0 | 24 | -1.0 | -1 | 3 |
241 | 6109 | 2020 | CA | California | Tuolumne County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 5 |
242 | 6111 | 2020 | CA | California | Ventura County | 7.7 | Y | 55 | 14.9 | Y | 52 | 0.8 | N | 3 | 7.5 | N | 1 | 3.0 | N | 10 | 14.9 | Y | 43 | 0.0 | N | 0 | 0.0 | N | 0 | 6.6 | N | 1 | 0.0 | N | 0 | 6.8 | N | 9 | 23.8 | Y | 27 | 9.5 | N | 10 | 3.7 | N | 4 | 2.0 | N | 5 | 7.3 | 4 | 1.8 | 1 | 0.0 | 0 | 0.8 | 96.2 | 50 | 0.0 | 0 | 3 |
243 | 6113 | 2020 | CA | California | Yolo County | 5.9 | N | 11 | 12.2 | N | 11 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 12.4 | N | 7 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 0.1 | 81.8 | 9 | -1.0 | -1 | 2 |
244 | 6115 | 2020 | CA | California | Yuba County | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1.0 | -1 | -1.0 | -1 | 4 |
# Sort New Hiv Data in CA by New Diagnoses Cases:
ca_new_hiv_data.sort_values(by=['New Diagnoses Cases'], ascending=False)
GEO ID | Year | State Abbreviation | State | County Name | New Diagnoses Rate | New Diagnoses Rate Stability | New Diagnoses Cases | New Diagnoses Male Rate | New Diagnoses Male Rate Stability | New Diagnoses Male Cases | New Diagnoses Female Rate | New Diagnoses Female Rate Stability | New Diagnoses Female Cases | New Diagnoses Black Rate | New Diagnoses Black Rate Stability | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Rate Stability | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Rate Stability | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Rate Stability | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Rate Stability | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Rate Stability | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Rate Stability | New Diagnoses Native Hawaiian/Pacific Islander Cases | New Diagnoses Age 13-24 Rate | New Diagnoses Age 13-24 Rate Stability | New Diagnoses Age 13-24 Cases | New Diagnoses Age 25-34 Rate | New Diagnoses Age 25-34 Rate Stability | New Diagnoses Age 25-34 Cases | New Diagnoses Age 35-44 Rate | New Diagnoses Age 35-44 Rate Stability | New Diagnoses Age 35-44 Cases | New Diagnoses Age 45-54 Rate | New Diagnoses Age 45-54 Rate Stability | New Diagnoses Age 45-54 Cases | New Diagnoses Age 55+ Rate | New Diagnoses Age 55+ Rate Stability | New Diagnoses Age 55+ Cases | New Diagnoses Heterosexual Contact Percent | New Diagnoses Heterosexual Contact Cases | New Diagnoses IDU Percent | New Diagnoses IDU Cases | New Diagnoses Other Transmission Category Percent | New Diagnoses Other Transmission Category Cases | New Diagnoses MSM Rate | New Diagnoses MSM Percent | New Diagnoses MSM Cases | New Diagnoses MSM/IDU Percent | New Diagnoses MSM/IDU Cases | 2013 NCHS Urbanicity Code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | 6037 | 2020 | CA | California | Los Angeles County | 16.4 | Y | 1382 | 30.0 | Y | 1239 | 3.3 | Y | 143 | 42.8 | Y | 295 | 11.5 | Y | 265 | 18.4 | Y | 724 | 4.3 | Y | 56 | 24.2 | N | 4 | 23.0 | Y | 37 | 5.2 | N | 1 | 14.6 | Y | 220 | 34.8 | Y | 565 | 21.3 | Y | 291 | 15.2 | Y | 197 | 4.1 | Y | 109 | 9.8 | 136 | 5.1 | 70 | 0.1 | 2 | 0.6 | 90.2 | 1118 | 4.5 | 56 | 1 |
223 | 6073 | 2020 | CA | California | San Diego County | 10.5 | Y | 296 | 18.1 | Y | 257 | 2.8 | Y | 39 | 32.7 | Y | 44 | 6.2 | Y | 81 | 17.3 | Y | 157 | 2.0 | N | 7 | 0.0 | N | 0 | 8.6 | N | 7 | 0.0 | N | 0 | 6.5 | Y | 34 | 21.2 | Y | 116 | 16.0 | Y | 73 | 12.2 | Y | 49 | 2.7 | Y | 24 | 12.2 | 36 | 8.1 | 24 | 0.3 | 1 | 0.4 | 88.3 | 227 | 3.5 | 9 | 1 |
216 | 6059 | 2020 | CA | California | Orange County | 9.8 | Y | 264 | 17.7 | Y | 233 | 2.3 | Y | 31 | 30.2 | Y | 14 | 6.5 | Y | 72 | 16.9 | Y | 145 | 4.5 | Y | 27 | 0.0 | N | 0 | 8.0 | N | 5 | 13.3 | N | 1 | 9.8 | Y | 47 | 23.5 | Y | 108 | 12.2 | Y | 50 | 6.3 | Y | 27 | 3.5 | Y | 32 | 15.5 | 41 | 7.2 | 19 | 0.0 | 0 | 0.4 | 82.0 | 191 | 6.0 | 14 | 1 |
222 | 6071 | 2020 | CA | California | San Bernardino County | 14.7 | Y | 263 | 25.7 | Y | 227 | 4.0 | Y | 36 | 32.8 | Y | 48 | 8.7 | Y | 44 | 16.3 | Y | 154 | 7.7 | N | 11 | 0.0 | N | 0 | 15.5 | N | 5 | 18.2 | N | 1 | 15.3 | Y | 58 | 32.4 | Y | 110 | 16.3 | Y | 47 | 8.8 | Y | 23 | 4.9 | Y | 25 | 11.8 | 31 | 7.6 | 20 | 0.4 | 1 | 0.4 | 86.3 | 196 | 6.6 | 15 | 2 |
219 | 6065 | 2020 | CA | California | Riverside County | 11.6 | Y | 239 | 21.1 | Y | 216 | 2.2 | Y | 23 | 24.1 | Y | 32 | 9.3 | Y | 68 | 12.4 | Y | 123 | 6.9 | N | 10 | 0.0 | N | 0 | 14.7 | N | 6 | 0.0 | N | 0 | 9.1 | Y | 38 | 28.1 | Y | 98 | 13.2 | Y | 43 | 10.3 | Y | 31 | 4.3 | Y | 29 | 8.4 | 20 | 3.8 | 9 | 0.4 | 1 | 0.4 | 95.8 | 207 | 1.4 | 3 | 1 |
201 | 6029 | 2020 | CA | California | Kern County | 22.3 | Y | 160 | 38.8 | Y | 142 | 5.1 | Y | 18 | 50.0 | Y | 19 | 16.5 | Y | 41 | 25.3 | Y | 95 | 10.8 | N | 4 | 0.0 | N | 0 | 8.5 | N | 1 | 0.0 | N | 0 | 21.7 | Y | 35 | 44.7 | Y | 63 | 25.5 | Y | 30 | 19.4 | Y | 19 | 6.6 | Y | 13 | 7.5 | 12 | 13.1 | 21 | 0.0 | 0 | 1.5 | 85.2 | 121 | 4.9 | 7 | 3 |
187 | 6001 | 2020 | CA | California | Alameda County | 11.1 | Y | 157 | 19.9 | Y | 138 | 2.6 | Y | 19 | 34.4 | Y | 50 | 6.0 | Y | 27 | 18.2 | Y | 54 | 3.9 | Y | 18 | 0.0 | N | 0 | 10.0 | N | 5 | 26.2 | N | 3 | 10.7 | Y | 24 | 26.2 | Y | 72 | 10.1 | Y | 26 | 7.4 | Y | 16 | 4.3 | Y | 19 | 15.9 | 25 | 6.4 | 10 | 0.0 | 0 | 0.3 | 85.5 | 118 | 2.9 | 4 | 1 |
224 | 6075 | 2020 | CA | California | San Francisco County | 19.6 | Y | 153 | 33.8 | Y | 134 | 5.0 | Y | 19 | 69.1 | Y | 27 | 14.2 | Y | 45 | 54.5 | Y | 61 | 5.6 | Y | 16 | 130.3 | N | 2 | 4.3 | N | 1 | 35.1 | N | 1 | 19.4 | Y | 17 | 28.2 | Y | 56 | 24.5 | Y | 34 | 26.3 | Y | 29 | 7.0 | Y | 17 | 7.8 | 12 | 11.1 | 17 | 0.0 | 0 | 0.2 | 81.3 | 109 | 11.9 | 16 | 1 |
220 | 6067 | 2020 | CA | California | Sacramento County | 11.8 | Y | 153 | 19.5 | Y | 123 | 4.5 | Y | 30 | 43.5 | Y | 55 | 7.8 | Y | 46 | 11.4 | Y | 33 | 5.0 | N | 11 | 15.0 | N | 1 | 11.2 | N | 6 | 6.5 | N | 1 | 10.0 | Y | 23 | 19.5 | Y | 48 | 16.3 | Y | 35 | 12.7 | Y | 24 | 5.5 | Y | 23 | 19.6 | 30 | 12.4 | 19 | 0.7 | 1 | 0.4 | 76.4 | 94 | 8.1 | 10 | 1 |
196 | 6019 | 2020 | CA | California | Fresno County | 15.0 | Y | 120 | 25.5 | Y | 101 | 4.7 | Y | 19 | 32.2 | Y | 12 | 10.6 | Y | 26 | 18.3 | Y | 75 | 5.8 | N | 5 | 20.1 | N | 1 | 7.9 | N | 1 | 0.0 | N | 0 | 14.3 | Y | 25 | 26.0 | Y | 40 | 21.6 | Y | 28 | 11.0 | Y | 12 | 6.5 | Y | 15 | 11.7 | 14 | 10.0 | 12 | 0.0 | 0 | 0.9 | 90.1 | 91 | 3.0 | 3 | 3 |
229 | 6085 | 2020 | CA | California | Santa Clara County | 6.5 | Y | 105 | 11.1 | Y | 91 | 1.8 | Y | 14 | 22.8 | N | 9 | 3.9 | Y | 20 | 16.1 | Y | 61 | 1.2 | N | 8 | 0.0 | N | 0 | 16.7 | N | 7 | 0.0 | N | 0 | 5.5 | Y | 15 | 13.4 | Y | 42 | 9.1 | Y | 25 | 5.9 | Y | 15 | 1.6 | N | 8 | 17.1 | 18 | 2.9 | 3 | 1.0 | 1 | 0.2 | 86.8 | 79 | 4.4 | 4 | 1 |
225 | 6077 | 2020 | CA | California | San Joaquin County | 13.3 | Y | 83 | 22.4 | Y | 69 | 4.5 | Y | 14 | 44.1 | Y | 20 | 11.1 | Y | 22 | 13.3 | Y | 33 | 7.6 | N | 8 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 14.4 | Y | 19 | 24.0 | Y | 26 | 18.5 | Y | 19 | 16.4 | Y | 15 | 2.1 | N | 4 | 16.9 | 14 | 9.6 | 8 | 0.0 | 0 | 1.0 | 84.1 | 58 | 4.3 | 3 | 3 |
193 | 6013 | 2020 | CA | California | Contra Costa County | 7.4 | Y | 72 | 13.1 | Y | 62 | 2.0 | N | 10 | 25.7 | Y | 22 | 4.2 | Y | 18 | 8.8 | Y | 21 | 4.4 | N | 8 | 0.0 | N | 0 | 5.9 | N | 2 | 21.3 | N | 1 | 5.3 | N | 9 | 22.7 | Y | 33 | 7.6 | Y | 12 | 7.0 | N | 11 | 2.0 | N | 7 | 15.3 | 11 | 1.4 | 1 | 0.0 | 0 | 0.1 | 91.9 | 57 | 3.2 | 2 | 2 |
242 | 6111 | 2020 | CA | California | Ventura County | 7.7 | Y | 55 | 14.9 | Y | 52 | 0.8 | N | 3 | 7.5 | N | 1 | 3.0 | N | 10 | 14.9 | Y | 43 | 0.0 | N | 0 | 0.0 | N | 0 | 6.6 | N | 1 | 0.0 | N | 0 | 6.8 | N | 9 | 23.8 | Y | 27 | 9.5 | N | 10 | 3.7 | N | 4 | 2.0 | N | 5 | 7.3 | 4 | 1.8 | 1 | 0.0 | 0 | 0.8 | 96.2 | 50 | 0.0 | 0 | 3 |
234 | 6095 | 2020 | CA | California | Solano County | 12.2 | Y | 46 | 17.2 | Y | 32 | 7.4 | Y | 14 | 24.6 | Y | 13 | 6.9 | N | 10 | 11.4 | N | 11 | 9.8 | N | 6 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 9.2 | N | 6 | 27.7 | Y | 18 | 27.2 | Y | 16 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 28.3 | 13 | -1.0 | -1 | 0.0 | 0 | 0.7 | 93.8 | 30 | -1.0 | -1 | 3 |
227 | 6081 | 2020 | CA | California | San Mateo County | 6.9 | Y | 45 | 13.1 | Y | 42 | 0.9 | N | 3 | 19.7 | N | 3 | 5.4 | Y | 14 | 12.9 | Y | 19 | 3.9 | N | 8 | 0.0 | N | 0 | 5.2 | N | 1 | 0.0 | N | 0 | 9.3 | N | 9 | 10.5 | Y | 12 | 10.9 | Y | 12 | 5.9 | N | 6 | 2.6 | N | 6 | 13.3 | 6 | 0.0 | 0 | 0.0 | 0 | 0.1 | 85.7 | 36 | 7.1 | 3 | 2 |
235 | 6097 | 2020 | CA | California | Sonoma County | 8.7 | Y | 37 | 13.6 | Y | 28 | 4.1 | N | 9 | -1.0 | -9 | -1 | 6.9 | Y | 19 | 11.2 | Y | 12 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 17.8 | N | 11 | 17.5 | N | 11 | 11.7 | N | 7 | -1.0 | -9 | -1 | 24.3 | 9 | -1.0 | -1 | 0.0 | 0 | 0.2 | 75.0 | 21 | -1.0 | -1 | 3 |
210 | 6047 | 2020 | CA | California | Merced County | 14.0 | Y | 31 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 17.6 | N | 11 | 12.3 | Y | 16 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | N | 0 | 16.5 | N | 9 | 34.1 | Y | 14 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 1.3 | -1.0 | 25 | 0.0 | 0 | 3 |
240 | 6107 | 2020 | CA | California | Tulare County | 7.9 | Y | 29 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 8.2 | N | 9 | 8.2 | Y | 19 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | 6.8 | N | 6 | 16.4 | N | 11 | 9.9 | N | 6 | 11.8 | N | 6 | 0.0 | N | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.6 | -1.0 | 24 | -1.0 | -1 | 3 |
236 | 6099 | 2020 | CA | California | Stanislaus County | 6.1 | Y | 27 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 5.8 | N | 11 | 6.9 | Y | 14 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 9.6 | N | 9 | 10.0 | N | 8 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 3.7 | N | 5 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.3 | -1.0 | 19 | -1.0 | -1 | 3 |
199 | 6025 | 2020 | CA | California | Imperial County | 16.8 | Y | 24 | 25.9 | Y | 19 | 7.2 | N | 5 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 17.5 | Y | 21 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | N | 0 | 15.8 | N | 5 | 56.0 | Y | 15 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 1.6 | 94.7 | 18 | -1.0 | -1 | 4 |
228 | 6083 | 2020 | CA | California | Santa Barbara County | 6.2 | Y | 23 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 2.9 | N | 5 | 9.5 | Y | 15 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 8.3 | N | 5 | 17.7 | N | 9 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.3 | -1.0 | 15 | -1.0 | -1 | 3 |
217 | 6061 | 2020 | CA | California | Placer County | 5.6 | Y | 19 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 4.4 | N | 11 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | 13.7 | N | 6 | 9.3 | N | 5 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 0.1 | -1.0 | 11 | -1.0 | -1 | 2 |
207 | 6041 | 2020 | CA | California | Marin County | 6.3 | Y | 14 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 3.1 | N | 5 | 15.3 | N | 5 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | 22.3 | N | 5 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.1 | -1.0 | 10 | 0.0 | 0 | 2 |
230 | 6087 | 2020 | CA | California | Santa Cruz County | 5.5 | Y | 13 | 5.2 | N | 6 | 5.9 | N | 7 | 0.0 | N | 0 | 5.7 | N | 8 | 6.9 | N | 5 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 15.4 | N | 5 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 38.5 | 5 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1.0 | -1 | 0.0 | 0 | 3 |
226 | 6079 | 2020 | CA | California | San Luis Obispo County | 4.4 | N | 11 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 4.6 | N | 8 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.2 | -1.0 | 7 | -1.0 | -1 | 3 |
213 | 6053 | 2020 | CA | California | Monterey County | 3.1 | N | 11 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 4.1 | N | 8 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.2 | -1.0 | 6 | 0.0 | 0 | 3 |
243 | 6113 | 2020 | CA | California | Yolo County | 5.9 | N | 11 | 12.2 | N | 11 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 12.4 | N | 7 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 0.1 | 81.8 | 9 | -1.0 | -1 | 2 |
190 | 6007 | 2020 | CA | California | Butte County | 5.5 | N | 10 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 6.1 | N | 8 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.2 | -1.0 | 5 | 0.0 | 0 | 4 |
206 | 6039 | 2020 | CA | California | Madera County | 6.3 | N | 8 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 7.1 | N | 5 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.7 | -1.0 | 7 | -1.0 | -1 | 4 |
202 | 6031 | 2020 | CA | California | Kings County | 6.5 | N | 8 | 11.6 | N | 8 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 0.7 | 75.0 | 6 | -1.0 | -1 | 4 |
237 | 6101 | 2020 | CA | California | Sutter County | 7.6 | N | 6 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1.0 | -1 | 0.0 | 0 | 4 |
195 | 6017 | 2020 | CA | California | El Dorado County | 3.6 | N | 6 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1.0 | -1 | 0.0 | 0 | 2 |
214 | 6055 | 2020 | CA | California | Napa County | 4.3 | N | 5 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1.0 | -1 | -1.0 | -1 | 4 |
209 | 6045 | 2020 | CA | California | Mendocino County | 6.8 | N | 5 | 13.9 | N | 5 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.5 | 100.0 | 5 | 0.0 | 0 | 5 |
198 | 6023 | 2020 | CA | California | Humboldt County | 4.3 | N | 5 | 8.7 | N | 5 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | -1.0 | -9 | -1 | 0.0 | N | 0 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | 0.0 | N | 0 | 0.0 | N | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.2 | 100.0 | 5 | 0.0 | 0 | 5 |
239 | 6105 | 2020 | CA | California | Trinity County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
188 | 6003 | 2020 | CA | California | Alpine County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
212 | 6051 | 2020 | CA | California | Mono County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
211 | 6049 | 2020 | CA | California | Modoc County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
241 | 6109 | 2020 | CA | California | Tuolumne County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 5 |
192 | 6011 | 2020 | CA | California | Colusa County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
204 | 6035 | 2020 | CA | California | Lassen County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 5 |
197 | 6021 | 2020 | CA | California | Glenn County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
232 | 6091 | 2020 | CA | California | Sierra County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
194 | 6015 | 2020 | CA | California | Del Norte County | 0.0 | N | 0 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 5 |
238 | 6103 | 2020 | CA | California | Tehama County | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1.0 | -1 | -1.0 | -1 | 5 |
191 | 6009 | 2020 | CA | California | Calaveras County | -1.0 | -9 | -1 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
233 | 6093 | 2020 | CA | California | Siskiyou County | -1.0 | -9 | -1 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
231 | 6089 | 2020 | CA | California | Shasta County | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1.0 | -1 | -1.0 | -1 | 4 |
189 | 6005 | 2020 | CA | California | Amador County | -1.0 | -9 | -1 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
221 | 6069 | 2020 | CA | California | San Benito County | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1.0 | -1 | -1.0 | -1 | 2 |
218 | 6063 | 2020 | CA | California | Plumas County | -1.0 | -9 | -1 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
215 | 6057 | 2020 | CA | California | Nevada County | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1.0 | -1 | -1.0 | -1 | 5 |
208 | 6043 | 2020 | CA | California | Mariposa County | -1.0 | -9 | -1 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
203 | 6033 | 2020 | CA | California | Lake County | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1.0 | -1 | -1.0 | -1 | 5 |
200 | 6027 | 2020 | CA | California | Inyo County | -1.0 | -9 | -1 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -9 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2.0 | -2 | -2.0 | -2 | 6 |
244 | 6115 | 2020 | CA | California | Yuba County | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1.0 | -1 | -1.0 | -1 | 4 |
# Get the Top 5 Counties with the highest number of new HIV cases:
ca_new_hiv_data.sort_values(by=['New Diagnoses Cases'], ascending=False).head(5)
GEO ID | Year | State Abbreviation | State | County Name | New Diagnoses Rate | New Diagnoses Rate Stability | New Diagnoses Cases | New Diagnoses Male Rate | New Diagnoses Male Rate Stability | New Diagnoses Male Cases | New Diagnoses Female Rate | New Diagnoses Female Rate Stability | New Diagnoses Female Cases | New Diagnoses Black Rate | New Diagnoses Black Rate Stability | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Rate Stability | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Rate Stability | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Rate Stability | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Rate Stability | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Rate Stability | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Rate Stability | New Diagnoses Native Hawaiian/Pacific Islander Cases | New Diagnoses Age 13-24 Rate | New Diagnoses Age 13-24 Rate Stability | New Diagnoses Age 13-24 Cases | New Diagnoses Age 25-34 Rate | New Diagnoses Age 25-34 Rate Stability | New Diagnoses Age 25-34 Cases | New Diagnoses Age 35-44 Rate | New Diagnoses Age 35-44 Rate Stability | New Diagnoses Age 35-44 Cases | New Diagnoses Age 45-54 Rate | New Diagnoses Age 45-54 Rate Stability | New Diagnoses Age 45-54 Cases | New Diagnoses Age 55+ Rate | New Diagnoses Age 55+ Rate Stability | New Diagnoses Age 55+ Cases | New Diagnoses Heterosexual Contact Percent | New Diagnoses Heterosexual Contact Cases | New Diagnoses IDU Percent | New Diagnoses IDU Cases | New Diagnoses Other Transmission Category Percent | New Diagnoses Other Transmission Category Cases | New Diagnoses MSM Rate | New Diagnoses MSM Percent | New Diagnoses MSM Cases | New Diagnoses MSM/IDU Percent | New Diagnoses MSM/IDU Cases | 2013 NCHS Urbanicity Code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | 6037 | 2020 | CA | California | Los Angeles County | 16.4 | Y | 1382 | 30.0 | Y | 1239 | 3.3 | Y | 143 | 42.8 | Y | 295 | 11.5 | Y | 265 | 18.4 | Y | 724 | 4.3 | Y | 56 | 24.2 | N | 4 | 23.0 | Y | 37 | 5.2 | N | 1 | 14.6 | Y | 220 | 34.8 | Y | 565 | 21.3 | Y | 291 | 15.2 | Y | 197 | 4.1 | Y | 109 | 9.8 | 136 | 5.1 | 70 | 0.1 | 2 | 0.6 | 90.2 | 1118 | 4.5 | 56 | 1 |
223 | 6073 | 2020 | CA | California | San Diego County | 10.5 | Y | 296 | 18.1 | Y | 257 | 2.8 | Y | 39 | 32.7 | Y | 44 | 6.2 | Y | 81 | 17.3 | Y | 157 | 2.0 | N | 7 | 0.0 | N | 0 | 8.6 | N | 7 | 0.0 | N | 0 | 6.5 | Y | 34 | 21.2 | Y | 116 | 16.0 | Y | 73 | 12.2 | Y | 49 | 2.7 | Y | 24 | 12.2 | 36 | 8.1 | 24 | 0.3 | 1 | 0.4 | 88.3 | 227 | 3.5 | 9 | 1 |
216 | 6059 | 2020 | CA | California | Orange County | 9.8 | Y | 264 | 17.7 | Y | 233 | 2.3 | Y | 31 | 30.2 | Y | 14 | 6.5 | Y | 72 | 16.9 | Y | 145 | 4.5 | Y | 27 | 0.0 | N | 0 | 8.0 | N | 5 | 13.3 | N | 1 | 9.8 | Y | 47 | 23.5 | Y | 108 | 12.2 | Y | 50 | 6.3 | Y | 27 | 3.5 | Y | 32 | 15.5 | 41 | 7.2 | 19 | 0.0 | 0 | 0.4 | 82.0 | 191 | 6.0 | 14 | 1 |
222 | 6071 | 2020 | CA | California | San Bernardino County | 14.7 | Y | 263 | 25.7 | Y | 227 | 4.0 | Y | 36 | 32.8 | Y | 48 | 8.7 | Y | 44 | 16.3 | Y | 154 | 7.7 | N | 11 | 0.0 | N | 0 | 15.5 | N | 5 | 18.2 | N | 1 | 15.3 | Y | 58 | 32.4 | Y | 110 | 16.3 | Y | 47 | 8.8 | Y | 23 | 4.9 | Y | 25 | 11.8 | 31 | 7.6 | 20 | 0.4 | 1 | 0.4 | 86.3 | 196 | 6.6 | 15 | 2 |
219 | 6065 | 2020 | CA | California | Riverside County | 11.6 | Y | 239 | 21.1 | Y | 216 | 2.2 | Y | 23 | 24.1 | Y | 32 | 9.3 | Y | 68 | 12.4 | Y | 123 | 6.9 | N | 10 | 0.0 | N | 0 | 14.7 | N | 6 | 0.0 | N | 0 | 9.1 | Y | 38 | 28.1 | Y | 98 | 13.2 | Y | 43 | 10.3 | Y | 31 | 4.3 | Y | 29 | 8.4 | 20 | 3.8 | 9 | 0.4 | 1 | 0.4 | 95.8 | 207 | 1.4 | 3 | 1 |
Above, the top 5 counties in California with the highest new cases of HIV are all counties in Southern California with Los Angeles leading in the epidemic at 1,382 new cases in 2020. Moreover, Southern California may be an area of high transmission of new HIV cases.
# Check Variables and Data Types:
ca_new_hiv_data.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 58 entries, 187 to 244 Data columns (total 62 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 GEO ID 58 non-null int64 1 Year 58 non-null int64 2 State Abbreviation 58 non-null object 3 State 58 non-null object 4 County Name 58 non-null object 5 New Diagnoses Rate 58 non-null float64 6 New Diagnoses Rate Stability 58 non-null object 7 New Diagnoses Cases 58 non-null int64 8 New Diagnoses Male Rate 58 non-null float64 9 New Diagnoses Male Rate Stability 58 non-null object 10 New Diagnoses Male Cases 58 non-null int64 11 New Diagnoses Female Rate 58 non-null float64 12 New Diagnoses Female Rate Stability 58 non-null object 13 New Diagnoses Female Cases 58 non-null int64 14 New Diagnoses Black Rate 58 non-null float64 15 New Diagnoses Black Rate Stability 58 non-null object 16 New Diagnoses Black Cases 58 non-null int64 17 New Diagnoses White Rate 58 non-null float64 18 New Diagnoses White Rate Stability 58 non-null object 19 New Diagnoses White Cases 58 non-null int64 20 New Diagnoses Hispanic Rate 58 non-null float64 21 New Diagnoses Hispanic Rate Stability 58 non-null object 22 New Diagnoses Hispanic Cases 58 non-null int64 23 New Diagnoses Asian Rate 58 non-null float64 24 New Diagnoses Asian Rate Stability 58 non-null object 25 New Diagnoses Asian Cases 58 non-null int64 26 New Diagnoses American Indian/Alaska Native Rate 58 non-null float64 27 New Diagnoses American Indian/Alaska Native Rate Stability 58 non-null object 28 New Diagnoses American Indian/Alaska Native Cases 58 non-null int64 29 New Diagnoses Multiracial Rate 58 non-null float64 30 New Diagnoses Multiracial Rate Stability 58 non-null object 31 New Diagnoses Multiracial Cases 58 non-null int64 32 New Diagnoses Native Hawaiian/Pacific Islander Rate 58 non-null float64 33 New Diagnoses Native Hawaiian/Pacific Islander Rate Stability 58 non-null object 34 New Diagnoses Native Hawaiian/Pacific Islander Cases 58 non-null int64 35 New Diagnoses Age 13-24 Rate 58 non-null float64 36 New Diagnoses Age 13-24 Rate Stability 58 non-null object 37 New Diagnoses Age 13-24 Cases 58 non-null int64 38 New Diagnoses Age 25-34 Rate 58 non-null float64 39 New Diagnoses Age 25-34 Rate Stability 58 non-null object 40 New Diagnoses Age 25-34 Cases 58 non-null int64 41 New Diagnoses Age 35-44 Rate 58 non-null float64 42 New Diagnoses Age 35-44 Rate Stability 58 non-null object 43 New Diagnoses Age 35-44 Cases 58 non-null int64 44 New Diagnoses Age 45-54 Rate 58 non-null float64 45 New Diagnoses Age 45-54 Rate Stability 58 non-null object 46 New Diagnoses Age 45-54 Cases 58 non-null int64 47 New Diagnoses Age 55+ Rate 58 non-null float64 48 New Diagnoses Age 55+ Rate Stability 58 non-null object 49 New Diagnoses Age 55+ Cases 58 non-null int64 50 New Diagnoses Heterosexual Contact Percent 58 non-null float64 51 New Diagnoses Heterosexual Contact Cases 58 non-null int64 52 New Diagnoses IDU Percent 58 non-null float64 53 New Diagnoses IDU Cases 58 non-null int64 54 New Diagnoses Other Transmission Category Percent 58 non-null float64 55 New Diagnoses Other Transmission Category Cases 58 non-null int64 56 New Diagnoses MSM Rate 58 non-null float64 57 New Diagnoses MSM Percent 58 non-null float64 58 New Diagnoses MSM Cases 58 non-null int64 59 New Diagnoses MSM/IDU Percent 58 non-null float64 60 New Diagnoses MSM/IDU Cases 58 non-null int64 61 2013 NCHS Urbanicity Code 58 non-null int64 dtypes: float64(21), int64(23), object(18) memory usage: 28.5+ KB
#Extract Columns and Variables to Keep:
ca_new_hiv_df = ca_new_hiv_data.iloc[:,[0,1,3,4,5,7,14,16,17,19,20,22,23,25,26,28,29,31,32,34]]
ca_new_hiv_df
GEO ID | Year | State | County Name | New Diagnoses Rate | New Diagnoses Cases | New Diagnoses Black Rate | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Cases | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
187 | 6001 | 2020 | California | Alameda County | 11.1 | 157 | 34.4 | 50 | 6.0 | 27 | 18.2 | 54 | 3.9 | 18 | 0.0 | 0 | 10.0 | 5 | 26.2 | 3 |
188 | 6003 | 2020 | California | Alpine County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
189 | 6005 | 2020 | California | Amador County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
190 | 6007 | 2020 | California | Butte County | 5.5 | 10 | 0.0 | 0 | 6.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 |
191 | 6009 | 2020 | California | Calaveras County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
192 | 6011 | 2020 | California | Colusa County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
193 | 6013 | 2020 | California | Contra Costa County | 7.4 | 72 | 25.7 | 22 | 4.2 | 18 | 8.8 | 21 | 4.4 | 8 | 0.0 | 0 | 5.9 | 2 | 21.3 | 1 |
194 | 6015 | 2020 | California | Del Norte County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
195 | 6017 | 2020 | California | El Dorado County | 3.6 | 6 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
196 | 6019 | 2020 | California | Fresno County | 15.0 | 120 | 32.2 | 12 | 10.6 | 26 | 18.3 | 75 | 5.8 | 5 | 20.1 | 1 | 7.9 | 1 | 0.0 | 0 |
197 | 6021 | 2020 | California | Glenn County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
198 | 6023 | 2020 | California | Humboldt County | 4.3 | 5 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 |
199 | 6025 | 2020 | California | Imperial County | 16.8 | 24 | -1.0 | -1 | -1.0 | -1 | 17.5 | 21 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 |
200 | 6027 | 2020 | California | Inyo County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
201 | 6029 | 2020 | California | Kern County | 22.3 | 160 | 50.0 | 19 | 16.5 | 41 | 25.3 | 95 | 10.8 | 4 | 0.0 | 0 | 8.5 | 1 | 0.0 | 0 |
202 | 6031 | 2020 | California | Kings County | 6.5 | 8 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
203 | 6033 | 2020 | California | Lake County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
204 | 6035 | 2020 | California | Lassen County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
205 | 6037 | 2020 | California | Los Angeles County | 16.4 | 1382 | 42.8 | 295 | 11.5 | 265 | 18.4 | 724 | 4.3 | 56 | 24.2 | 4 | 23.0 | 37 | 5.2 | 1 |
206 | 6039 | 2020 | California | Madera County | 6.3 | 8 | 0.0 | 0 | -1.0 | -1 | 7.1 | 5 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 |
207 | 6041 | 2020 | California | Marin County | 6.3 | 14 | -1.0 | -1 | 3.1 | 5 | 15.3 | 5 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
208 | 6043 | 2020 | California | Mariposa County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
209 | 6045 | 2020 | California | Mendocino County | 6.8 | 5 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 |
210 | 6047 | 2020 | California | Merced County | 14.0 | 31 | 0.0 | 0 | 17.6 | 11 | 12.3 | 16 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 |
211 | 6049 | 2020 | California | Modoc County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
212 | 6051 | 2020 | California | Mono County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
213 | 6053 | 2020 | California | Monterey County | 3.1 | 11 | 0.0 | 0 | -1.0 | -1 | 4.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
214 | 6055 | 2020 | California | Napa County | 4.3 | 5 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
215 | 6057 | 2020 | California | Nevada County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
216 | 6059 | 2020 | California | Orange County | 9.8 | 264 | 30.2 | 14 | 6.5 | 72 | 16.9 | 145 | 4.5 | 27 | 0.0 | 0 | 8.0 | 5 | 13.3 | 1 |
217 | 6061 | 2020 | California | Placer County | 5.6 | 19 | -1.0 | -1 | 4.4 | 11 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
218 | 6063 | 2020 | California | Plumas County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
219 | 6065 | 2020 | California | Riverside County | 11.6 | 239 | 24.1 | 32 | 9.3 | 68 | 12.4 | 123 | 6.9 | 10 | 0.0 | 0 | 14.7 | 6 | 0.0 | 0 |
220 | 6067 | 2020 | California | Sacramento County | 11.8 | 153 | 43.5 | 55 | 7.8 | 46 | 11.4 | 33 | 5.0 | 11 | 15.0 | 1 | 11.2 | 6 | 6.5 | 1 |
221 | 6069 | 2020 | California | San Benito County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
222 | 6071 | 2020 | California | San Bernardino County | 14.7 | 263 | 32.8 | 48 | 8.7 | 44 | 16.3 | 154 | 7.7 | 11 | 0.0 | 0 | 15.5 | 5 | 18.2 | 1 |
223 | 6073 | 2020 | California | San Diego County | 10.5 | 296 | 32.7 | 44 | 6.2 | 81 | 17.3 | 157 | 2.0 | 7 | 0.0 | 0 | 8.6 | 7 | 0.0 | 0 |
224 | 6075 | 2020 | California | San Francisco County | 19.6 | 153 | 69.1 | 27 | 14.2 | 45 | 54.5 | 61 | 5.6 | 16 | 130.3 | 2 | 4.3 | 1 | 35.1 | 1 |
225 | 6077 | 2020 | California | San Joaquin County | 13.3 | 83 | 44.1 | 20 | 11.1 | 22 | 13.3 | 33 | 7.6 | 8 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
226 | 6079 | 2020 | California | San Luis Obispo County | 4.4 | 11 | 0.0 | 0 | 4.6 | 8 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
227 | 6081 | 2020 | California | San Mateo County | 6.9 | 45 | 19.7 | 3 | 5.4 | 14 | 12.9 | 19 | 3.9 | 8 | 0.0 | 0 | 5.2 | 1 | 0.0 | 0 |
228 | 6083 | 2020 | California | Santa Barbara County | 6.2 | 23 | -1.0 | -1 | 2.9 | 5 | 9.5 | 15 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 |
229 | 6085 | 2020 | California | Santa Clara County | 6.5 | 105 | 22.8 | 9 | 3.9 | 20 | 16.1 | 61 | 1.2 | 8 | 0.0 | 0 | 16.7 | 7 | 0.0 | 0 |
230 | 6087 | 2020 | California | Santa Cruz County | 5.5 | 13 | 0.0 | 0 | 5.7 | 8 | 6.9 | 5 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
231 | 6089 | 2020 | California | Shasta County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
232 | 6091 | 2020 | California | Sierra County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
233 | 6093 | 2020 | California | Siskiyou County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
234 | 6095 | 2020 | California | Solano County | 12.2 | 46 | 24.6 | 13 | 6.9 | 10 | 11.4 | 11 | 9.8 | 6 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
235 | 6097 | 2020 | California | Sonoma County | 8.7 | 37 | -1.0 | -1 | 6.9 | 19 | 11.2 | 12 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 |
236 | 6099 | 2020 | California | Stanislaus County | 6.1 | 27 | -1.0 | -1 | 5.8 | 11 | 6.9 | 14 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
237 | 6101 | 2020 | California | Sutter County | 7.6 | 6 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
238 | 6103 | 2020 | California | Tehama County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
239 | 6105 | 2020 | California | Trinity County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
240 | 6107 | 2020 | California | Tulare County | 7.9 | 29 | 0.0 | 0 | 8.2 | 9 | 8.2 | 19 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 |
241 | 6109 | 2020 | California | Tuolumne County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
242 | 6111 | 2020 | California | Ventura County | 7.7 | 55 | 7.5 | 1 | 3.0 | 10 | 14.9 | 43 | 0.0 | 0 | 0.0 | 0 | 6.6 | 1 | 0.0 | 0 |
243 | 6113 | 2020 | California | Yolo County | 5.9 | 11 | -1.0 | -1 | -1.0 | -1 | 12.4 | 7 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
244 | 6115 | 2020 | California | Yuba County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
# Recheck Dataframe Info:
ca_new_hiv_df.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 58 entries, 187 to 244 Data columns (total 20 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 GEO ID 58 non-null int64 1 Year 58 non-null int64 2 State 58 non-null object 3 County Name 58 non-null object 4 New Diagnoses Rate 58 non-null float64 5 New Diagnoses Cases 58 non-null int64 6 New Diagnoses Black Rate 58 non-null float64 7 New Diagnoses Black Cases 58 non-null int64 8 New Diagnoses White Rate 58 non-null float64 9 New Diagnoses White Cases 58 non-null int64 10 New Diagnoses Hispanic Rate 58 non-null float64 11 New Diagnoses Hispanic Cases 58 non-null int64 12 New Diagnoses Asian Rate 58 non-null float64 13 New Diagnoses Asian Cases 58 non-null int64 14 New Diagnoses American Indian/Alaska Native Rate 58 non-null float64 15 New Diagnoses American Indian/Alaska Native Cases 58 non-null int64 16 New Diagnoses Multiracial Rate 58 non-null float64 17 New Diagnoses Multiracial Cases 58 non-null int64 18 New Diagnoses Native Hawaiian/Pacific Islander Rate 58 non-null float64 19 New Diagnoses Native Hawaiian/Pacific Islander Cases 58 non-null int64 dtypes: float64(8), int64(10), object(2) memory usage: 9.5+ KB
# HIV-Dataset2: Current (On-Going) HIV Cases by County
hiv_data = pd.read_excel('/Users/cl/Documents/GEO448/Project/AIDSVu_County_Prev_2020.xlsx', header=3)
hiv_data
GEO ID | State Abbreviation | State | County Name | Year | County Rate | County Rate Stability | County Cases | Male Rate | Male Rate Stability | Male Cases | Female Rate | Female Rate Stability | Female Cases | Black Rate | Black Rate Stability | Black Cases | White Rate | White Rate Stability | White Cases | Hispanic Rate | Hispanic Rate Stability | Hispanic Cases | Age 13-24 Rate | Age 13-24 Rate Stability | Age 13-24 Cases | Age 25-34 Rate | Age 25-34 Rate Stability | Age 25-34 Cases | Age 35-44 Rate | Age 35-44 Rate Stability | Age 35-44 Cases | Age 45-54 Rate | Age 45-54 Rate Stability | Age 45-54 Cases | Age 55+ Rate | Age 55+ Rate Stability | Age 55+ Cases | MSM Rate | MSM Percent | Male and IDU Percent | MSM/IDU Percent | Male and Heterosexual Contact Percent | Female and IDU Percent | Female and Heterosexual Contact Percent | MSM Cases | Male and IDU Cases | MSM/IDU Cases | Male and Heterosexual Contact Cases | Female and IDU Cases | Female and Heterosexual Contact Cases | Heterosexual Contact Cases | Heterosexual Contact Percent | IDU Cases | IDU Percent | Other Transmission Route Cases | Other Transmission Route Percent | Male and Other Transmission Route Cases | Male and Other Transmission Route Percent | Female and Other Transmission Route Cases | Female and Other Transmission Route Percent | Correctional Warning | 2013 NCHS Urbanicity Code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1001 | AL | Alabama | Autauga County | 2020 | 243 | Y | 114 | 373 | Y | 84 | 123 | Y | 30 | 661 | Y | 62 | 126 | Y | 44 | -1 | -9 | -1 | 97 | N | 8 | 267 | Y | 20 | 326 | Y | 24 | 255 | Y | 19 | 261 | Y | 43 | 28.3 | 82.1 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 69 | -1 | -1 | -1 | -1 | -1 | 28 | 24.6 | 13 | 11.4 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 3 |
1 | 1003 | AL | Alabama | Baldwin County | 2020 | 176 | Y | 344 | 272 | Y | 254 | 88 | Y | 90 | 705 | Y | 113 | 112 | Y | 185 | 203 | Y | 16 | 20 | N | 6 | 220 | Y | 56 | 229 | Y | 63 | 315 | Y | 91 | 154 | Y | 128 | 15.8 | 79.5 | -1.0 | 6.3 | -1.0 | -1.0 | -1.0 | 202 | -1 | 16 | -1 | -1 | -1 | 100 | 29.1 | 21 | 6.1 | 6 | 1.7 | -1 | -1.0 | -1 | -1.0 | 1 | 4 |
2 | 1005 | AL | Alabama | Barbour County | 2020 | 457 | Y | 96 | 464 | Y | 52 | 448 | Y | 44 | 697 | Y | 69 | 141 | Y | 14 | -1 | -9 | -1 | -1 | -9 | -1 | 265 | N | 9 | 916 | Y | 28 | 734 | Y | 22 | -1 | -9 | -1 | 37.2 | 61.5 | -1.0 | 9.6 | -1.0 | -1.0 | -1.0 | 32 | -1 | 5 | -1 | -1 | -1 | 53 | 55.2 | 7 | 7.3 | 0 | 0.0 | -1 | -1.0 | -1 | -1.0 | 1 | 6 |
3 | 1007 | AL | Alabama | Bibb County | 2020 | 216 | Y | 41 | -1 | -9 | -1 | -1 | -9 | -1 | 566 | Y | 23 | 106 | Y | 15 | -1 | -9 | -1 | -1 | -9 | -1 | 272 | N | 9 | 345 | N | 10 | 422 | Y | 13 | -1 | -9 | -1 | 17.1 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 32 | -1 | -1 | -1 | -1 | -1 | 5 | 12.2 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 1 | 2 |
4 | 1009 | AL | Alabama | Blount County | 2020 | 76 | Y | 37 | 105 | Y | 25 | 49 | Y | 12 | 681 | N | 5 | 56 | Y | 24 | -1 | -9 | -1 | -1 | -9 | -1 | 72 | N | 5 | 130 | N | 9 | 158 | Y | 12 | -1 | -9 | -1 | 3.8 | 64.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 16 | -1 | -1 | -1 | -1 | -1 | 11 | 29.7 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 2 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
3216 | 72145 | PR | Puerto Rico | Vega Baja Municipio | 2020 | 461 | Y | 201 | 693 | Y | 143 | 252 | Y | 58 | -1 | N | 0 | -1 | -9 | -1 | -1 | Y | 199 | 0 | N | 0 | 294 | Y | 19 | 624 | Y | 37 | 773 | Y | 49 | 546 | Y | 96 | -1.0 | 31.5 | 37.1 | -1.0 | 24.5 | 24.1 | 75.9 | 45 | 53 | -1 | 35 | 14 | 44 | 79 | 39.3 | 67 | 33.3 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | -9 |
3217 | 72147 | PR | Puerto Rico | Vieques Municipio | 2020 | 411 | Y | 30 | 678 | Y | 25 | 139 | N | 5 | -1 | N | 0 | -1 | -9 | -1 | -1 | Y | 29 | -1 | -9 | -1 | -1 | -9 | -1 | -1 | -9 | -1 | 693 | N | 8 | 514 | Y | 17 | -1.0 | 28.0 | 24.0 | 24.0 | 24.0 | 0.0 | 100.0 | 7 | 6 | 6 | 6 | 0 | 5 | 11 | 36.7 | 6 | 20.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -9 |
3218 | 72149 | PR | Puerto Rico | Villalba Municipio | 2020 | 169 | Y | 31 | 229 | Y | 20 | 115 | N | 11 | -1 | N | 0 | -1 | N | 0 | -1 | Y | 31 | -1 | -9 | -1 | -1 | -9 | -1 | 220 | N | 5 | 261 | N | 7 | 205 | Y | 15 | -1.0 | 45.0 | 25.0 | -1.0 | -1.0 | 0.0 | 90.9 | 9 | 5 | -1 | -1 | 0 | 10 | 14 | 45.2 | 5 | 16.1 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | -9 |
3219 | 72151 | PR | Puerto Rico | Yabucoa Municipio | 2020 | 313 | Y | 89 | 492 | Y | 67 | 148 | Y | 22 | -1 | N | 0 | -1 | N | 0 | -1 | Y | 89 | -1 | -9 | -1 | 211 | N | 8 | 310 | N | 11 | 455 | Y | 19 | -1 | -9 | -1 | -1.0 | 28.4 | 37.3 | 7.5 | 25.4 | -1.0 | 95.5 | 19 | 25 | 5 | 17 | -1 | 21 | 38 | 42.7 | 26 | 29.2 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -9 |
3220 | 72153 | PR | Puerto Rico | Yauco Municipio | 2020 | 229 | Y | 67 | 378 | Y | 52 | 97 | Y | 15 | -1 | N | 0 | -1 | N | 0 | -1 | Y | 67 | 0 | N | 0 | -1 | -9 | -1 | 318 | Y | 12 | 440 | Y | 19 | -1 | -9 | -1 | -1.0 | 36.5 | 26.9 | -1.0 | 21.2 | 0.0 | 100.0 | 19 | 14 | -1 | 11 | 0 | 15 | 26 | 38.8 | 14 | 20.9 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | -9 |
3221 rows × 63 columns
# Sort by County Rate and Verify Top 20 counties in the U.S. with highest HIV population:
hiv_data.sort_values(by=['County Cases'], ascending=False).head(20)
GEO ID | State Abbreviation | State | County Name | Year | County Rate | County Rate Stability | County Cases | Male Rate | Male Rate Stability | Male Cases | Female Rate | Female Rate Stability | Female Cases | Black Rate | Black Rate Stability | Black Cases | White Rate | White Rate Stability | White Cases | Hispanic Rate | Hispanic Rate Stability | Hispanic Cases | Age 13-24 Rate | Age 13-24 Rate Stability | Age 13-24 Cases | Age 25-34 Rate | Age 25-34 Rate Stability | Age 25-34 Cases | Age 35-44 Rate | Age 35-44 Rate Stability | Age 35-44 Cases | Age 45-54 Rate | Age 45-54 Rate Stability | Age 45-54 Cases | Age 55+ Rate | Age 55+ Rate Stability | Age 55+ Cases | MSM Rate | MSM Percent | Male and IDU Percent | MSM/IDU Percent | Male and Heterosexual Contact Percent | Female and IDU Percent | Female and Heterosexual Contact Percent | MSM Cases | Male and IDU Cases | MSM/IDU Cases | Male and Heterosexual Contact Cases | Female and IDU Cases | Female and Heterosexual Contact Cases | Heterosexual Contact Cases | Heterosexual Contact Percent | IDU Cases | IDU Percent | Other Transmission Route Cases | Other Transmission Route Percent | Male and Other Transmission Route Cases | Male and Other Transmission Route Percent | Female and Other Transmission Route Cases | Female and Other Transmission Route Percent | Correctional Warning | 2013 NCHS Urbanicity Code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | 6037 | CA | California | Los Angeles County | 2020 | 595 | Y | 50243 | 1078 | Y | 44579 | 131 | Y | 5664 | 1380 | Y | 9502 | 551 | Y | 12752 | 599 | Y | 23584 | 67 | Y | 1010 | 472 | Y | 7668 | 754 | Y | 10295 | 985 | Y | 12787 | 697 | Y | 18483 | 19.6 | 87.6 | 3.1 | 6.6 | 2.3 | 19.3 | 76.9 | 39039 | 1397 | 2938 | 1011 | 1093 | 4353 | 5363 | 10.7 | 2490 | 5.0 | 413 | 0.8 | 194 | 0.4 | 218 | 3.8 | 0 | 1 |
1831 | 36005 | NY | New York | Bronx County | 2020 | 2408 | Y | 27676 | 3366 | Y | 17932 | 1580 | Y | 9744 | 3414 | Y | 11641 | 782 | Y | 852 | 2150 | Y | 13697 | 240 | Y | 541 | 1665 | Y | 3701 | 2505 | Y | 4455 | 3840 | Y | 6456 | 3520 | Y | 12523 | 52.1 | 55.5 | 21.1 | 8.5 | 12.5 | 28.6 | 67.0 | 9955 | 3790 | 1533 | 2241 | 2786 | 6533 | 8774 | 31.7 | 6576 | 23.8 | 838 | 3.0 | 414 | 2.3 | 425 | 4.4 | 0 | 1 |
2624 | 48201 | TX | Texas | Harris County | 2020 | 705 | Y | 27068 | 1087 | Y | 20584 | 333 | Y | 6484 | 1742 | Y | 12760 | 363 | Y | 4196 | 537 | Y | 8616 | 128 | Y | 1003 | 722 | Y | 5429 | 932 | Y | 6347 | 1100 | Y | 6437 | 756 | Y | 7852 | 13.1 | 78.2 | 5.1 | 5.6 | 10.4 | 14.4 | 83.1 | 16097 | 1060 | 1153 | 2136 | 936 | 5391 | 7527 | 27.8 | 1996 | 7.4 | 295 | 1.1 | 139 | 0.7 | 157 | 2.4 | 0 | 1 |
363 | 12086 | FL | Florida | Miami-Dade County | 2020 | 1147 | Y | 26559 | 1796 | Y | 20059 | 543 | Y | 6500 | 3102 | Y | 10533 | 848 | Y | 2515 | 803 | Y | 13045 | 139 | Y | 518 | 877 | Y | 3311 | 1256 | Y | 4621 | 1702 | Y | 6563 | 1425 | Y | 11546 | 17.9 | 74.5 | 3.9 | 3.5 | 17.3 | 8.6 | 88.6 | 14946 | 784 | 702 | 3477 | 560 | 5761 | 9238 | 34.8 | 1344 | 5.1 | 330 | 1.2 | 152 | 0.8 | 178 | 2.7 | 0 | 1 |
1859 | 36061 | NY | New York | New York County | 2020 | 1838 | Y | 26448 | 3296 | Y | 22247 | 550 | Y | 4201 | 4154 | Y | 7318 | 1139 | Y | 7908 | 2498 | Y | 8869 | 142 | Y | 280 | 788 | Y | 2784 | 1725 | Y | 4018 | 3110 | Y | 5953 | 2889 | Y | 13413 | 26.0 | 76.9 | 11.3 | 5.6 | 5.4 | 31.2 | 64.2 | 17101 | 2510 | 1256 | 1191 | 1309 | 2699 | 3889 | 14.7 | 3819 | 14.4 | 383 | 1.4 | 190 | 0.9 | 194 | 4.6 | 0 | 1 |
1852 | 36047 | NY | New York | Kings County | 2020 | 1244 | Y | 26236 | 1806 | Y | 17736 | 754 | Y | 8500 | 2242 | Y | 14295 | 350 | Y | 2706 | 1829 | Y | 7104 | 166 | Y | 564 | 789 | Y | 3671 | 1251 | Y | 4465 | 1999 | Y | 5795 | 1784 | Y | 11741 | 23.0 | 64.3 | 16.4 | 5.5 | 12.2 | 25.6 | 70.4 | 11396 | 2900 | 979 | 2159 | 2172 | 5987 | 8146 | 31.0 | 5072 | 19.3 | 644 | 2.5 | 303 | 1.7 | 341 | 4.0 | 0 | 1 |
611 | 17031 | IL | Illinois | Cook County | 2020 | 600 | Y | 25929 | 1014 | Y | 21090 | 216 | Y | 4839 | 1278 | Y | 12587 | 281 | Y | 5296 | 556 | Y | 5813 | 115 | Y | 862 | 581 | Y | 4834 | 735 | Y | 5144 | 975 | Y | 6102 | 634 | Y | 8987 | 10.4 | 80.3 | 6.2 | 6.6 | 6.0 | 21.6 | 74.9 | 16930 | 1315 | 1383 | 1266 | 1047 | 3623 | 4889 | 18.9 | 2363 | 9.1 | 365 | 1.4 | 196 | 0.9 | 169 | 3.5 | 0 | 1 |
326 | 12011 | FL | Florida | Broward County | 2020 | 1199 | Y | 19975 | 1851 | Y | 14918 | 588 | Y | 5057 | 2011 | Y | 9198 | 990 | Y | 5924 | 789 | Y | 4101 | 132 | Y | 351 | 858 | Y | 2237 | 1219 | Y | 3211 | 1892 | Y | 5007 | 1499 | Y | 9169 | 19.0 | 71.5 | 3.8 | 4.4 | 19.6 | 8.7 | 88.3 | 10671 | 564 | 655 | 2925 | 441 | 4463 | 7388 | 37.0 | 1004 | 5.0 | 257 | 1.3 | 104 | 0.7 | 153 | 3.0 | 1 | 2 |
2580 | 48113 | TX | Texas | Dallas County | 2020 | 884 | Y | 18983 | 1463 | Y | 15384 | 328 | Y | 3599 | 1641 | Y | 8101 | 687 | Y | 4486 | 623 | Y | 5113 | 139 | Y | 605 | 889 | Y | 3923 | 1222 | Y | 4394 | 1443 | Y | 4622 | 921 | Y | 5439 | 14.2 | 85.5 | 3.2 | 6.2 | 4.7 | 16.3 | 82.1 | 13158 | 496 | 950 | 722 | 585 | 2956 | 3678 | 19.4 | 1081 | 5.7 | 116 | 0.6 | 58 | 0.4 | 59 | 1.6 | 0 | 1 |
2295 | 42101 | PA | Pennsylvania | Philadelphia County | 2020 | 1283 | Y | 17019 | 1961 | Y | 12133 | 690 | Y | 4886 | 2059 | Y | 10847 | 532 | Y | 2577 | 1515 | Y | 2807 | 190 | Y | 448 | 875 | Y | 2675 | 1454 | Y | 2976 | 2328 | Y | 4009 | 1690 | Y | 6911 | 24.5 | 54.6 | 17.4 | 6.6 | 20.2 | 25.8 | 71.5 | 6630 | 2117 | 806 | 2452 | 1261 | 3495 | 5946 | 34.9 | 3378 | 19.8 | 258 | 1.5 | 128 | 1.1 | 130 | 2.7 | 0 | 1 |
1869 | 36081 | NY | New York | Queens County | 2020 | 847 | Y | 16064 | 1313 | Y | 11984 | 414 | Y | 4080 | 1459 | Y | 5016 | 408 | Y | 1972 | 1357 | Y | 6960 | 92 | Y | 255 | 593 | Y | 2084 | 926 | Y | 2786 | 1342 | Y | 3903 | 1041 | Y | 7036 | 23.4 | 70.3 | 13.4 | 4.3 | 10.7 | 22.6 | 73.4 | 8424 | 1604 | 516 | 1282 | 923 | 2993 | 4275 | 26.6 | 2527 | 15.7 | 323 | 2.0 | 159 | 1.3 | 164 | 4.0 | 0 | 1 |
447 | 13121 | GA | Georgia | Fulton County | 2020 | 1745 | Y | 16004 | 3092 | Y | 13578 | 508 | Y | 2426 | 2933 | Y | 11495 | 688 | Y | 2592 | 1665 | Y | 1012 | 257 | Y | 447 | 1819 | Y | 3428 | 2364 | Y | 3609 | 2560 | Y | 3731 | 1871 | Y | 4789 | 23.7 | 84.4 | 4.3 | 5.2 | 5.6 | 14.5 | 83.1 | 11454 | 587 | 712 | 761 | 352 | 2016 | 2777 | 17.4 | 939 | 5.9 | 122 | 0.8 | 64 | 0.5 | 58 | 2.4 | 0 | 1 |
223 | 6073 | CA | California | San Diego County | 2020 | 473 | Y | 13331 | 843 | Y | 11948 | 99 | Y | 1383 | 1179 | Y | 1585 | 413 | Y | 5427 | 595 | Y | 5413 | 40 | Y | 211 | 304 | Y | 1664 | 532 | Y | 2435 | 854 | Y | 3422 | 630 | Y | 5599 | 15.5 | 82.4 | 4.3 | 8.6 | 4.2 | 19.9 | 76.6 | 9841 | 519 | 1026 | 496 | 275 | 1059 | 1555 | 11.7 | 794 | 6.0 | 115 | 0.9 | 66 | 0.6 | 49 | 3.5 | 0 | 1 |
104 | 4013 | AZ | Arizona | Maricopa County | 2020 | 316 | Y | 12101 | 550 | Y | 10347 | 90 | Y | 1754 | 890 | Y | 1891 | 253 | Y | 5546 | 332 | Y | 3685 | 53 | Y | 385 | 309 | Y | 2087 | 395 | Y | 2359 | 533 | Y | 2999 | 338 | Y | 4271 | 11.0 | 81.5 | 5.2 | 8.6 | 3.7 | 22.6 | 73.7 | 8435 | 543 | 895 | 381 | 397 | 1292 | 1672 | 13.8 | 940 | 7.8 | 158 | 1.3 | 93 | 0.9 | 65 | 3.7 | 0 | 1 |
224 | 6075 | CA | California | San Francisco County | 2020 | 1515 | Y | 11803 | 2792 | Y | 11081 | 189 | Y | 722 | 3847 | Y | 1502 | 1912 | Y | 6046 | 2543 | Y | 2844 | 90 | Y | 79 | 500 | Y | 991 | 1381 | Y | 1916 | 2626 | Y | 2899 | 2427 | Y | 5918 | 18.0 | 79.4 | 3.4 | 15.4 | 1.6 | 45.4 | 52.2 | 8800 | 377 | 1709 | 177 | 328 | 377 | 554 | 4.7 | 705 | 6.0 | 34 | 0.3 | 18 | 0.2 | 16 | 2.2 | 0 | 1 |
1217 | 24510 | MD | Maryland | Baltimore city | 2020 | 1985 | Y | 9900 | 2848 | Y | 6544 | 1247 | Y | 3356 | 2658 | Y | 8137 | 532 | Y | 774 | 1641 | Y | 390 | 222 | Y | 188 | 1084 | Y | 1200 | 1905 | Y | 1469 | 3495 | Y | 2234 | 2960 | Y | 4809 | 18.1 | 49.3 | 26.6 | 8.3 | 14.9 | 37.5 | 59.5 | 3226 | 1743 | 543 | 975 | 1260 | 1998 | 2973 | 30.0 | 3003 | 30.3 | 155 | 1.6 | 57 | 0.9 | 99 | 2.9 | 0 | 1 |
219 | 6065 | CA | California | Riverside County | 2020 | 474 | Y | 9765 | 879 | Y | 8997 | 74 | Y | 768 | 635 | Y | 843 | 778 | Y | 5706 | 271 | Y | 2688 | 41 | Y | 170 | 268 | Y | 935 | 334 | Y | 1088 | 670 | Y | 2021 | 832 | Y | 5551 | 15.0 | 88.0 | 2.4 | 6.7 | 2.6 | 21.4 | 75.9 | 7920 | 214 | 603 | 233 | 164 | 583 | 816 | 8.4 | 378 | 3.9 | 48 | 0.5 | 27 | 0.3 | 22 | 2.9 | 0 | 1 |
1749 | 32003 | NV | Nevada | Clark County | 2020 | 484 | Y | 9385 | 822 | Y | 7901 | 152 | Y | 1484 | 1186 | Y | 2688 | 391 | Y | 3298 | 455 | Y | 2620 | 70 | Y | 237 | 534 | Y | 1845 | 641 | Y | 2056 | 746 | Y | 2243 | 473 | Y | 3004 | 16.0 | 83.8 | 4.4 | 7.3 | 4.1 | 18.5 | 78.1 | 6620 | 345 | 573 | 322 | 274 | 1159 | 1481 | 15.8 | 619 | 6.6 | 92 | 1.0 | 41 | 0.5 | 51 | 3.4 | 0 | 1 |
431 | 13089 | GA | Georgia | DeKalb County | 2020 | 1418 | Y | 8992 | 2440 | Y | 7186 | 532 | Y | 1806 | 1932 | Y | 6590 | 593 | Y | 1162 | 1546 | Y | 705 | 279 | Y | 303 | 1469 | Y | 1890 | 1835 | Y | 1990 | 2229 | Y | 2151 | 1385 | Y | 2658 | 25.8 | 84.7 | 3.5 | 4.4 | 6.8 | 11.3 | 86.3 | 6087 | 252 | 319 | 490 | 204 | 1559 | 2049 | 22.8 | 455 | 5.1 | 82 | 0.9 | 38 | 0.5 | 44 | 2.4 | 1 | 2 |
368 | 12095 | FL | Florida | Orange County | 2020 | 757 | Y | 8973 | 1186 | Y | 6840 | 350 | Y | 2133 | 1640 | Y | 3807 | 486 | Y | 2346 | 661 | Y | 2514 | 143 | Y | 326 | 654 | Y | 1536 | 891 | Y | 1822 | 1175 | Y | 2127 | 935 | Y | 3162 | 10.1 | 77.0 | 5.6 | 4.4 | 12.2 | 12.8 | 84.1 | 5267 | 382 | 300 | 837 | 273 | 1793 | 2630 | 29.3 | 654 | 7.3 | 122 | 1.4 | 54 | 0.8 | 68 | 3.2 | 0 | 1 |
Los Angeles county has the highest population of invididuals living with HIV with all other counties in the U.S. Additional counties in Califoria in the top 20 include San Diego County, San Francisco County, and Riverside County.
# Extract data for California Only:
cond = hiv_data['State'] == 'California'
ca_hiv_data = hiv_data[cond]
ca_hiv_data
GEO ID | State Abbreviation | State | County Name | Year | County Rate | County Rate Stability | County Cases | Male Rate | Male Rate Stability | Male Cases | Female Rate | Female Rate Stability | Female Cases | Black Rate | Black Rate Stability | Black Cases | White Rate | White Rate Stability | White Cases | Hispanic Rate | Hispanic Rate Stability | Hispanic Cases | Age 13-24 Rate | Age 13-24 Rate Stability | Age 13-24 Cases | Age 25-34 Rate | Age 25-34 Rate Stability | Age 25-34 Cases | Age 35-44 Rate | Age 35-44 Rate Stability | Age 35-44 Cases | Age 45-54 Rate | Age 45-54 Rate Stability | Age 45-54 Cases | Age 55+ Rate | Age 55+ Rate Stability | Age 55+ Cases | MSM Rate | MSM Percent | Male and IDU Percent | MSM/IDU Percent | Male and Heterosexual Contact Percent | Female and IDU Percent | Female and Heterosexual Contact Percent | MSM Cases | Male and IDU Cases | MSM/IDU Cases | Male and Heterosexual Contact Cases | Female and IDU Cases | Female and Heterosexual Contact Cases | Heterosexual Contact Cases | Heterosexual Contact Percent | IDU Cases | IDU Percent | Other Transmission Route Cases | Other Transmission Route Percent | Male and Other Transmission Route Cases | Male and Other Transmission Route Percent | Female and Other Transmission Route Cases | Female and Other Transmission Route Percent | Correctional Warning | 2013 NCHS Urbanicity Code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
187 | 6001 | CA | California | Alameda County | 2020 | 425 | Y | 6030 | 727 | Y | 5048 | 135 | Y | 982 | 1542 | Y | 2239 | 380 | Y | 1707 | 457 | Y | 1355 | 54 | Y | 120 | 299 | Y | 823 | 400 | Y | 1028 | 669 | Y | 1452 | 584 | Y | 2607 | 11.8 | 79.9 | 4.8 | 8.1 | 6.6 | 22.4 | 74.2 | 4032 | 241 | 411 | 334 | 220 | 729 | 1063 | 17.6 | 461 | 7.6 | 63 | 1.0 | 31 | 0.6 | 33 | 3.4 | 0 | 1 |
188 | 6003 | CA | California | Alpine County | 2020 | -1 | -9 | -1 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
189 | 6005 | CA | California | Amador County | 2020 | 514 | Y | 184 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
190 | 6007 | CA | California | Butte County | 2020 | 137 | Y | 249 | 226 | Y | 202 | 51 | Y | 47 | 792 | Y | 23 | 129 | Y | 169 | 149 | Y | 45 | -1 | -9 | -1 | 90 | Y | 25 | 167 | Y | 41 | 314 | Y | 68 | -1 | -9 | -1 | 4.4 | 65.3 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 132 | -1 | -1 | -1 | -1 | -1 | 45 | 18.1 | 40 | 16.1 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 4 |
191 | 6009 | CA | California | Calaveras County | 2020 | 122 | Y | 50 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
192 | 6011 | CA | California | Colusa County | 2020 | 103 | Y | 18 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
193 | 6013 | CA | California | Contra Costa County | 2020 | 278 | Y | 2709 | 474 | Y | 2237 | 94 | Y | 472 | 914 | Y | 783 | 223 | Y | 952 | 294 | Y | 701 | 25 | Y | 42 | 261 | Y | 379 | 308 | Y | 487 | 398 | Y | 623 | 341 | Y | 1178 | 4.5 | 83.2 | 5.1 | 6.8 | 4.3 | 21.2 | 75.6 | 1861 | 113 | 152 | 97 | 100 | 357 | 454 | 16.8 | 213 | 7.9 | 30 | 1.1 | 15 | 0.7 | 15 | 3.2 | 0 | 2 |
194 | 6015 | CA | California | Del Norte County | 2020 | 160 | Y | 38 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 1 | 5 |
195 | 6017 | CA | California | El Dorado County | 2020 | 125 | Y | 209 | 212 | Y | 175 | 40 | Y | 34 | -1 | -9 | -1 | 127 | Y | 166 | 148 | Y | 30 | 20 | N | 5 | 62 | Y | 12 | 128 | Y | 29 | 208 | Y | 50 | 149 | Y | 113 | 2.9 | 72.0 | -1.0 | 10.3 | -1.0 | -1.0 | -1.0 | 126 | -1 | 18 | -1 | -1 | -1 | 41 | 19.6 | 18 | 8.6 | 6 | 2.9 | -1 | -1.0 | -1 | -1.0 | 0 | 2 |
196 | 6019 | CA | California | Fresno County | 2020 | 267 | Y | 2134 | 452 | Y | 1789 | 86 | Y | 345 | 825 | Y | 307 | 207 | Y | 509 | 289 | Y | 1185 | 56 | Y | 97 | 258 | Y | 396 | 363 | Y | 471 | 411 | Y | 447 | 312 | Y | 723 | 14.4 | 80.8 | 6.9 | 9.2 | 2.5 | 28.4 | 69.3 | 1446 | 124 | 164 | 45 | 98 | 239 | 284 | 13.3 | 221 | 10.4 | 19 | 0.9 | 10 | 0.6 | 9 | 2.6 | 0 | 3 |
197 | 6021 | CA | California | Glenn County | 2020 | 101 | Y | 23 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
198 | 6023 | CA | California | Humboldt County | 2020 | 185 | Y | 216 | 304 | Y | 175 | 69 | Y | 41 | 481 | N | 7 | 168 | Y | 148 | 275 | Y | 36 | 29 | N | 7 | 146 | Y | 26 | 215 | Y | 38 | 311 | Y | 45 | 234 | Y | 100 | 4.0 | 66.9 | -1.0 | 17.1 | -1.0 | -1.0 | -1.0 | 117 | -1 | 30 | -1 | -1 | -1 | 36 | 16.7 | 29 | 13.4 | 5 | 2.3 | -1 | -1.0 | -1 | -1.0 | 0 | 5 |
199 | 6025 | CA | California | Imperial County | 2020 | 259 | Y | 370 | 440 | Y | 323 | 68 | Y | 47 | 174 | N | 7 | 247 | Y | 38 | 267 | Y | 320 | 50 | Y | 16 | 254 | Y | 68 | 287 | Y | 64 | 525 | Y | 101 | 282 | Y | 121 | 22.1 | 78.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 252 | -1 | -1 | -1 | -1 | -1 | 64 | 17.3 | 32 | 8.6 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 1 | 4 |
200 | 6027 | CA | California | Inyo County | 2020 | 156 | Y | 24 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
201 | 6029 | CA | California | Kern County | 2020 | 269 | Y | 1928 | 445 | Y | 1630 | 85 | Y | 298 | 668 | Y | 254 | 214 | Y | 532 | 284 | Y | 1063 | 60 | Y | 96 | 291 | Y | 410 | 306 | Y | 359 | 457 | Y | 448 | 310 | Y | 615 | 14.3 | 68.7 | 13.3 | 10.8 | 6.7 | 30.5 | 66.1 | 1120 | 217 | 176 | 110 | 91 | 197 | 307 | 15.9 | 308 | 16.0 | 18 | 0.9 | 8 | 0.5 | 11 | 3.7 | 0 | 3 |
202 | 6031 | CA | California | Kings County | 2020 | 154 | Y | 189 | 230 | Y | 158 | 57 | Y | 31 | 273 | Y | 23 | 106 | Y | 43 | 171 | Y | 111 | 26 | N | 7 | 112 | Y | 29 | 195 | Y | 42 | 311 | Y | 52 | 190 | Y | 59 | 12.6 | 65.8 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 104 | -1 | -1 | -1 | -1 | -1 | 42 | 22.2 | 29 | 15.3 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 1 | 4 |
203 | 6033 | CA | California | Lake County | 2020 | 259 | Y | 141 | 432 | Y | 117 | 88 | Y | 24 | 821 | N | 8 | 250 | Y | 97 | 210 | Y | 23 | -1 | -9 | -1 | 123 | N | 9 | 198 | Y | 14 | 432 | Y | 31 | -1 | -9 | -1 | 11.3 | 68.4 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 80 | -1 | -1 | -1 | -1 | -1 | 25 | 17.7 | 17 | 12.1 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 5 |
204 | 6035 | CA | California | Lassen County | 2020 | 88 | Y | 23 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 1 | 5 |
205 | 6037 | CA | California | Los Angeles County | 2020 | 595 | Y | 50243 | 1078 | Y | 44579 | 131 | Y | 5664 | 1380 | Y | 9502 | 551 | Y | 12752 | 599 | Y | 23584 | 67 | Y | 1010 | 472 | Y | 7668 | 754 | Y | 10295 | 985 | Y | 12787 | 697 | Y | 18483 | 19.6 | 87.6 | 3.1 | 6.6 | 2.3 | 19.3 | 76.9 | 39039 | 1397 | 2938 | 1011 | 1093 | 4353 | 5363 | 10.7 | 2490 | 5.0 | 413 | 0.8 | 194 | 0.4 | 218 | 3.8 | 0 | 1 |
206 | 6039 | CA | California | Madera County | 2020 | 166 | Y | 211 | 250 | Y | 151 | 91 | Y | 60 | 740 | Y | 32 | 120 | Y | 55 | 160 | Y | 113 | 38 | N | 10 | 155 | Y | 34 | 199 | Y | 40 | 271 | Y | 48 | 196 | Y | 79 | 10.9 | 76.2 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 115 | -1 | -1 | -1 | -1 | -1 | 37 | 17.5 | 41 | 19.4 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 1 | 4 |
207 | 6041 | CA | California | Marin County | 2020 | 353 | Y | 789 | 643 | Y | 700 | 78 | Y | 89 | 1928 | Y | 115 | 253 | Y | 412 | 641 | Y | 210 | 36 | Y | 12 | 290 | Y | 65 | 383 | Y | 114 | 465 | Y | 180 | 421 | Y | 418 | 7.0 | 71.6 | -1.0 | 10.7 | -1.0 | -1.0 | -1.0 | 501 | -1 | 75 | -1 | -1 | -1 | 109 | 13.8 | 98 | 12.4 | 6 | 0.8 | -1 | -1.0 | -1 | -1.0 | 1 | 2 |
208 | 6043 | CA | California | Mariposa County | 2020 | 125 | Y | 19 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
209 | 6045 | CA | California | Mendocino County | 2020 | 237 | Y | 173 | 391 | Y | 141 | 86 | Y | 32 | 1351 | N | 8 | 252 | Y | 124 | 166 | Y | 28 | -1 | -9 | -1 | 178 | Y | 17 | 162 | Y | 17 | 367 | Y | 36 | -1 | -9 | -1 | 9.3 | 73.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 103 | -1 | -1 | -1 | -1 | -1 | 31 | 17.9 | 20 | 11.6 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 5 |
210 | 6047 | CA | California | Merced County | 2020 | 157 | Y | 347 | 262 | Y | 292 | 50 | Y | 55 | 406 | Y | 28 | 161 | Y | 101 | 148 | Y | 193 | 55 | Y | 30 | 185 | Y | 76 | 184 | Y | 64 | 234 | Y | 71 | 174 | Y | 106 | 12.3 | 78.8 | -1.0 | 4.8 | -1.0 | -1.0 | -1.0 | 230 | -1 | 14 | -1 | -1 | -1 | 60 | 17.3 | 37 | 10.7 | 5 | 1.4 | -1 | -1.0 | -1 | -1.0 | 1 | 3 |
211 | 6049 | CA | California | Modoc County | 2020 | -1 | -9 | -1 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
212 | 6051 | CA | California | Mono County | 2020 | 63 | N | 8 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
213 | 6053 | CA | California | Monterey County | 2020 | 212 | Y | 745 | 354 | Y | 631 | 66 | Y | 114 | 799 | Y | 76 | 194 | Y | 220 | 206 | Y | 403 | 14 | N | 10 | 181 | Y | 110 | 209 | Y | 118 | 414 | Y | 207 | 272 | Y | 300 | 14.6 | 80.5 | -1.0 | 6.7 | -1.0 | -1.0 | -1.0 | 508 | -1 | 42 | -1 | -1 | -1 | 135 | 18.1 | 55 | 7.4 | 5 | 0.7 | -1 | -1.0 | -1 | -1.0 | 0 | 3 |
214 | 6055 | CA | California | Napa County | 2020 | 244 | Y | 287 | 429 | Y | 250 | 62 | Y | 37 | 1243 | Y | 31 | 243 | Y | 155 | 220 | Y | 83 | 45 | N | 9 | 180 | Y | 30 | 232 | Y | 40 | 377 | Y | 66 | 308 | Y | 142 | 16.2 | 77.2 | -1.0 | 7.2 | -1.0 | -1.0 | -1.0 | 193 | -1 | 18 | -1 | -1 | -1 | 42 | 14.6 | 27 | 9.4 | 7 | 2.4 | -1 | -1.0 | -1 | -1.0 | 0 | 4 |
215 | 6057 | CA | California | Nevada County | 2020 | 143 | Y | 126 | 252 | Y | 108 | 40 | Y | 18 | -1 | -9 | -1 | 134 | Y | 101 | 218 | Y | 17 | -1 | -9 | -1 | 103 | N | 10 | 165 | Y | 19 | 293 | Y | 32 | -1 | -9 | -1 | 6.1 | 80.6 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 87 | -1 | -1 | -1 | -1 | -1 | 15 | 11.9 | 9 | 7.1 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 5 |
216 | 6059 | CA | California | Orange County | 2020 | 264 | Y | 7092 | 473 | Y | 6224 | 63 | Y | 868 | 815 | Y | 378 | 219 | Y | 2431 | 412 | Y | 3535 | 37 | Y | 176 | 225 | Y | 1033 | 365 | Y | 1491 | 426 | Y | 1827 | 282 | Y | 2565 | 11.6 | 84.8 | 5.0 | 6.2 | 3.4 | 17.9 | 79.1 | 5278 | 312 | 388 | 209 | 155 | 687 | 895 | 12.6 | 467 | 6.6 | 63 | 0.9 | 37 | 0.6 | 27 | 3.1 | 0 | 1 |
217 | 6061 | CA | California | Placer County | 2020 | 109 | Y | 371 | 181 | Y | 299 | 41 | Y | 72 | 313 | Y | 19 | 98 | Y | 243 | 179 | Y | 83 | 16 | N | 9 | 114 | Y | 50 | 119 | Y | 64 | 148 | Y | 77 | 126 | Y | 171 | 2.5 | 72.9 | -1.0 | 10.7 | -1.0 | -1.0 | -1.0 | 218 | -1 | 32 | -1 | -1 | -1 | 73 | 19.7 | 42 | 11.3 | 6 | 1.6 | -1 | -1.0 | -1 | -1.0 | 0 | 2 |
218 | 6063 | CA | California | Plumas County | 2020 | 126 | Y | 21 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
219 | 6065 | CA | California | Riverside County | 2020 | 474 | Y | 9765 | 879 | Y | 8997 | 74 | Y | 768 | 635 | Y | 843 | 778 | Y | 5706 | 271 | Y | 2688 | 41 | Y | 170 | 268 | Y | 935 | 334 | Y | 1088 | 670 | Y | 2021 | 832 | Y | 5551 | 15.0 | 88.0 | 2.4 | 6.7 | 2.6 | 21.4 | 75.9 | 7920 | 214 | 603 | 233 | 164 | 583 | 816 | 8.4 | 378 | 3.9 | 48 | 0.5 | 27 | 0.3 | 22 | 2.9 | 0 | 1 |
220 | 6067 | CA | California | Sacramento County | 2020 | 348 | Y | 4519 | 601 | Y | 3785 | 110 | Y | 734 | 875 | Y | 1107 | 336 | Y | 1976 | 359 | Y | 1034 | 48 | Y | 110 | 279 | Y | 686 | 361 | Y | 774 | 574 | Y | 1085 | 445 | Y | 1864 | 11.7 | 75.1 | 6.0 | 10.2 | 8.0 | 22.3 | 74.8 | 2841 | 227 | 387 | 304 | 164 | 549 | 853 | 18.9 | 391 | 8.7 | 48 | 1.1 | 27 | 0.7 | 21 | 2.9 | 0 | 1 |
221 | 6069 | CA | California | San Benito County | 2020 | 107 | Y | 56 | 178 | Y | 47 | 34 | N | 9 | -1 | -9 | -1 | 84 | Y | 15 | 123 | Y | 38 | 0 | N | 0 | 69 | N | 6 | 134 | Y | 12 | 151 | Y | 12 | 159 | Y | 26 | 3.9 | 72.3 | -1.0 | 12.8 | -1.0 | -1.0 | -1.0 | 34 | -1 | 6 | -1 | -1 | -1 | 10 | 17.9 | 6 | 10.7 | 0 | 0.0 | -1 | -1.0 | -1 | -1.0 | 0 | 2 |
222 | 6071 | CA | California | San Bernardino County | 2020 | 272 | Y | 4845 | 456 | Y | 4028 | 91 | Y | 817 | 686 | Y | 1004 | 224 | Y | 1134 | 256 | Y | 2419 | 46 | Y | 176 | 279 | Y | 948 | 334 | Y | 962 | 439 | Y | 1145 | 313 | Y | 1614 | 6.0 | 78.1 | 7.8 | 8.0 | 5.4 | 22.3 | 73.9 | 3145 | 315 | 323 | 218 | 182 | 604 | 822 | 17.0 | 497 | 10.3 | 58 | 1.2 | 27 | 0.7 | 30 | 3.7 | 0 | 2 |
223 | 6073 | CA | California | San Diego County | 2020 | 473 | Y | 13331 | 843 | Y | 11948 | 99 | Y | 1383 | 1179 | Y | 1585 | 413 | Y | 5427 | 595 | Y | 5413 | 40 | Y | 211 | 304 | Y | 1664 | 532 | Y | 2435 | 854 | Y | 3422 | 630 | Y | 5599 | 15.5 | 82.4 | 4.3 | 8.6 | 4.2 | 19.9 | 76.6 | 9841 | 519 | 1026 | 496 | 275 | 1059 | 1555 | 11.7 | 794 | 6.0 | 115 | 0.9 | 66 | 0.6 | 49 | 3.5 | 0 | 1 |
224 | 6075 | CA | California | San Francisco County | 2020 | 1515 | Y | 11803 | 2792 | Y | 11081 | 189 | Y | 722 | 3847 | Y | 1502 | 1912 | Y | 6046 | 2543 | Y | 2844 | 90 | Y | 79 | 500 | Y | 991 | 1381 | Y | 1916 | 2626 | Y | 2899 | 2427 | Y | 5918 | 18.0 | 79.4 | 3.4 | 15.4 | 1.6 | 45.4 | 52.2 | 8800 | 377 | 1709 | 177 | 328 | 377 | 554 | 4.7 | 705 | 6.0 | 34 | 0.3 | 18 | 0.2 | 16 | 2.2 | 0 | 1 |
225 | 6077 | CA | California | San Joaquin County | 2020 | 230 | Y | 1432 | 370 | Y | 1142 | 92 | Y | 290 | 853 | Y | 387 | 194 | Y | 386 | 206 | Y | 511 | 39 | Y | 52 | 230 | Y | 249 | 259 | Y | 266 | 398 | Y | 364 | 266 | Y | 501 | 13.3 | 68.2 | 12.3 | 9.1 | 9.2 | 22.1 | 75.2 | 779 | 141 | 104 | 105 | 64 | 218 | 323 | 22.6 | 205 | 14.3 | 22 | 1.5 | 14 | 1.2 | 8 | 2.8 | 1 | 3 |
226 | 6079 | CA | California | San Luis Obispo County | 2020 | 156 | Y | 385 | 269 | Y | 336 | 40 | Y | 49 | 537 | Y | 25 | 134 | Y | 233 | 207 | Y | 108 | 14 | N | 8 | 132 | Y | 42 | 185 | Y | 60 | 306 | Y | 90 | 190 | Y | 185 | 7.1 | 72.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 242 | -1 | -1 | -1 | -1 | -1 | 61 | 15.8 | 33 | 8.6 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 1 | 3 |
227 | 6081 | CA | California | San Mateo County | 2020 | 257 | Y | 1674 | 457 | Y | 1465 | 63 | Y | 209 | 1007 | Y | 153 | 241 | Y | 618 | 414 | Y | 608 | 30 | Y | 29 | 190 | Y | 217 | 273 | Y | 299 | 384 | Y | 391 | 324 | Y | 738 | 3.9 | 82.0 | 5.3 | 7.0 | 4.6 | 14.4 | 79.9 | 1202 | 78 | 103 | 68 | 30 | 167 | 235 | 14.0 | 107 | 6.4 | 27 | 1.6 | 15 | 1.0 | 12 | 5.7 | 1 | 2 |
228 | 6083 | CA | California | Santa Barbara County | 2020 | 158 | Y | 591 | 271 | Y | 505 | 46 | Y | 86 | 459 | Y | 32 | 137 | Y | 240 | 185 | Y | 293 | 16 | Y | 15 | 105 | Y | 63 | 232 | Y | 118 | 304 | Y | 140 | 211 | Y | 255 | 8.0 | 78.6 | -1.0 | 8.3 | -1.0 | -1.0 | -1.0 | 397 | -1 | 42 | -1 | -1 | -1 | 95 | 16.1 | 52 | 8.8 | 5 | 0.8 | -1 | -1.0 | -1 | -1.0 | 1 | 3 |
229 | 6085 | CA | California | Santa Clara County | 2020 | 213 | Y | 3443 | 367 | Y | 3008 | 55 | Y | 435 | 883 | Y | 349 | 195 | Y | 991 | 407 | Y | 1539 | 25 | Y | 68 | 151 | Y | 471 | 275 | Y | 756 | 352 | Y | 898 | 250 | Y | 1250 | 7.5 | 82.4 | 4.1 | 7.8 | 5.3 | 14.5 | 80.9 | 2479 | 124 | 234 | 160 | 63 | 352 | 512 | 14.9 | 187 | 5.4 | 31 | 0.9 | 11 | 0.4 | 20 | 4.6 | 0 | 1 |
230 | 6087 | CA | California | Santa Cruz County | 2020 | 215 | Y | 503 | 368 | Y | 424 | 66 | Y | 79 | 626 | Y | 15 | 198 | Y | 277 | 252 | Y | 182 | 11 | N | 6 | 141 | Y | 46 | 256 | Y | 81 | 404 | Y | 129 | 288 | Y | 241 | 14.2 | 79.2 | -1.0 | 8.5 | -1.0 | -1.0 | -1.0 | 336 | -1 | 36 | -1 | -1 | -1 | 68 | 13.5 | 56 | 11.1 | 6 | 1.2 | -1 | -1.0 | -1 | -1.0 | 0 | 3 |
231 | 6089 | CA | California | Shasta County | 2020 | 135 | Y | 205 | 231 | Y | 170 | 45 | Y | 35 | 748 | Y | 12 | 127 | Y | 155 | 140 | Y | 21 | 21 | N | 5 | 100 | Y | 23 | 155 | Y | 33 | 184 | Y | 36 | 171 | Y | 108 | 5.1 | 60.0 | -1.0 | 14.1 | -1.0 | -1.0 | -1.0 | 102 | -1 | 24 | -1 | -1 | -1 | 35 | 17.1 | 36 | 17.6 | 8 | 3.9 | -1 | -1.0 | -1 | -1.0 | 0 | 4 |
232 | 6091 | CA | California | Sierra County | 2020 | -1 | -9 | -1 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
233 | 6093 | CA | California | Siskiyou County | 2020 | 170 | Y | 63 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
234 | 6095 | CA | California | Solano County | 2020 | 342 | Y | 1287 | 586 | Y | 1093 | 102 | Y | 194 | 832 | Y | 439 | 283 | Y | 409 | 306 | Y | 295 | 42 | Y | 27 | 267 | Y | 174 | 342 | Y | 201 | 516 | Y | 276 | 453 | Y | 609 | 17.6 | 69.3 | -1.0 | 10.2 | -1.0 | -1.0 | -1.0 | 757 | -1 | 112 | -1 | -1 | -1 | 214 | 16.6 | 190 | 14.8 | 15 | 1.2 | -1 | -1.0 | -1 | -1.0 | 0 | 3 |
235 | 6097 | CA | California | Sonoma County | 2020 | 339 | Y | 1438 | 627 | Y | 1292 | 67 | Y | 146 | 1069 | Y | 75 | 363 | Y | 1004 | 251 | Y | 268 | 21 | Y | 14 | 174 | Y | 108 | 299 | Y | 188 | 440 | Y | 264 | 500 | Y | 864 | 11.5 | 81.7 | -1.0 | 11.1 | -1.0 | -1.0 | -1.0 | 1056 | -1 | 143 | -1 | -1 | -1 | 149 | 10.4 | 73 | 5.1 | 17 | 1.2 | -1 | -1.0 | -1 | -1.0 | 0 | 3 |
236 | 6099 | CA | California | Stanislaus County | 2020 | 185 | Y | 824 | 307 | Y | 674 | 67 | Y | 150 | 636 | Y | 79 | 162 | Y | 305 | 185 | Y | 374 | 27 | Y | 25 | 149 | Y | 119 | 225 | Y | 160 | 343 | Y | 217 | 222 | Y | 303 | 9.1 | 78.0 | -1.0 | 7.9 | -1.0 | -1.0 | -1.0 | 526 | -1 | 53 | -1 | -1 | -1 | 143 | 17.4 | 85 | 10.3 | 18 | 2.2 | -1 | -1.0 | -1 | -1.0 | 0 | 3 |
237 | 6101 | CA | California | Sutter County | 2020 | 151 | Y | 119 | 244 | Y | 95 | 60 | Y | 24 | -1 | -9 | -1 | 155 | Y | 57 | 205 | Y | 48 | -1 | -9 | -1 | 163 | Y | 22 | 157 | Y | 19 | 230 | Y | 25 | -1 | -9 | -1 | 11.5 | 69.5 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 66 | -1 | -1 | -1 | -1 | -1 | 30 | 25.2 | 8 | 6.7 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 4 |
238 | 6103 | CA | California | Tehama County | 2020 | 88 | Y | 47 | 140 | Y | 37 | 37 | N | 10 | -1 | -9 | -1 | 75 | Y | 28 | 127 | Y | 16 | 0 | N | 0 | 64 | N | 5 | 136 | N | 10 | 128 | N | 9 | 104 | Y | 23 | 2.0 | 70.3 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 26 | -1 | -1 | -1 | -1 | -1 | 5 | 10.6 | 9 | 19.1 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 5 |
239 | 6105 | CA | California | Trinity County | 2020 | 149 | Y | 16 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
240 | 6107 | CA | California | Tulare County | 2020 | 140 | Y | 516 | 239 | Y | 436 | 43 | Y | 80 | 421 | Y | 20 | 151 | Y | 166 | 134 | Y | 311 | 19 | Y | 17 | 174 | Y | 116 | 223 | Y | 135 | 205 | Y | 104 | 141 | Y | 144 | 9.0 | 82.1 | -1.0 | 8.0 | -1.0 | -1.0 | -1.0 | 358 | -1 | 35 | -1 | -1 | -1 | 77 | 14.9 | 42 | 8.1 | 5 | 1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 3 |
241 | 6109 | CA | California | Tuolumne County | 2020 | 123 | Y | 59 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 1 | 5 |
242 | 6111 | CA | California | Ventura County | 2020 | 160 | Y | 1139 | 282 | Y | 987 | 42 | Y | 152 | 414 | Y | 55 | 128 | Y | 426 | 204 | Y | 590 | 24 | Y | 32 | 152 | Y | 173 | 221 | Y | 233 | 219 | Y | 235 | 185 | Y | 466 | 13.7 | 84.4 | 4.6 | 4.4 | 4.9 | 19.1 | 76.3 | 833 | 45 | 43 | 48 | 29 | 116 | 164 | 14.4 | 74 | 6.5 | 26 | 2.3 | 19 | 1.9 | 7 | 4.6 | 0 | 3 |
243 | 6113 | CA | California | Yolo County | 2020 | 165 | Y | 310 | 292 | Y | 264 | 47 | Y | 46 | 672 | Y | 32 | 166 | Y | 147 | 188 | Y | 106 | 23 | Y | 13 | 158 | Y | 47 | 212 | Y | 56 | 275 | Y | 63 | 254 | Y | 131 | 3.3 | 79.9 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 211 | -1 | -1 | -1 | -1 | -1 | 47 | 15.2 | 28 | 9.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 2 |
244 | 6115 | CA | California | Yuba County | 2020 | 158 | Y | 101 | 220 | Y | 71 | 95 | Y | 30 | 367 | N | 9 | 168 | Y | 60 | 170 | Y | 30 | -1 | -9 | -1 | 111 | Y | 14 | 181 | Y | 19 | 354 | Y | 29 | -1 | -9 | -1 | 6.0 | 67.6 | -1.0 | 15.5 | -1.0 | -1.0 | -1.0 | 48 | -1 | 11 | -1 | -1 | -1 | 23 | 22.8 | 13 | 12.9 | 5 | 5.0 | -1 | -1.0 | -1 | -1.0 | 0 | 4 |
# Sort Current Hiv Data in CA by County Cases:
ca_hiv_data.sort_values(by=['County Cases'], ascending=False)
GEO ID | State Abbreviation | State | County Name | Year | County Rate | County Rate Stability | County Cases | Male Rate | Male Rate Stability | Male Cases | Female Rate | Female Rate Stability | Female Cases | Black Rate | Black Rate Stability | Black Cases | White Rate | White Rate Stability | White Cases | Hispanic Rate | Hispanic Rate Stability | Hispanic Cases | Age 13-24 Rate | Age 13-24 Rate Stability | Age 13-24 Cases | Age 25-34 Rate | Age 25-34 Rate Stability | Age 25-34 Cases | Age 35-44 Rate | Age 35-44 Rate Stability | Age 35-44 Cases | Age 45-54 Rate | Age 45-54 Rate Stability | Age 45-54 Cases | Age 55+ Rate | Age 55+ Rate Stability | Age 55+ Cases | MSM Rate | MSM Percent | Male and IDU Percent | MSM/IDU Percent | Male and Heterosexual Contact Percent | Female and IDU Percent | Female and Heterosexual Contact Percent | MSM Cases | Male and IDU Cases | MSM/IDU Cases | Male and Heterosexual Contact Cases | Female and IDU Cases | Female and Heterosexual Contact Cases | Heterosexual Contact Cases | Heterosexual Contact Percent | IDU Cases | IDU Percent | Other Transmission Route Cases | Other Transmission Route Percent | Male and Other Transmission Route Cases | Male and Other Transmission Route Percent | Female and Other Transmission Route Cases | Female and Other Transmission Route Percent | Correctional Warning | 2013 NCHS Urbanicity Code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | 6037 | CA | California | Los Angeles County | 2020 | 595 | Y | 50243 | 1078 | Y | 44579 | 131 | Y | 5664 | 1380 | Y | 9502 | 551 | Y | 12752 | 599 | Y | 23584 | 67 | Y | 1010 | 472 | Y | 7668 | 754 | Y | 10295 | 985 | Y | 12787 | 697 | Y | 18483 | 19.6 | 87.6 | 3.1 | 6.6 | 2.3 | 19.3 | 76.9 | 39039 | 1397 | 2938 | 1011 | 1093 | 4353 | 5363 | 10.7 | 2490 | 5.0 | 413 | 0.8 | 194 | 0.4 | 218 | 3.8 | 0 | 1 |
223 | 6073 | CA | California | San Diego County | 2020 | 473 | Y | 13331 | 843 | Y | 11948 | 99 | Y | 1383 | 1179 | Y | 1585 | 413 | Y | 5427 | 595 | Y | 5413 | 40 | Y | 211 | 304 | Y | 1664 | 532 | Y | 2435 | 854 | Y | 3422 | 630 | Y | 5599 | 15.5 | 82.4 | 4.3 | 8.6 | 4.2 | 19.9 | 76.6 | 9841 | 519 | 1026 | 496 | 275 | 1059 | 1555 | 11.7 | 794 | 6.0 | 115 | 0.9 | 66 | 0.6 | 49 | 3.5 | 0 | 1 |
224 | 6075 | CA | California | San Francisco County | 2020 | 1515 | Y | 11803 | 2792 | Y | 11081 | 189 | Y | 722 | 3847 | Y | 1502 | 1912 | Y | 6046 | 2543 | Y | 2844 | 90 | Y | 79 | 500 | Y | 991 | 1381 | Y | 1916 | 2626 | Y | 2899 | 2427 | Y | 5918 | 18.0 | 79.4 | 3.4 | 15.4 | 1.6 | 45.4 | 52.2 | 8800 | 377 | 1709 | 177 | 328 | 377 | 554 | 4.7 | 705 | 6.0 | 34 | 0.3 | 18 | 0.2 | 16 | 2.2 | 0 | 1 |
219 | 6065 | CA | California | Riverside County | 2020 | 474 | Y | 9765 | 879 | Y | 8997 | 74 | Y | 768 | 635 | Y | 843 | 778 | Y | 5706 | 271 | Y | 2688 | 41 | Y | 170 | 268 | Y | 935 | 334 | Y | 1088 | 670 | Y | 2021 | 832 | Y | 5551 | 15.0 | 88.0 | 2.4 | 6.7 | 2.6 | 21.4 | 75.9 | 7920 | 214 | 603 | 233 | 164 | 583 | 816 | 8.4 | 378 | 3.9 | 48 | 0.5 | 27 | 0.3 | 22 | 2.9 | 0 | 1 |
216 | 6059 | CA | California | Orange County | 2020 | 264 | Y | 7092 | 473 | Y | 6224 | 63 | Y | 868 | 815 | Y | 378 | 219 | Y | 2431 | 412 | Y | 3535 | 37 | Y | 176 | 225 | Y | 1033 | 365 | Y | 1491 | 426 | Y | 1827 | 282 | Y | 2565 | 11.6 | 84.8 | 5.0 | 6.2 | 3.4 | 17.9 | 79.1 | 5278 | 312 | 388 | 209 | 155 | 687 | 895 | 12.6 | 467 | 6.6 | 63 | 0.9 | 37 | 0.6 | 27 | 3.1 | 0 | 1 |
187 | 6001 | CA | California | Alameda County | 2020 | 425 | Y | 6030 | 727 | Y | 5048 | 135 | Y | 982 | 1542 | Y | 2239 | 380 | Y | 1707 | 457 | Y | 1355 | 54 | Y | 120 | 299 | Y | 823 | 400 | Y | 1028 | 669 | Y | 1452 | 584 | Y | 2607 | 11.8 | 79.9 | 4.8 | 8.1 | 6.6 | 22.4 | 74.2 | 4032 | 241 | 411 | 334 | 220 | 729 | 1063 | 17.6 | 461 | 7.6 | 63 | 1.0 | 31 | 0.6 | 33 | 3.4 | 0 | 1 |
222 | 6071 | CA | California | San Bernardino County | 2020 | 272 | Y | 4845 | 456 | Y | 4028 | 91 | Y | 817 | 686 | Y | 1004 | 224 | Y | 1134 | 256 | Y | 2419 | 46 | Y | 176 | 279 | Y | 948 | 334 | Y | 962 | 439 | Y | 1145 | 313 | Y | 1614 | 6.0 | 78.1 | 7.8 | 8.0 | 5.4 | 22.3 | 73.9 | 3145 | 315 | 323 | 218 | 182 | 604 | 822 | 17.0 | 497 | 10.3 | 58 | 1.2 | 27 | 0.7 | 30 | 3.7 | 0 | 2 |
220 | 6067 | CA | California | Sacramento County | 2020 | 348 | Y | 4519 | 601 | Y | 3785 | 110 | Y | 734 | 875 | Y | 1107 | 336 | Y | 1976 | 359 | Y | 1034 | 48 | Y | 110 | 279 | Y | 686 | 361 | Y | 774 | 574 | Y | 1085 | 445 | Y | 1864 | 11.7 | 75.1 | 6.0 | 10.2 | 8.0 | 22.3 | 74.8 | 2841 | 227 | 387 | 304 | 164 | 549 | 853 | 18.9 | 391 | 8.7 | 48 | 1.1 | 27 | 0.7 | 21 | 2.9 | 0 | 1 |
229 | 6085 | CA | California | Santa Clara County | 2020 | 213 | Y | 3443 | 367 | Y | 3008 | 55 | Y | 435 | 883 | Y | 349 | 195 | Y | 991 | 407 | Y | 1539 | 25 | Y | 68 | 151 | Y | 471 | 275 | Y | 756 | 352 | Y | 898 | 250 | Y | 1250 | 7.5 | 82.4 | 4.1 | 7.8 | 5.3 | 14.5 | 80.9 | 2479 | 124 | 234 | 160 | 63 | 352 | 512 | 14.9 | 187 | 5.4 | 31 | 0.9 | 11 | 0.4 | 20 | 4.6 | 0 | 1 |
193 | 6013 | CA | California | Contra Costa County | 2020 | 278 | Y | 2709 | 474 | Y | 2237 | 94 | Y | 472 | 914 | Y | 783 | 223 | Y | 952 | 294 | Y | 701 | 25 | Y | 42 | 261 | Y | 379 | 308 | Y | 487 | 398 | Y | 623 | 341 | Y | 1178 | 4.5 | 83.2 | 5.1 | 6.8 | 4.3 | 21.2 | 75.6 | 1861 | 113 | 152 | 97 | 100 | 357 | 454 | 16.8 | 213 | 7.9 | 30 | 1.1 | 15 | 0.7 | 15 | 3.2 | 0 | 2 |
196 | 6019 | CA | California | Fresno County | 2020 | 267 | Y | 2134 | 452 | Y | 1789 | 86 | Y | 345 | 825 | Y | 307 | 207 | Y | 509 | 289 | Y | 1185 | 56 | Y | 97 | 258 | Y | 396 | 363 | Y | 471 | 411 | Y | 447 | 312 | Y | 723 | 14.4 | 80.8 | 6.9 | 9.2 | 2.5 | 28.4 | 69.3 | 1446 | 124 | 164 | 45 | 98 | 239 | 284 | 13.3 | 221 | 10.4 | 19 | 0.9 | 10 | 0.6 | 9 | 2.6 | 0 | 3 |
201 | 6029 | CA | California | Kern County | 2020 | 269 | Y | 1928 | 445 | Y | 1630 | 85 | Y | 298 | 668 | Y | 254 | 214 | Y | 532 | 284 | Y | 1063 | 60 | Y | 96 | 291 | Y | 410 | 306 | Y | 359 | 457 | Y | 448 | 310 | Y | 615 | 14.3 | 68.7 | 13.3 | 10.8 | 6.7 | 30.5 | 66.1 | 1120 | 217 | 176 | 110 | 91 | 197 | 307 | 15.9 | 308 | 16.0 | 18 | 0.9 | 8 | 0.5 | 11 | 3.7 | 0 | 3 |
227 | 6081 | CA | California | San Mateo County | 2020 | 257 | Y | 1674 | 457 | Y | 1465 | 63 | Y | 209 | 1007 | Y | 153 | 241 | Y | 618 | 414 | Y | 608 | 30 | Y | 29 | 190 | Y | 217 | 273 | Y | 299 | 384 | Y | 391 | 324 | Y | 738 | 3.9 | 82.0 | 5.3 | 7.0 | 4.6 | 14.4 | 79.9 | 1202 | 78 | 103 | 68 | 30 | 167 | 235 | 14.0 | 107 | 6.4 | 27 | 1.6 | 15 | 1.0 | 12 | 5.7 | 1 | 2 |
235 | 6097 | CA | California | Sonoma County | 2020 | 339 | Y | 1438 | 627 | Y | 1292 | 67 | Y | 146 | 1069 | Y | 75 | 363 | Y | 1004 | 251 | Y | 268 | 21 | Y | 14 | 174 | Y | 108 | 299 | Y | 188 | 440 | Y | 264 | 500 | Y | 864 | 11.5 | 81.7 | -1.0 | 11.1 | -1.0 | -1.0 | -1.0 | 1056 | -1 | 143 | -1 | -1 | -1 | 149 | 10.4 | 73 | 5.1 | 17 | 1.2 | -1 | -1.0 | -1 | -1.0 | 0 | 3 |
225 | 6077 | CA | California | San Joaquin County | 2020 | 230 | Y | 1432 | 370 | Y | 1142 | 92 | Y | 290 | 853 | Y | 387 | 194 | Y | 386 | 206 | Y | 511 | 39 | Y | 52 | 230 | Y | 249 | 259 | Y | 266 | 398 | Y | 364 | 266 | Y | 501 | 13.3 | 68.2 | 12.3 | 9.1 | 9.2 | 22.1 | 75.2 | 779 | 141 | 104 | 105 | 64 | 218 | 323 | 22.6 | 205 | 14.3 | 22 | 1.5 | 14 | 1.2 | 8 | 2.8 | 1 | 3 |
234 | 6095 | CA | California | Solano County | 2020 | 342 | Y | 1287 | 586 | Y | 1093 | 102 | Y | 194 | 832 | Y | 439 | 283 | Y | 409 | 306 | Y | 295 | 42 | Y | 27 | 267 | Y | 174 | 342 | Y | 201 | 516 | Y | 276 | 453 | Y | 609 | 17.6 | 69.3 | -1.0 | 10.2 | -1.0 | -1.0 | -1.0 | 757 | -1 | 112 | -1 | -1 | -1 | 214 | 16.6 | 190 | 14.8 | 15 | 1.2 | -1 | -1.0 | -1 | -1.0 | 0 | 3 |
242 | 6111 | CA | California | Ventura County | 2020 | 160 | Y | 1139 | 282 | Y | 987 | 42 | Y | 152 | 414 | Y | 55 | 128 | Y | 426 | 204 | Y | 590 | 24 | Y | 32 | 152 | Y | 173 | 221 | Y | 233 | 219 | Y | 235 | 185 | Y | 466 | 13.7 | 84.4 | 4.6 | 4.4 | 4.9 | 19.1 | 76.3 | 833 | 45 | 43 | 48 | 29 | 116 | 164 | 14.4 | 74 | 6.5 | 26 | 2.3 | 19 | 1.9 | 7 | 4.6 | 0 | 3 |
236 | 6099 | CA | California | Stanislaus County | 2020 | 185 | Y | 824 | 307 | Y | 674 | 67 | Y | 150 | 636 | Y | 79 | 162 | Y | 305 | 185 | Y | 374 | 27 | Y | 25 | 149 | Y | 119 | 225 | Y | 160 | 343 | Y | 217 | 222 | Y | 303 | 9.1 | 78.0 | -1.0 | 7.9 | -1.0 | -1.0 | -1.0 | 526 | -1 | 53 | -1 | -1 | -1 | 143 | 17.4 | 85 | 10.3 | 18 | 2.2 | -1 | -1.0 | -1 | -1.0 | 0 | 3 |
207 | 6041 | CA | California | Marin County | 2020 | 353 | Y | 789 | 643 | Y | 700 | 78 | Y | 89 | 1928 | Y | 115 | 253 | Y | 412 | 641 | Y | 210 | 36 | Y | 12 | 290 | Y | 65 | 383 | Y | 114 | 465 | Y | 180 | 421 | Y | 418 | 7.0 | 71.6 | -1.0 | 10.7 | -1.0 | -1.0 | -1.0 | 501 | -1 | 75 | -1 | -1 | -1 | 109 | 13.8 | 98 | 12.4 | 6 | 0.8 | -1 | -1.0 | -1 | -1.0 | 1 | 2 |
213 | 6053 | CA | California | Monterey County | 2020 | 212 | Y | 745 | 354 | Y | 631 | 66 | Y | 114 | 799 | Y | 76 | 194 | Y | 220 | 206 | Y | 403 | 14 | N | 10 | 181 | Y | 110 | 209 | Y | 118 | 414 | Y | 207 | 272 | Y | 300 | 14.6 | 80.5 | -1.0 | 6.7 | -1.0 | -1.0 | -1.0 | 508 | -1 | 42 | -1 | -1 | -1 | 135 | 18.1 | 55 | 7.4 | 5 | 0.7 | -1 | -1.0 | -1 | -1.0 | 0 | 3 |
228 | 6083 | CA | California | Santa Barbara County | 2020 | 158 | Y | 591 | 271 | Y | 505 | 46 | Y | 86 | 459 | Y | 32 | 137 | Y | 240 | 185 | Y | 293 | 16 | Y | 15 | 105 | Y | 63 | 232 | Y | 118 | 304 | Y | 140 | 211 | Y | 255 | 8.0 | 78.6 | -1.0 | 8.3 | -1.0 | -1.0 | -1.0 | 397 | -1 | 42 | -1 | -1 | -1 | 95 | 16.1 | 52 | 8.8 | 5 | 0.8 | -1 | -1.0 | -1 | -1.0 | 1 | 3 |
240 | 6107 | CA | California | Tulare County | 2020 | 140 | Y | 516 | 239 | Y | 436 | 43 | Y | 80 | 421 | Y | 20 | 151 | Y | 166 | 134 | Y | 311 | 19 | Y | 17 | 174 | Y | 116 | 223 | Y | 135 | 205 | Y | 104 | 141 | Y | 144 | 9.0 | 82.1 | -1.0 | 8.0 | -1.0 | -1.0 | -1.0 | 358 | -1 | 35 | -1 | -1 | -1 | 77 | 14.9 | 42 | 8.1 | 5 | 1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 3 |
230 | 6087 | CA | California | Santa Cruz County | 2020 | 215 | Y | 503 | 368 | Y | 424 | 66 | Y | 79 | 626 | Y | 15 | 198 | Y | 277 | 252 | Y | 182 | 11 | N | 6 | 141 | Y | 46 | 256 | Y | 81 | 404 | Y | 129 | 288 | Y | 241 | 14.2 | 79.2 | -1.0 | 8.5 | -1.0 | -1.0 | -1.0 | 336 | -1 | 36 | -1 | -1 | -1 | 68 | 13.5 | 56 | 11.1 | 6 | 1.2 | -1 | -1.0 | -1 | -1.0 | 0 | 3 |
226 | 6079 | CA | California | San Luis Obispo County | 2020 | 156 | Y | 385 | 269 | Y | 336 | 40 | Y | 49 | 537 | Y | 25 | 134 | Y | 233 | 207 | Y | 108 | 14 | N | 8 | 132 | Y | 42 | 185 | Y | 60 | 306 | Y | 90 | 190 | Y | 185 | 7.1 | 72.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 242 | -1 | -1 | -1 | -1 | -1 | 61 | 15.8 | 33 | 8.6 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 1 | 3 |
217 | 6061 | CA | California | Placer County | 2020 | 109 | Y | 371 | 181 | Y | 299 | 41 | Y | 72 | 313 | Y | 19 | 98 | Y | 243 | 179 | Y | 83 | 16 | N | 9 | 114 | Y | 50 | 119 | Y | 64 | 148 | Y | 77 | 126 | Y | 171 | 2.5 | 72.9 | -1.0 | 10.7 | -1.0 | -1.0 | -1.0 | 218 | -1 | 32 | -1 | -1 | -1 | 73 | 19.7 | 42 | 11.3 | 6 | 1.6 | -1 | -1.0 | -1 | -1.0 | 0 | 2 |
199 | 6025 | CA | California | Imperial County | 2020 | 259 | Y | 370 | 440 | Y | 323 | 68 | Y | 47 | 174 | N | 7 | 247 | Y | 38 | 267 | Y | 320 | 50 | Y | 16 | 254 | Y | 68 | 287 | Y | 64 | 525 | Y | 101 | 282 | Y | 121 | 22.1 | 78.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 252 | -1 | -1 | -1 | -1 | -1 | 64 | 17.3 | 32 | 8.6 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 1 | 4 |
210 | 6047 | CA | California | Merced County | 2020 | 157 | Y | 347 | 262 | Y | 292 | 50 | Y | 55 | 406 | Y | 28 | 161 | Y | 101 | 148 | Y | 193 | 55 | Y | 30 | 185 | Y | 76 | 184 | Y | 64 | 234 | Y | 71 | 174 | Y | 106 | 12.3 | 78.8 | -1.0 | 4.8 | -1.0 | -1.0 | -1.0 | 230 | -1 | 14 | -1 | -1 | -1 | 60 | 17.3 | 37 | 10.7 | 5 | 1.4 | -1 | -1.0 | -1 | -1.0 | 1 | 3 |
243 | 6113 | CA | California | Yolo County | 2020 | 165 | Y | 310 | 292 | Y | 264 | 47 | Y | 46 | 672 | Y | 32 | 166 | Y | 147 | 188 | Y | 106 | 23 | Y | 13 | 158 | Y | 47 | 212 | Y | 56 | 275 | Y | 63 | 254 | Y | 131 | 3.3 | 79.9 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 211 | -1 | -1 | -1 | -1 | -1 | 47 | 15.2 | 28 | 9.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 2 |
214 | 6055 | CA | California | Napa County | 2020 | 244 | Y | 287 | 429 | Y | 250 | 62 | Y | 37 | 1243 | Y | 31 | 243 | Y | 155 | 220 | Y | 83 | 45 | N | 9 | 180 | Y | 30 | 232 | Y | 40 | 377 | Y | 66 | 308 | Y | 142 | 16.2 | 77.2 | -1.0 | 7.2 | -1.0 | -1.0 | -1.0 | 193 | -1 | 18 | -1 | -1 | -1 | 42 | 14.6 | 27 | 9.4 | 7 | 2.4 | -1 | -1.0 | -1 | -1.0 | 0 | 4 |
190 | 6007 | CA | California | Butte County | 2020 | 137 | Y | 249 | 226 | Y | 202 | 51 | Y | 47 | 792 | Y | 23 | 129 | Y | 169 | 149 | Y | 45 | -1 | -9 | -1 | 90 | Y | 25 | 167 | Y | 41 | 314 | Y | 68 | -1 | -9 | -1 | 4.4 | 65.3 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 132 | -1 | -1 | -1 | -1 | -1 | 45 | 18.1 | 40 | 16.1 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 4 |
198 | 6023 | CA | California | Humboldt County | 2020 | 185 | Y | 216 | 304 | Y | 175 | 69 | Y | 41 | 481 | N | 7 | 168 | Y | 148 | 275 | Y | 36 | 29 | N | 7 | 146 | Y | 26 | 215 | Y | 38 | 311 | Y | 45 | 234 | Y | 100 | 4.0 | 66.9 | -1.0 | 17.1 | -1.0 | -1.0 | -1.0 | 117 | -1 | 30 | -1 | -1 | -1 | 36 | 16.7 | 29 | 13.4 | 5 | 2.3 | -1 | -1.0 | -1 | -1.0 | 0 | 5 |
206 | 6039 | CA | California | Madera County | 2020 | 166 | Y | 211 | 250 | Y | 151 | 91 | Y | 60 | 740 | Y | 32 | 120 | Y | 55 | 160 | Y | 113 | 38 | N | 10 | 155 | Y | 34 | 199 | Y | 40 | 271 | Y | 48 | 196 | Y | 79 | 10.9 | 76.2 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 115 | -1 | -1 | -1 | -1 | -1 | 37 | 17.5 | 41 | 19.4 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 1 | 4 |
195 | 6017 | CA | California | El Dorado County | 2020 | 125 | Y | 209 | 212 | Y | 175 | 40 | Y | 34 | -1 | -9 | -1 | 127 | Y | 166 | 148 | Y | 30 | 20 | N | 5 | 62 | Y | 12 | 128 | Y | 29 | 208 | Y | 50 | 149 | Y | 113 | 2.9 | 72.0 | -1.0 | 10.3 | -1.0 | -1.0 | -1.0 | 126 | -1 | 18 | -1 | -1 | -1 | 41 | 19.6 | 18 | 8.6 | 6 | 2.9 | -1 | -1.0 | -1 | -1.0 | 0 | 2 |
231 | 6089 | CA | California | Shasta County | 2020 | 135 | Y | 205 | 231 | Y | 170 | 45 | Y | 35 | 748 | Y | 12 | 127 | Y | 155 | 140 | Y | 21 | 21 | N | 5 | 100 | Y | 23 | 155 | Y | 33 | 184 | Y | 36 | 171 | Y | 108 | 5.1 | 60.0 | -1.0 | 14.1 | -1.0 | -1.0 | -1.0 | 102 | -1 | 24 | -1 | -1 | -1 | 35 | 17.1 | 36 | 17.6 | 8 | 3.9 | -1 | -1.0 | -1 | -1.0 | 0 | 4 |
202 | 6031 | CA | California | Kings County | 2020 | 154 | Y | 189 | 230 | Y | 158 | 57 | Y | 31 | 273 | Y | 23 | 106 | Y | 43 | 171 | Y | 111 | 26 | N | 7 | 112 | Y | 29 | 195 | Y | 42 | 311 | Y | 52 | 190 | Y | 59 | 12.6 | 65.8 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 104 | -1 | -1 | -1 | -1 | -1 | 42 | 22.2 | 29 | 15.3 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 1 | 4 |
189 | 6005 | CA | California | Amador County | 2020 | 514 | Y | 184 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
209 | 6045 | CA | California | Mendocino County | 2020 | 237 | Y | 173 | 391 | Y | 141 | 86 | Y | 32 | 1351 | N | 8 | 252 | Y | 124 | 166 | Y | 28 | -1 | -9 | -1 | 178 | Y | 17 | 162 | Y | 17 | 367 | Y | 36 | -1 | -9 | -1 | 9.3 | 73.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 103 | -1 | -1 | -1 | -1 | -1 | 31 | 17.9 | 20 | 11.6 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 5 |
203 | 6033 | CA | California | Lake County | 2020 | 259 | Y | 141 | 432 | Y | 117 | 88 | Y | 24 | 821 | N | 8 | 250 | Y | 97 | 210 | Y | 23 | -1 | -9 | -1 | 123 | N | 9 | 198 | Y | 14 | 432 | Y | 31 | -1 | -9 | -1 | 11.3 | 68.4 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 80 | -1 | -1 | -1 | -1 | -1 | 25 | 17.7 | 17 | 12.1 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 5 |
215 | 6057 | CA | California | Nevada County | 2020 | 143 | Y | 126 | 252 | Y | 108 | 40 | Y | 18 | -1 | -9 | -1 | 134 | Y | 101 | 218 | Y | 17 | -1 | -9 | -1 | 103 | N | 10 | 165 | Y | 19 | 293 | Y | 32 | -1 | -9 | -1 | 6.1 | 80.6 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 87 | -1 | -1 | -1 | -1 | -1 | 15 | 11.9 | 9 | 7.1 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 5 |
237 | 6101 | CA | California | Sutter County | 2020 | 151 | Y | 119 | 244 | Y | 95 | 60 | Y | 24 | -1 | -9 | -1 | 155 | Y | 57 | 205 | Y | 48 | -1 | -9 | -1 | 163 | Y | 22 | 157 | Y | 19 | 230 | Y | 25 | -1 | -9 | -1 | 11.5 | 69.5 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 66 | -1 | -1 | -1 | -1 | -1 | 30 | 25.2 | 8 | 6.7 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 4 |
244 | 6115 | CA | California | Yuba County | 2020 | 158 | Y | 101 | 220 | Y | 71 | 95 | Y | 30 | 367 | N | 9 | 168 | Y | 60 | 170 | Y | 30 | -1 | -9 | -1 | 111 | Y | 14 | 181 | Y | 19 | 354 | Y | 29 | -1 | -9 | -1 | 6.0 | 67.6 | -1.0 | 15.5 | -1.0 | -1.0 | -1.0 | 48 | -1 | 11 | -1 | -1 | -1 | 23 | 22.8 | 13 | 12.9 | 5 | 5.0 | -1 | -1.0 | -1 | -1.0 | 0 | 4 |
233 | 6093 | CA | California | Siskiyou County | 2020 | 170 | Y | 63 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
241 | 6109 | CA | California | Tuolumne County | 2020 | 123 | Y | 59 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 1 | 5 |
221 | 6069 | CA | California | San Benito County | 2020 | 107 | Y | 56 | 178 | Y | 47 | 34 | N | 9 | -1 | -9 | -1 | 84 | Y | 15 | 123 | Y | 38 | 0 | N | 0 | 69 | N | 6 | 134 | Y | 12 | 151 | Y | 12 | 159 | Y | 26 | 3.9 | 72.3 | -1.0 | 12.8 | -1.0 | -1.0 | -1.0 | 34 | -1 | 6 | -1 | -1 | -1 | 10 | 17.9 | 6 | 10.7 | 0 | 0.0 | -1 | -1.0 | -1 | -1.0 | 0 | 2 |
191 | 6009 | CA | California | Calaveras County | 2020 | 122 | Y | 50 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
238 | 6103 | CA | California | Tehama County | 2020 | 88 | Y | 47 | 140 | Y | 37 | 37 | N | 10 | -1 | -9 | -1 | 75 | Y | 28 | 127 | Y | 16 | 0 | N | 0 | 64 | N | 5 | 136 | N | 10 | 128 | N | 9 | 104 | Y | 23 | 2.0 | 70.3 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 26 | -1 | -1 | -1 | -1 | -1 | 5 | 10.6 | 9 | 19.1 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | 0 | 5 |
194 | 6015 | CA | California | Del Norte County | 2020 | 160 | Y | 38 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 1 | 5 |
200 | 6027 | CA | California | Inyo County | 2020 | 156 | Y | 24 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
204 | 6035 | CA | California | Lassen County | 2020 | 88 | Y | 23 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 1 | 5 |
197 | 6021 | CA | California | Glenn County | 2020 | 101 | Y | 23 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
218 | 6063 | CA | California | Plumas County | 2020 | 126 | Y | 21 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
208 | 6043 | CA | California | Mariposa County | 2020 | 125 | Y | 19 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
192 | 6011 | CA | California | Colusa County | 2020 | 103 | Y | 18 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
239 | 6105 | CA | California | Trinity County | 2020 | 149 | Y | 16 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
212 | 6051 | CA | California | Mono County | 2020 | 63 | N | 8 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
232 | 6091 | CA | California | Sierra County | 2020 | -1 | -9 | -1 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
188 | 6003 | CA | California | Alpine County | 2020 | -1 | -9 | -1 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
211 | 6049 | CA | California | Modoc County | 2020 | -1 | -9 | -1 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2 | -9 | -2 | -2.0 | -2.0 | -1.0 | -2.0 | -1.0 | -1.0 | -1.0 | -2 | -1 | -2 | -1 | -1 | -1 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -1 | -1.0 | -1 | -1.0 | 0 | 6 |
# Get the Top 10 Counties with the highest population of individuals living with HIV:
ca_hiv_data.sort_values(by=['County Cases'], ascending=False).head(10)
GEO ID | State Abbreviation | State | County Name | Year | County Rate | County Rate Stability | County Cases | Male Rate | Male Rate Stability | Male Cases | Female Rate | Female Rate Stability | Female Cases | Black Rate | Black Rate Stability | Black Cases | White Rate | White Rate Stability | White Cases | Hispanic Rate | Hispanic Rate Stability | Hispanic Cases | Age 13-24 Rate | Age 13-24 Rate Stability | Age 13-24 Cases | Age 25-34 Rate | Age 25-34 Rate Stability | Age 25-34 Cases | Age 35-44 Rate | Age 35-44 Rate Stability | Age 35-44 Cases | Age 45-54 Rate | Age 45-54 Rate Stability | Age 45-54 Cases | Age 55+ Rate | Age 55+ Rate Stability | Age 55+ Cases | MSM Rate | MSM Percent | Male and IDU Percent | MSM/IDU Percent | Male and Heterosexual Contact Percent | Female and IDU Percent | Female and Heterosexual Contact Percent | MSM Cases | Male and IDU Cases | MSM/IDU Cases | Male and Heterosexual Contact Cases | Female and IDU Cases | Female and Heterosexual Contact Cases | Heterosexual Contact Cases | Heterosexual Contact Percent | IDU Cases | IDU Percent | Other Transmission Route Cases | Other Transmission Route Percent | Male and Other Transmission Route Cases | Male and Other Transmission Route Percent | Female and Other Transmission Route Cases | Female and Other Transmission Route Percent | Correctional Warning | 2013 NCHS Urbanicity Code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | 6037 | CA | California | Los Angeles County | 2020 | 595 | Y | 50243 | 1078 | Y | 44579 | 131 | Y | 5664 | 1380 | Y | 9502 | 551 | Y | 12752 | 599 | Y | 23584 | 67 | Y | 1010 | 472 | Y | 7668 | 754 | Y | 10295 | 985 | Y | 12787 | 697 | Y | 18483 | 19.6 | 87.6 | 3.1 | 6.6 | 2.3 | 19.3 | 76.9 | 39039 | 1397 | 2938 | 1011 | 1093 | 4353 | 5363 | 10.7 | 2490 | 5.0 | 413 | 0.8 | 194 | 0.4 | 218 | 3.8 | 0 | 1 |
223 | 6073 | CA | California | San Diego County | 2020 | 473 | Y | 13331 | 843 | Y | 11948 | 99 | Y | 1383 | 1179 | Y | 1585 | 413 | Y | 5427 | 595 | Y | 5413 | 40 | Y | 211 | 304 | Y | 1664 | 532 | Y | 2435 | 854 | Y | 3422 | 630 | Y | 5599 | 15.5 | 82.4 | 4.3 | 8.6 | 4.2 | 19.9 | 76.6 | 9841 | 519 | 1026 | 496 | 275 | 1059 | 1555 | 11.7 | 794 | 6.0 | 115 | 0.9 | 66 | 0.6 | 49 | 3.5 | 0 | 1 |
224 | 6075 | CA | California | San Francisco County | 2020 | 1515 | Y | 11803 | 2792 | Y | 11081 | 189 | Y | 722 | 3847 | Y | 1502 | 1912 | Y | 6046 | 2543 | Y | 2844 | 90 | Y | 79 | 500 | Y | 991 | 1381 | Y | 1916 | 2626 | Y | 2899 | 2427 | Y | 5918 | 18.0 | 79.4 | 3.4 | 15.4 | 1.6 | 45.4 | 52.2 | 8800 | 377 | 1709 | 177 | 328 | 377 | 554 | 4.7 | 705 | 6.0 | 34 | 0.3 | 18 | 0.2 | 16 | 2.2 | 0 | 1 |
219 | 6065 | CA | California | Riverside County | 2020 | 474 | Y | 9765 | 879 | Y | 8997 | 74 | Y | 768 | 635 | Y | 843 | 778 | Y | 5706 | 271 | Y | 2688 | 41 | Y | 170 | 268 | Y | 935 | 334 | Y | 1088 | 670 | Y | 2021 | 832 | Y | 5551 | 15.0 | 88.0 | 2.4 | 6.7 | 2.6 | 21.4 | 75.9 | 7920 | 214 | 603 | 233 | 164 | 583 | 816 | 8.4 | 378 | 3.9 | 48 | 0.5 | 27 | 0.3 | 22 | 2.9 | 0 | 1 |
216 | 6059 | CA | California | Orange County | 2020 | 264 | Y | 7092 | 473 | Y | 6224 | 63 | Y | 868 | 815 | Y | 378 | 219 | Y | 2431 | 412 | Y | 3535 | 37 | Y | 176 | 225 | Y | 1033 | 365 | Y | 1491 | 426 | Y | 1827 | 282 | Y | 2565 | 11.6 | 84.8 | 5.0 | 6.2 | 3.4 | 17.9 | 79.1 | 5278 | 312 | 388 | 209 | 155 | 687 | 895 | 12.6 | 467 | 6.6 | 63 | 0.9 | 37 | 0.6 | 27 | 3.1 | 0 | 1 |
187 | 6001 | CA | California | Alameda County | 2020 | 425 | Y | 6030 | 727 | Y | 5048 | 135 | Y | 982 | 1542 | Y | 2239 | 380 | Y | 1707 | 457 | Y | 1355 | 54 | Y | 120 | 299 | Y | 823 | 400 | Y | 1028 | 669 | Y | 1452 | 584 | Y | 2607 | 11.8 | 79.9 | 4.8 | 8.1 | 6.6 | 22.4 | 74.2 | 4032 | 241 | 411 | 334 | 220 | 729 | 1063 | 17.6 | 461 | 7.6 | 63 | 1.0 | 31 | 0.6 | 33 | 3.4 | 0 | 1 |
222 | 6071 | CA | California | San Bernardino County | 2020 | 272 | Y | 4845 | 456 | Y | 4028 | 91 | Y | 817 | 686 | Y | 1004 | 224 | Y | 1134 | 256 | Y | 2419 | 46 | Y | 176 | 279 | Y | 948 | 334 | Y | 962 | 439 | Y | 1145 | 313 | Y | 1614 | 6.0 | 78.1 | 7.8 | 8.0 | 5.4 | 22.3 | 73.9 | 3145 | 315 | 323 | 218 | 182 | 604 | 822 | 17.0 | 497 | 10.3 | 58 | 1.2 | 27 | 0.7 | 30 | 3.7 | 0 | 2 |
220 | 6067 | CA | California | Sacramento County | 2020 | 348 | Y | 4519 | 601 | Y | 3785 | 110 | Y | 734 | 875 | Y | 1107 | 336 | Y | 1976 | 359 | Y | 1034 | 48 | Y | 110 | 279 | Y | 686 | 361 | Y | 774 | 574 | Y | 1085 | 445 | Y | 1864 | 11.7 | 75.1 | 6.0 | 10.2 | 8.0 | 22.3 | 74.8 | 2841 | 227 | 387 | 304 | 164 | 549 | 853 | 18.9 | 391 | 8.7 | 48 | 1.1 | 27 | 0.7 | 21 | 2.9 | 0 | 1 |
229 | 6085 | CA | California | Santa Clara County | 2020 | 213 | Y | 3443 | 367 | Y | 3008 | 55 | Y | 435 | 883 | Y | 349 | 195 | Y | 991 | 407 | Y | 1539 | 25 | Y | 68 | 151 | Y | 471 | 275 | Y | 756 | 352 | Y | 898 | 250 | Y | 1250 | 7.5 | 82.4 | 4.1 | 7.8 | 5.3 | 14.5 | 80.9 | 2479 | 124 | 234 | 160 | 63 | 352 | 512 | 14.9 | 187 | 5.4 | 31 | 0.9 | 11 | 0.4 | 20 | 4.6 | 0 | 1 |
193 | 6013 | CA | California | Contra Costa County | 2020 | 278 | Y | 2709 | 474 | Y | 2237 | 94 | Y | 472 | 914 | Y | 783 | 223 | Y | 952 | 294 | Y | 701 | 25 | Y | 42 | 261 | Y | 379 | 308 | Y | 487 | 398 | Y | 623 | 341 | Y | 1178 | 4.5 | 83.2 | 5.1 | 6.8 | 4.3 | 21.2 | 75.6 | 1861 | 113 | 152 | 97 | 100 | 357 | 454 | 16.8 | 213 | 7.9 | 30 | 1.1 | 15 | 0.7 | 15 | 3.2 | 0 | 2 |
Above, Los Angeles County and San Diego County have the highest population of individuals living with HIV. These two counties are also the two counties with the highest number of HIV cases in 2020. Riverside County, Orange County, and San Francisco County are also in the top 5. Interestingly, San Francisco is not in top 5 counties for new cases as their were less new cases in this county compared to other counties.
# Check Variables and Data Types:
ca_hiv_data.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 58 entries, 187 to 244 Data columns (total 63 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 GEO ID 58 non-null int64 1 State Abbreviation 58 non-null object 2 State 58 non-null object 3 County Name 58 non-null object 4 Year 58 non-null int64 5 County Rate 58 non-null int64 6 County Rate Stability 58 non-null object 7 County Cases 58 non-null int64 8 Male Rate 58 non-null int64 9 Male Rate Stability 58 non-null object 10 Male Cases 58 non-null int64 11 Female Rate 58 non-null int64 12 Female Rate Stability 58 non-null object 13 Female Cases 58 non-null int64 14 Black Rate 58 non-null int64 15 Black Rate Stability 58 non-null object 16 Black Cases 58 non-null int64 17 White Rate 58 non-null int64 18 White Rate Stability 58 non-null object 19 White Cases 58 non-null int64 20 Hispanic Rate 58 non-null int64 21 Hispanic Rate Stability 58 non-null object 22 Hispanic Cases 58 non-null int64 23 Age 13-24 Rate 58 non-null int64 24 Age 13-24 Rate Stability 58 non-null object 25 Age 13-24 Cases 58 non-null int64 26 Age 25-34 Rate 58 non-null int64 27 Age 25-34 Rate Stability 58 non-null object 28 Age 25-34 Cases 58 non-null int64 29 Age 35-44 Rate 58 non-null int64 30 Age 35-44 Rate Stability 58 non-null object 31 Age 35-44 Cases 58 non-null int64 32 Age 45-54 Rate 58 non-null int64 33 Age 45-54 Rate Stability 58 non-null object 34 Age 45-54 Cases 58 non-null int64 35 Age 55+ Rate 58 non-null int64 36 Age 55+ Rate Stability 58 non-null object 37 Age 55+ Cases 58 non-null int64 38 MSM Rate 58 non-null float64 39 MSM Percent 58 non-null float64 40 Male and IDU Percent 58 non-null float64 41 MSM/IDU Percent 58 non-null float64 42 Male and Heterosexual Contact Percent 58 non-null float64 43 Female and IDU Percent 58 non-null float64 44 Female and Heterosexual Contact Percent 58 non-null float64 45 MSM Cases 58 non-null int64 46 Male and IDU Cases 58 non-null int64 47 MSM/IDU Cases 58 non-null int64 48 Male and Heterosexual Contact Cases 58 non-null int64 49 Female and IDU Cases 58 non-null int64 50 Female and Heterosexual Contact Cases 58 non-null int64 51 Heterosexual Contact Cases 58 non-null int64 52 Heterosexual Contact Percent 58 non-null float64 53 IDU Cases 58 non-null int64 54 IDU Percent 58 non-null float64 55 Other Transmission Route Cases 58 non-null int64 56 Other Transmission Route Percent 58 non-null float64 57 Male and Other Transmission Route Cases 58 non-null int64 58 Male and Other Transmission Route Percent 58 non-null float64 59 Female and Other Transmission Route Cases 58 non-null int64 60 Female and Other Transmission Route Percent 58 non-null float64 61 Correctional Warning 58 non-null int64 62 2013 NCHS Urbanicity Code 58 non-null int64 dtypes: float64(12), int64(37), object(14) memory usage: 29.0+ KB
#Extract Columns and Variables to Keep:
ca_hiv_df = ca_hiv_data.iloc[:,[0,4,2,3,5,7,14,16,17,19,20,22]]
ca_hiv_df
GEO ID | Year | State | County Name | County Rate | County Cases | Black Rate | Black Cases | White Rate | White Cases | Hispanic Rate | Hispanic Cases | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
187 | 6001 | 2020 | California | Alameda County | 425 | 6030 | 1542 | 2239 | 380 | 1707 | 457 | 1355 |
188 | 6003 | 2020 | California | Alpine County | -1 | -1 | -2 | -2 | -2 | -2 | -2 | -2 |
189 | 6005 | 2020 | California | Amador County | 514 | 184 | -2 | -2 | -2 | -2 | -2 | -2 |
190 | 6007 | 2020 | California | Butte County | 137 | 249 | 792 | 23 | 129 | 169 | 149 | 45 |
191 | 6009 | 2020 | California | Calaveras County | 122 | 50 | -2 | -2 | -2 | -2 | -2 | -2 |
192 | 6011 | 2020 | California | Colusa County | 103 | 18 | -2 | -2 | -2 | -2 | -2 | -2 |
193 | 6013 | 2020 | California | Contra Costa County | 278 | 2709 | 914 | 783 | 223 | 952 | 294 | 701 |
194 | 6015 | 2020 | California | Del Norte County | 160 | 38 | -2 | -2 | -2 | -2 | -2 | -2 |
195 | 6017 | 2020 | California | El Dorado County | 125 | 209 | -1 | -1 | 127 | 166 | 148 | 30 |
196 | 6019 | 2020 | California | Fresno County | 267 | 2134 | 825 | 307 | 207 | 509 | 289 | 1185 |
197 | 6021 | 2020 | California | Glenn County | 101 | 23 | -2 | -2 | -2 | -2 | -2 | -2 |
198 | 6023 | 2020 | California | Humboldt County | 185 | 216 | 481 | 7 | 168 | 148 | 275 | 36 |
199 | 6025 | 2020 | California | Imperial County | 259 | 370 | 174 | 7 | 247 | 38 | 267 | 320 |
200 | 6027 | 2020 | California | Inyo County | 156 | 24 | -2 | -2 | -2 | -2 | -2 | -2 |
201 | 6029 | 2020 | California | Kern County | 269 | 1928 | 668 | 254 | 214 | 532 | 284 | 1063 |
202 | 6031 | 2020 | California | Kings County | 154 | 189 | 273 | 23 | 106 | 43 | 171 | 111 |
203 | 6033 | 2020 | California | Lake County | 259 | 141 | 821 | 8 | 250 | 97 | 210 | 23 |
204 | 6035 | 2020 | California | Lassen County | 88 | 23 | -2 | -2 | -2 | -2 | -2 | -2 |
205 | 6037 | 2020 | California | Los Angeles County | 595 | 50243 | 1380 | 9502 | 551 | 12752 | 599 | 23584 |
206 | 6039 | 2020 | California | Madera County | 166 | 211 | 740 | 32 | 120 | 55 | 160 | 113 |
207 | 6041 | 2020 | California | Marin County | 353 | 789 | 1928 | 115 | 253 | 412 | 641 | 210 |
208 | 6043 | 2020 | California | Mariposa County | 125 | 19 | -2 | -2 | -2 | -2 | -2 | -2 |
209 | 6045 | 2020 | California | Mendocino County | 237 | 173 | 1351 | 8 | 252 | 124 | 166 | 28 |
210 | 6047 | 2020 | California | Merced County | 157 | 347 | 406 | 28 | 161 | 101 | 148 | 193 |
211 | 6049 | 2020 | California | Modoc County | -1 | -1 | -2 | -2 | -2 | -2 | -2 | -2 |
212 | 6051 | 2020 | California | Mono County | 63 | 8 | -2 | -2 | -2 | -2 | -2 | -2 |
213 | 6053 | 2020 | California | Monterey County | 212 | 745 | 799 | 76 | 194 | 220 | 206 | 403 |
214 | 6055 | 2020 | California | Napa County | 244 | 287 | 1243 | 31 | 243 | 155 | 220 | 83 |
215 | 6057 | 2020 | California | Nevada County | 143 | 126 | -1 | -1 | 134 | 101 | 218 | 17 |
216 | 6059 | 2020 | California | Orange County | 264 | 7092 | 815 | 378 | 219 | 2431 | 412 | 3535 |
217 | 6061 | 2020 | California | Placer County | 109 | 371 | 313 | 19 | 98 | 243 | 179 | 83 |
218 | 6063 | 2020 | California | Plumas County | 126 | 21 | -2 | -2 | -2 | -2 | -2 | -2 |
219 | 6065 | 2020 | California | Riverside County | 474 | 9765 | 635 | 843 | 778 | 5706 | 271 | 2688 |
220 | 6067 | 2020 | California | Sacramento County | 348 | 4519 | 875 | 1107 | 336 | 1976 | 359 | 1034 |
221 | 6069 | 2020 | California | San Benito County | 107 | 56 | -1 | -1 | 84 | 15 | 123 | 38 |
222 | 6071 | 2020 | California | San Bernardino County | 272 | 4845 | 686 | 1004 | 224 | 1134 | 256 | 2419 |
223 | 6073 | 2020 | California | San Diego County | 473 | 13331 | 1179 | 1585 | 413 | 5427 | 595 | 5413 |
224 | 6075 | 2020 | California | San Francisco County | 1515 | 11803 | 3847 | 1502 | 1912 | 6046 | 2543 | 2844 |
225 | 6077 | 2020 | California | San Joaquin County | 230 | 1432 | 853 | 387 | 194 | 386 | 206 | 511 |
226 | 6079 | 2020 | California | San Luis Obispo County | 156 | 385 | 537 | 25 | 134 | 233 | 207 | 108 |
227 | 6081 | 2020 | California | San Mateo County | 257 | 1674 | 1007 | 153 | 241 | 618 | 414 | 608 |
228 | 6083 | 2020 | California | Santa Barbara County | 158 | 591 | 459 | 32 | 137 | 240 | 185 | 293 |
229 | 6085 | 2020 | California | Santa Clara County | 213 | 3443 | 883 | 349 | 195 | 991 | 407 | 1539 |
230 | 6087 | 2020 | California | Santa Cruz County | 215 | 503 | 626 | 15 | 198 | 277 | 252 | 182 |
231 | 6089 | 2020 | California | Shasta County | 135 | 205 | 748 | 12 | 127 | 155 | 140 | 21 |
232 | 6091 | 2020 | California | Sierra County | -1 | -1 | -2 | -2 | -2 | -2 | -2 | -2 |
233 | 6093 | 2020 | California | Siskiyou County | 170 | 63 | -2 | -2 | -2 | -2 | -2 | -2 |
234 | 6095 | 2020 | California | Solano County | 342 | 1287 | 832 | 439 | 283 | 409 | 306 | 295 |
235 | 6097 | 2020 | California | Sonoma County | 339 | 1438 | 1069 | 75 | 363 | 1004 | 251 | 268 |
236 | 6099 | 2020 | California | Stanislaus County | 185 | 824 | 636 | 79 | 162 | 305 | 185 | 374 |
237 | 6101 | 2020 | California | Sutter County | 151 | 119 | -1 | -1 | 155 | 57 | 205 | 48 |
238 | 6103 | 2020 | California | Tehama County | 88 | 47 | -1 | -1 | 75 | 28 | 127 | 16 |
239 | 6105 | 2020 | California | Trinity County | 149 | 16 | -2 | -2 | -2 | -2 | -2 | -2 |
240 | 6107 | 2020 | California | Tulare County | 140 | 516 | 421 | 20 | 151 | 166 | 134 | 311 |
241 | 6109 | 2020 | California | Tuolumne County | 123 | 59 | -2 | -2 | -2 | -2 | -2 | -2 |
242 | 6111 | 2020 | California | Ventura County | 160 | 1139 | 414 | 55 | 128 | 426 | 204 | 590 |
243 | 6113 | 2020 | California | Yolo County | 165 | 310 | 672 | 32 | 166 | 147 | 188 | 106 |
244 | 6115 | 2020 | California | Yuba County | 158 | 101 | 367 | 9 | 168 | 60 | 170 | 30 |
# Recheck Dataframe Info:
ca_hiv_df.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 58 entries, 187 to 244 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 GEO ID 58 non-null int64 1 Year 58 non-null int64 2 State 58 non-null object 3 County Name 58 non-null object 4 County Rate 58 non-null int64 5 County Cases 58 non-null int64 6 Black Rate 58 non-null int64 7 Black Cases 58 non-null int64 8 White Rate 58 non-null int64 9 White Cases 58 non-null int64 10 Hispanic Rate 58 non-null int64 11 Hispanic Cases 58 non-null int64 dtypes: int64(10), object(2) memory usage: 5.9+ KB
Above, data extracted with counties in California, county cases and rates as well as counts and rates by race/ethnicity demographics. Unforunately, this dataset only has racial information for Black, White, and Hispanic and does not have racial information for Asian, Native American, or Pacific Islanders. There are no missing data and all data types are the correct data types for each variable. There are a total of 58 instances and 12 variables. Since this dataset is limited in racial demographics, it may not be used for the analysis and instead, the analysis will focus on new HIV cases only.
#Extract County Counts Only:
ca_hiv_df_prevalence = ca_hiv_df.iloc[:,[0,1,2,3,5]]
ca_hiv_df_prevalence
GEO ID | Year | State | County Name | County Cases | |
---|---|---|---|---|---|
187 | 6001 | 2020 | California | Alameda County | 6030 |
188 | 6003 | 2020 | California | Alpine County | -1 |
189 | 6005 | 2020 | California | Amador County | 184 |
190 | 6007 | 2020 | California | Butte County | 249 |
191 | 6009 | 2020 | California | Calaveras County | 50 |
192 | 6011 | 2020 | California | Colusa County | 18 |
193 | 6013 | 2020 | California | Contra Costa County | 2709 |
194 | 6015 | 2020 | California | Del Norte County | 38 |
195 | 6017 | 2020 | California | El Dorado County | 209 |
196 | 6019 | 2020 | California | Fresno County | 2134 |
197 | 6021 | 2020 | California | Glenn County | 23 |
198 | 6023 | 2020 | California | Humboldt County | 216 |
199 | 6025 | 2020 | California | Imperial County | 370 |
200 | 6027 | 2020 | California | Inyo County | 24 |
201 | 6029 | 2020 | California | Kern County | 1928 |
202 | 6031 | 2020 | California | Kings County | 189 |
203 | 6033 | 2020 | California | Lake County | 141 |
204 | 6035 | 2020 | California | Lassen County | 23 |
205 | 6037 | 2020 | California | Los Angeles County | 50243 |
206 | 6039 | 2020 | California | Madera County | 211 |
207 | 6041 | 2020 | California | Marin County | 789 |
208 | 6043 | 2020 | California | Mariposa County | 19 |
209 | 6045 | 2020 | California | Mendocino County | 173 |
210 | 6047 | 2020 | California | Merced County | 347 |
211 | 6049 | 2020 | California | Modoc County | -1 |
212 | 6051 | 2020 | California | Mono County | 8 |
213 | 6053 | 2020 | California | Monterey County | 745 |
214 | 6055 | 2020 | California | Napa County | 287 |
215 | 6057 | 2020 | California | Nevada County | 126 |
216 | 6059 | 2020 | California | Orange County | 7092 |
217 | 6061 | 2020 | California | Placer County | 371 |
218 | 6063 | 2020 | California | Plumas County | 21 |
219 | 6065 | 2020 | California | Riverside County | 9765 |
220 | 6067 | 2020 | California | Sacramento County | 4519 |
221 | 6069 | 2020 | California | San Benito County | 56 |
222 | 6071 | 2020 | California | San Bernardino County | 4845 |
223 | 6073 | 2020 | California | San Diego County | 13331 |
224 | 6075 | 2020 | California | San Francisco County | 11803 |
225 | 6077 | 2020 | California | San Joaquin County | 1432 |
226 | 6079 | 2020 | California | San Luis Obispo County | 385 |
227 | 6081 | 2020 | California | San Mateo County | 1674 |
228 | 6083 | 2020 | California | Santa Barbara County | 591 |
229 | 6085 | 2020 | California | Santa Clara County | 3443 |
230 | 6087 | 2020 | California | Santa Cruz County | 503 |
231 | 6089 | 2020 | California | Shasta County | 205 |
232 | 6091 | 2020 | California | Sierra County | -1 |
233 | 6093 | 2020 | California | Siskiyou County | 63 |
234 | 6095 | 2020 | California | Solano County | 1287 |
235 | 6097 | 2020 | California | Sonoma County | 1438 |
236 | 6099 | 2020 | California | Stanislaus County | 824 |
237 | 6101 | 2020 | California | Sutter County | 119 |
238 | 6103 | 2020 | California | Tehama County | 47 |
239 | 6105 | 2020 | California | Trinity County | 16 |
240 | 6107 | 2020 | California | Tulare County | 516 |
241 | 6109 | 2020 | California | Tuolumne County | 59 |
242 | 6111 | 2020 | California | Ventura County | 1139 |
243 | 6113 | 2020 | California | Yolo County | 310 |
244 | 6115 | 2020 | California | Yuba County | 101 |
# HIV-Dataset3: PrEP Users by County
prep_data = pd.read_excel('/Users/cl/Documents/GEO448/Project/AIDSVu_County_PrEP_2020.xlsx', header=3)
prep_data
GEO ID | County | State Abbreviation | State | Year | County PrEP Users | County PrEP Rate | County PrEP Rate Stability | Male PrEP Users | Male PrEP Rate | Male PrEP Rate Stability | Female PrEP Users | Female PrEP Rate | Female PrEP Rate Stability | Age LE 24 PrEP Users | Age LE 24 PrEP Rate | Age LE 24 PrEP Rate Stability | Age 25-34 PrEP Users | Age 25-34 PrEP Rate | Age 25-34 PrEP Rate Stability | Age 35-44 PrEP Users | Age 35-44 PrEP Rate | Age 35-44 PrEP Rate Stability | Age 45-54 PrEP Users | Age 45-54 PrEP Rate | Age 45-54 PrEP Rate Stability | Age 55+ PrEP Users | Age 55+ PrEP Rate | Age 55+ PrEP Rate Stability | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1001 | Autauga County | AL | Alabama | 2020 | 10 | 22 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 4 | 51 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
1 | 1003 | Baldwin County | AL | Alabama | 2020 | 45 | 24 | Y | -1 | -1 | -1 | -1 | -1 | -1 | 10 | 33 | N | 15 | 62 | Y | 9 | 32 | N | 5 | 16 | N | 7 | 9 | N |
2 | 1005 | Barbour County | AL | Alabama | 2020 | 5 | 24 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
3 | 1007 | Bibb County | AL | Alabama | 2020 | 8 | 41 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
4 | 1009 | Blount County | AL | Alabama | 2020 | 19 | 38 | Y | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 6 | 92 | N | 4 | 50 | N | 4 | 47 | N | -1 | -1 | -1 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
3212 | 72145 | Vega Baja Municipio | PR | Puerto Rico | 2020 | 9 | 20 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 4 | 55 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
3213 | 72147 | Vieques Municipio | PR | Puerto Rico | 2020 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
3214 | 72149 | Villalba Municipio | PR | Puerto Rico | 2020 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
3215 | 72151 | Yabucoa Municipio | PR | Puerto Rico | 2020 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
3216 | 72153 | Yauco Municipio | PR | Puerto Rico | 2020 | 6 | 21 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
3217 rows × 29 columns
# Sort by County PrEP Users and Verify Top 20 counties in the U.S. with highest PrEP Users:
prep_data.sort_values(by=['County PrEP Users'], ascending=False).head(20)
GEO ID | County | State Abbreviation | State | Year | County PrEP Users | County PrEP Rate | County PrEP Rate Stability | Male PrEP Users | Male PrEP Rate | Male PrEP Rate Stability | Female PrEP Users | Female PrEP Rate | Female PrEP Rate Stability | Age LE 24 PrEP Users | Age LE 24 PrEP Rate | Age LE 24 PrEP Rate Stability | Age 25-34 PrEP Users | Age 25-34 PrEP Rate | Age 25-34 PrEP Rate Stability | Age 35-44 PrEP Users | Age 35-44 PrEP Rate | Age 35-44 PrEP Rate Stability | Age 45-54 PrEP Users | Age 45-54 PrEP Rate | Age 45-54 PrEP Rate Stability | Age 55+ PrEP Users | Age 55+ PrEP Rate | Age 55+ PrEP Rate Stability | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | 6037 | Los Angeles County | CA | California | 2020 | 15431 | 182 | Y | 14783 | 356 | Y | 638 | 15 | Y | 1390 | 88 | Y | 6117 | 375 | Y | 4321 | 315 | Y | 2281 | 171 | Y | 1363 | 53 | Y |
1856 | 36061 | New York County | NY | New York | 2020 | 13141 | 904 | Y | 12744 | 1866 | Y | 428 | 55 | Y | 745 | 366 | Y | 5515 | 1522 | Y | 3875 | 1659 | Y | 1851 | 929 | Y | 1176 | 258 | Y |
611 | 17031 | Cook County | IL | Illinois | 2020 | 12066 | 277 | Y | 11463 | 547 | Y | 604 | 27 | Y | 1140 | 147 | Y | 5134 | 608 | Y | 3214 | 459 | Y | 1656 | 256 | Y | 950 | 68 | Y |
363 | 12086 | Miami-Dade County | FL | Florida | 2020 | 9530 | 413 | Y | 7411 | 666 | Y | 2081 | 174 | Y | 947 | 247 | Y | 2715 | 706 | Y | 2141 | 578 | Y | 1906 | 483 | Y | 1816 | 234 | Y |
1849 | 36047 | Kings County | NY | New York | 2020 | 7234 | 338 | Y | 6740 | 676 | Y | 494 | 43 | Y | 573 | 160 | Y | 3808 | 805 | Y | 2017 | 563 | Y | 610 | 202 | Y | 273 | 42 | Y |
224 | 6075 | San Francisco County | CA | California | 2020 | 7056 | 897 | Y | 6830 | 1703 | Y | 218 | 57 | Y | 290 | 323 | Y | 2796 | 1364 | Y | 1924 | 1392 | Y | 1317 | 1153 | Y | 744 | 311 | Y |
2967 | 53033 | King County | WA | Washington | 2020 | 6726 | 355 | Y | 6358 | 670 | Y | 371 | 39 | Y | 432 | 143 | Y | 2785 | 685 | Y | 1843 | 548 | Y | 1044 | 354 | Y | 634 | 114 | Y |
326 | 12011 | Broward County | FL | Florida | 2020 | 6513 | 395 | Y | 5436 | 681 | Y | 1082 | 127 | Y | 428 | 157 | Y | 1432 | 546 | Y | 1429 | 551 | Y | 1519 | 556 | Y | 1673 | 287 | Y |
320 | 11001 | District of Columbia | DC | Washington, D.C. | 2020 | 6066 | 1005 | Y | 5749 | 2030 | Y | 314 | 98 | Y | 382 | 375 | Y | 2565 | 1565 | Y | 1809 | 1707 | Y | 786 | 1036 | Y | 523 | 335 | Y |
2621 | 48201 | Harris County | TX | Texas | 2020 | 5638 | 149 | Y | 5230 | 281 | Y | 407 | 21 | Y | 729 | 94 | Y | 2279 | 302 | Y | 1385 | 207 | Y | 803 | 138 | Y | 446 | 45 | Y |
2577 | 48113 | Dallas County | TX | Texas | 2020 | 5110 | 240 | Y | 4822 | 464 | Y | 287 | 26 | Y | 420 | 96 | Y | 1978 | 456 | Y | 1374 | 381 | Y | 835 | 257 | Y | 502 | 89 | Y |
2747 | 48453 | Travis County | TX | Texas | 2020 | 4619 | 438 | Y | 4343 | 818 | Y | 275 | 53 | Y | 622 | 331 | Y | 2110 | 838 | Y | 1047 | 522 | Y | 518 | 324 | Y | 331 | 130 | Y |
1866 | 36081 | Queens County | NY | New York | 2020 | 3927 | 203 | Y | 3615 | 389 | Y | 309 | 31 | Y | 334 | 113 | Y | 1778 | 487 | Y | 1129 | 363 | Y | 487 | 159 | Y | 216 | 33 | Y |
104 | 4013 | Maricopa County | AZ | Arizona | 2020 | 3915 | 107 | Y | 3711 | 206 | Y | 202 | 11 | Y | 388 | 54 | Y | 1453 | 225 | Y | 1027 | 179 | Y | 612 | 111 | Y | 441 | 37 | Y |
223 | 6073 | San Diego County | CA | California | 2020 | 3686 | 131 | Y | 3461 | 246 | Y | 226 | 16 | Y | 381 | 71 | Y | 1321 | 241 | Y | 1011 | 226 | Y | 583 | 142 | Y | 389 | 45 | Y |
368 | 12095 | Orange County | FL | Florida | 2020 | 3654 | 316 | Y | 3286 | 585 | Y | 391 | 66 | Y | 465 | 203 | Y | 1539 | 665 | Y | 878 | 446 | Y | 494 | 274 | Y | 309 | 97 | Y |
447 | 13121 | Fulton County | GA | Georgia | 2020 | 3420 | 385 | Y | 3252 | 764 | Y | 165 | 36 | Y | 268 | 157 | Y | 1193 | 665 | Y | 909 | 606 | Y | 683 | 472 | Y | 363 | 150 | Y |
370 | 12099 | Palm Beach County | FL | Florida | 2020 | 3155 | 246 | Y | 2322 | 377 | Y | 809 | 122 | Y | 319 | 165 | Y | 791 | 447 | Y | 706 | 415 | Y | 584 | 308 | Y | 739 | 134 | Y |
2292 | 42101 | Philadelphia County | PA | Pennsylvania | 2020 | 3138 | 236 | Y | 2748 | 444 | Y | 385 | 54 | Y | 388 | 158 | Y | 1325 | 438 | Y | 803 | 405 | Y | 390 | 216 | Y | 244 | 61 | Y |
2243 | 42003 | Allegheny County | PA | Pennsylvania | 2020 | 2553 | 242 | Y | 2336 | 462 | Y | 217 | 40 | Y | 417 | 243 | Y | 1171 | 626 | Y | 547 | 379 | Y | 265 | 181 | Y | 163 | 40 | Y |
Los Angeles county has the highest number of PrEP users. San Fransisco, San Diego, and Orange County are all counties in Calfornia in the top 20.
# Extract data for California Only:
cond = prep_data['State'] == 'California'
ca_prep_data = prep_data[cond]
ca_prep_data
GEO ID | County | State Abbreviation | State | Year | County PrEP Users | County PrEP Rate | County PrEP Rate Stability | Male PrEP Users | Male PrEP Rate | Male PrEP Rate Stability | Female PrEP Users | Female PrEP Rate | Female PrEP Rate Stability | Age LE 24 PrEP Users | Age LE 24 PrEP Rate | Age LE 24 PrEP Rate Stability | Age 25-34 PrEP Users | Age 25-34 PrEP Rate | Age 25-34 PrEP Rate Stability | Age 35-44 PrEP Users | Age 35-44 PrEP Rate | Age 35-44 PrEP Rate Stability | Age 45-54 PrEP Users | Age 45-54 PrEP Rate | Age 45-54 PrEP Rate Stability | Age 55+ PrEP Users | Age 55+ PrEP Rate | Age 55+ PrEP Rate Stability | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
187 | 6001 | Alameda County | CA | California | 2020 | 1857 | 131 | Y | 1688 | 245 | Y | 174 | 24 | Y | 209 | 91 | Y | 787 | 284 | Y | 443 | 176 | Y | 270 | 122 | Y | 153 | 35 | Y |
188 | 6003 | Alpine County | CA | California | 2020 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
189 | 6005 | Amador County | CA | California | 2020 | 14 | 40 | Y | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 6 | 137 | N | 3 | 64 | N | -1 | -1 | -1 | -1 | -1 | -1 |
190 | 6007 | Butte County | CA | California | 2020 | 55 | 29 | Y | 51 | 54 | Y | 4 | 4 | N | 10 | 23 | N | 18 | 61 | Y | 13 | 54 | Y | 9 | 39 | N | 5 | 7 | N |
191 | 6009 | Calaveras County | CA | California | 2020 | 11 | 27 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 4 | 88 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
192 | 6011 | Colusa County | CA | California | 2020 | 5 | 31 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
193 | 6013 | Contra Costa County | CA | California | 2020 | 646 | 67 | Y | 588 | 126 | Y | 59 | 12 | Y | 88 | 51 | Y | 248 | 170 | Y | 142 | 92 | Y | 108 | 67 | Y | 60 | 18 | Y |
194 | 6015 | Del Norte County | CA | California | 2020 | 16 | 67 | Y | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 8 | 194 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
195 | 6017 | El Dorado County | CA | California | 2020 | 69 | 42 | Y | 65 | 79 | Y | 5 | 5 | N | 12 | 49 | Y | 28 | 144 | Y | 13 | 59 | Y | 10 | 41 | N | 6 | 8 | N |
196 | 6019 | Fresno County | CA | California | 2020 | 344 | 44 | Y | 317 | 81 | Y | 28 | 7 | Y | 66 | 37 | Y | 128 | 84 | Y | 88 | 70 | Y | 35 | 32 | Y | 28 | 13 | Y |
197 | 6021 | Glenn County | CA | California | 2020 | 7 | 31 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
198 | 6023 | Humboldt County | CA | California | 2020 | 74 | 63 | Y | 68 | 118 | Y | 6 | 10 | N | 11 | 45 | N | 35 | 190 | Y | 13 | 76 | Y | 9 | 61 | N | 6 | 14 | N |
199 | 6025 | Imperial County | CA | California | 2020 | 349 | 244 | Y | 334 | 453 | Y | 15 | 21 | Y | 19 | 57 | Y | 42 | 157 | Y | 50 | 229 | Y | 72 | 356 | Y | 153 | 365 | Y |
200 | 6027 | Inyo County | CA | California | 2020 | 7 | 46 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
201 | 6029 | Kern County | CA | California | 2020 | 339 | 48 | Y | 303 | 84 | Y | 37 | 11 | Y | 61 | 37 | Y | 142 | 102 | Y | 73 | 64 | Y | 47 | 47 | Y | 17 | 9 | Y |
202 | 6031 | Kings County | CA | California | 2020 | 46 | 38 | Y | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 22 | 86 | Y | 8 | 40 | N | 6 | 32 | N | -1 | -1 | -1 |
203 | 6033 | Lake County | CA | California | 2020 | 42 | 78 | Y | 38 | 142 | Y | 4 | 15 | N | 6 | 79 | N | 12 | 175 | Y | 10 | 132 | N | 6 | 76 | N | 8 | 33 | N |
204 | 6035 | Lassen County | CA | California | 2020 | 11 | 42 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 4 | 60 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
205 | 6037 | Los Angeles County | CA | California | 2020 | 15431 | 182 | Y | 14783 | 356 | Y | 638 | 15 | Y | 1390 | 88 | Y | 6117 | 375 | Y | 4321 | 315 | Y | 2281 | 171 | Y | 1363 | 53 | Y |
206 | 6039 | Madera County | CA | California | 2020 | 38 | 31 | Y | 35 | 59 | Y | 3 | 5 | N | 9 | 34 | N | 16 | 71 | Y | 9 | 47 | N | -1 | -1 | -1 | -1 | -1 | -1 |
207 | 6041 | Marin County | CA | California | 2020 | 205 | 91 | Y | 191 | 175 | Y | 14 | 12 | Y | 25 | 76 | Y | 73 | 324 | Y | 41 | 134 | Y | 33 | 81 | Y | 31 | 32 | Y |
208 | 6043 | Mariposa County | CA | California | 2020 | 5 | 31 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
209 | 6045 | Mendocino County | CA | California | 2020 | 58 | 78 | Y | 52 | 143 | Y | 6 | 15 | N | 9 | 75 | N | 16 | 166 | Y | 13 | 127 | Y | 8 | 77 | N | 11 | 35 | N |
210 | 6047 | Merced County | CA | California | 2020 | 66 | 30 | Y | 60 | 56 | Y | 5 | 5 | N | 11 | 21 | N | 27 | 68 | Y | 16 | 48 | Y | 6 | 19 | N | 6 | 10 | N |
211 | 6049 | Modoc County | CA | California | 2020 | 3 | 41 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
212 | 6051 | Mono County | CA | California | 2020 | 5 | 43 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
213 | 6053 | Monterey County | CA | California | 2020 | 227 | 65 | Y | 212 | 119 | Y | 15 | 9 | Y | 31 | 42 | Y | 93 | 150 | Y | 51 | 90 | Y | 26 | 51 | Y | 25 | 24 | Y |
214 | 6055 | Napa County | CA | California | 2020 | 81 | 68 | Y | 73 | 125 | Y | 7 | 12 | N | 12 | 55 | N | 31 | 182 | Y | 18 | 103 | Y | 12 | 68 | Y | 8 | 17 | N |
215 | 6057 | Nevada County | CA | California | 2020 | 27 | 30 | Y | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 9 | 91 | N | 6 | 52 | N | 4 | 37 | N | -1 | -1 | -1 |
216 | 6059 | Orange County | CA | California | 2020 | 2332 | 87 | Y | 2216 | 169 | Y | 116 | 9 | Y | 373 | 75 | Y | 971 | 212 | Y | 482 | 117 | Y | 292 | 66 | Y | 214 | 25 | Y |
217 | 6061 | Placer County | CA | California | 2020 | 137 | 41 | Y | 129 | 80 | Y | 9 | 5 | N | 24 | 43 | Y | 56 | 131 | Y | 26 | 50 | Y | 21 | 40 | Y | 11 | 8 | N |
218 | 6063 | Plumas County | CA | California | 2020 | 6 | 34 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
219 | 6065 | Riverside County | CA | California | 2020 | 1737 | 87 | Y | 1659 | 167 | Y | 78 | 8 | Y | 211 | 50 | Y | 434 | 128 | Y | 265 | 84 | Y | 278 | 92 | Y | 506 | 80 | Y |
220 | 6067 | Sacramento County | CA | California | 2020 | 935 | 73 | Y | 871 | 141 | Y | 65 | 10 | Y | 133 | 57 | Y | 351 | 145 | Y | 218 | 106 | Y | 151 | 79 | Y | 84 | 21 | Y |
221 | 6069 | San Benito County | CA | California | 2020 | 41 | 81 | Y | -1 | -1 | -1 | -1 | -1 | -1 | 7 | 67 | N | 16 | 192 | Y | 8 | 96 | N | 5 | 64 | N | 5 | 30 | N |
222 | 6071 | San Bernardino County | CA | California | 2020 | 863 | 49 | Y | 804 | 93 | Y | 59 | 7 | Y | 153 | 40 | Y | 332 | 100 | Y | 169 | 60 | Y | 102 | 39 | Y | 103 | 21 | Y |
223 | 6073 | San Diego County | CA | California | 2020 | 3686 | 131 | Y | 3461 | 246 | Y | 226 | 16 | Y | 381 | 71 | Y | 1321 | 241 | Y | 1011 | 226 | Y | 583 | 142 | Y | 389 | 45 | Y |
224 | 6075 | San Francisco County | CA | California | 2020 | 7056 | 897 | Y | 6830 | 1703 | Y | 218 | 57 | Y | 290 | 323 | Y | 2796 | 1364 | Y | 1924 | 1392 | Y | 1317 | 1153 | Y | 744 | 311 | Y |
225 | 6077 | San Joaquin County | CA | California | 2020 | 170 | 28 | Y | 154 | 51 | Y | 16 | 5 | Y | 31 | 24 | Y | 60 | 57 | Y | 37 | 38 | Y | 20 | 21 | Y | 22 | 12 | Y |
226 | 6079 | San Luis Obispo County | CA | California | 2020 | 142 | 58 | Y | 131 | 105 | Y | 12 | 10 | N | 28 | 49 | Y | 57 | 174 | Y | 28 | 92 | Y | 14 | 44 | Y | 15 | 15 | Y |
227 | 6081 | San Mateo County | CA | California | 2020 | 877 | 134 | Y | 854 | 266 | Y | 22 | 7 | Y | 86 | 86 | Y | 372 | 326 | Y | 214 | 194 | Y | 127 | 120 | Y | 80 | 36 | Y |
228 | 6083 | Santa Barbara County | CA | California | 2020 | 365 | 98 | Y | 348 | 187 | Y | 17 | 9 | Y | 80 | 82 | Y | 136 | 227 | Y | 73 | 144 | Y | 36 | 75 | Y | 39 | 33 | Y |
229 | 6085 | Santa Clara County | CA | California | 2020 | 1606 | 99 | Y | 1551 | 189 | Y | 54 | 7 | Y | 194 | 69 | Y | 708 | 226 | Y | 380 | 137 | Y | 203 | 77 | Y | 125 | 26 | Y |
230 | 6087 | Santa Cruz County | CA | California | 2020 | 194 | 82 | Y | 184 | 158 | Y | 10 | 8 | N | 33 | 59 | Y | 77 | 230 | Y | 37 | 117 | Y | 25 | 74 | Y | 21 | 26 | Y |
231 | 6089 | Shasta County | CA | California | 2020 | 56 | 37 | Y | 49 | 66 | Y | 7 | 8 | N | 9 | 35 | N | 12 | 53 | Y | 14 | 68 | Y | 13 | 62 | Y | 8 | 13 | N |
232 | 6091 | Sierra County | CA | California | 2020 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
233 | 6093 | Siskiyou County | CA | California | 2020 | 14 | 38 | Y | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 3 | 70 | N | 3 | 77 | N | 3 | 69 | N | -1 | -1 | -1 |
234 | 6095 | Solano County | CA | California | 2020 | 216 | 58 | Y | 198 | 107 | Y | 19 | 10 | Y | 33 | 49 | Y | 85 | 130 | Y | 48 | 84 | Y | 32 | 56 | Y | 20 | 15 | Y |
235 | 6097 | Sonoma County | CA | California | 2020 | 337 | 79 | Y | 308 | 149 | Y | 30 | 14 | Y | 48 | 70 | Y | 103 | 161 | Y | 73 | 118 | Y | 48 | 76 | Y | 61 | 36 | Y |
236 | 6099 | Stanislaus County | CA | California | 2020 | 132 | 30 | Y | 122 | 56 | Y | 11 | 5 | N | 21 | 22 | Y | 55 | 69 | Y | 32 | 47 | Y | 13 | 20 | Y | 12 | 9 | N |
237 | 6101 | Sutter County | CA | California | 2020 | 24 | 31 | Y | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 8 | 57 | N | 6 | 50 | N | 4 | 35 | N | -1 | -1 | -1 |
238 | 6103 | Tehama County | CA | California | 2020 | 20 | 37 | Y | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 4 | 56 | N | 5 | 68 | N | 5 | 61 | N | -1 | -1 | -1 |
239 | 6105 | Trinity County | CA | California | 2020 | 5 | 44 | N | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
240 | 6107 | Tulare County | CA | California | 2020 | 132 | 36 | Y | 124 | 69 | Y | 8 | 4 | N | 26 | 30 | Y | 62 | 93 | Y | 24 | 41 | Y | 15 | 30 | Y | 5 | 5 | N |
241 | 6109 | Tuolumne County | CA | California | 2020 | 14 | 30 | Y | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 6 | 88 | N | 3 | 62 | N | -1 | -1 | -1 | -1 | -1 | -1 |
242 | 6111 | Ventura County | CA | California | 2020 | 482 | 68 | Y | 445 | 127 | Y | 38 | 10 | Y | 64 | 47 | Y | 220 | 194 | Y | 92 | 87 | Y | 68 | 61 | Y | 40 | 17 | Y |
243 | 6113 | Yolo County | CA | California | 2020 | 75 | 40 | Y | 70 | 78 | Y | 5 | 5 | N | 13 | 23 | Y | 31 | 105 | Y | 15 | 59 | Y | 9 | 41 | N | 5 | 11 | N |
244 | 6115 | Yuba County | CA | California | 2020 | 19 | 30 | Y | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 6 | 49 | N | 5 | 45 | N | 3 | 37 | N | -1 | -1 | -1 |
# Get the Top 10 Counties with the highest PrEP Users:
ca_prep_data.sort_values(by=['County PrEP Users'], ascending=False).head(10)
GEO ID | County | State Abbreviation | State | Year | County PrEP Users | County PrEP Rate | County PrEP Rate Stability | Male PrEP Users | Male PrEP Rate | Male PrEP Rate Stability | Female PrEP Users | Female PrEP Rate | Female PrEP Rate Stability | Age LE 24 PrEP Users | Age LE 24 PrEP Rate | Age LE 24 PrEP Rate Stability | Age 25-34 PrEP Users | Age 25-34 PrEP Rate | Age 25-34 PrEP Rate Stability | Age 35-44 PrEP Users | Age 35-44 PrEP Rate | Age 35-44 PrEP Rate Stability | Age 45-54 PrEP Users | Age 45-54 PrEP Rate | Age 45-54 PrEP Rate Stability | Age 55+ PrEP Users | Age 55+ PrEP Rate | Age 55+ PrEP Rate Stability | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
205 | 6037 | Los Angeles County | CA | California | 2020 | 15431 | 182 | Y | 14783 | 356 | Y | 638 | 15 | Y | 1390 | 88 | Y | 6117 | 375 | Y | 4321 | 315 | Y | 2281 | 171 | Y | 1363 | 53 | Y |
224 | 6075 | San Francisco County | CA | California | 2020 | 7056 | 897 | Y | 6830 | 1703 | Y | 218 | 57 | Y | 290 | 323 | Y | 2796 | 1364 | Y | 1924 | 1392 | Y | 1317 | 1153 | Y | 744 | 311 | Y |
223 | 6073 | San Diego County | CA | California | 2020 | 3686 | 131 | Y | 3461 | 246 | Y | 226 | 16 | Y | 381 | 71 | Y | 1321 | 241 | Y | 1011 | 226 | Y | 583 | 142 | Y | 389 | 45 | Y |
216 | 6059 | Orange County | CA | California | 2020 | 2332 | 87 | Y | 2216 | 169 | Y | 116 | 9 | Y | 373 | 75 | Y | 971 | 212 | Y | 482 | 117 | Y | 292 | 66 | Y | 214 | 25 | Y |
187 | 6001 | Alameda County | CA | California | 2020 | 1857 | 131 | Y | 1688 | 245 | Y | 174 | 24 | Y | 209 | 91 | Y | 787 | 284 | Y | 443 | 176 | Y | 270 | 122 | Y | 153 | 35 | Y |
219 | 6065 | Riverside County | CA | California | 2020 | 1737 | 87 | Y | 1659 | 167 | Y | 78 | 8 | Y | 211 | 50 | Y | 434 | 128 | Y | 265 | 84 | Y | 278 | 92 | Y | 506 | 80 | Y |
229 | 6085 | Santa Clara County | CA | California | 2020 | 1606 | 99 | Y | 1551 | 189 | Y | 54 | 7 | Y | 194 | 69 | Y | 708 | 226 | Y | 380 | 137 | Y | 203 | 77 | Y | 125 | 26 | Y |
220 | 6067 | Sacramento County | CA | California | 2020 | 935 | 73 | Y | 871 | 141 | Y | 65 | 10 | Y | 133 | 57 | Y | 351 | 145 | Y | 218 | 106 | Y | 151 | 79 | Y | 84 | 21 | Y |
227 | 6081 | San Mateo County | CA | California | 2020 | 877 | 134 | Y | 854 | 266 | Y | 22 | 7 | Y | 86 | 86 | Y | 372 | 326 | Y | 214 | 194 | Y | 127 | 120 | Y | 80 | 36 | Y |
222 | 6071 | San Bernardino County | CA | California | 2020 | 863 | 49 | Y | 804 | 93 | Y | 59 | 7 | Y | 153 | 40 | Y | 332 | 100 | Y | 169 | 60 | Y | 102 | 39 | Y | 103 | 21 | Y |
Above, Los Angeles County and San Fransisco County have the highest PrEP users with Los Angeles having double the amount of PrEP users than San Fransiso. Interestingly, although Los Angeles has the highest number of PrEP users, the county still has higher new cases of HIV than all other counties. San Diego County and Orange County are among the top 5.
# Check Variables and Data Types:
ca_prep_data.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 58 entries, 187 to 244 Data columns (total 29 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 GEO ID 58 non-null int64 1 County 58 non-null object 2 State Abbreviation 58 non-null object 3 State 58 non-null object 4 Year 58 non-null int64 5 County PrEP Users 58 non-null int64 6 County PrEP Rate 58 non-null int64 7 County PrEP Rate Stability 58 non-null object 8 Male PrEP Users 58 non-null int64 9 Male PrEP Rate 58 non-null int64 10 Male PrEP Rate Stability 58 non-null object 11 Female PrEP Users 58 non-null int64 12 Female PrEP Rate 58 non-null int64 13 Female PrEP Rate Stability 58 non-null object 14 Age LE 24 PrEP Users 58 non-null int64 15 Age LE 24 PrEP Rate 58 non-null int64 16 Age LE 24 PrEP Rate Stability 58 non-null object 17 Age 25-34 PrEP Users 58 non-null int64 18 Age 25-34 PrEP Rate 58 non-null int64 19 Age 25-34 PrEP Rate Stability 58 non-null object 20 Age 35-44 PrEP Users 58 non-null int64 21 Age 35-44 PrEP Rate 58 non-null int64 22 Age 35-44 PrEP Rate Stability 58 non-null object 23 Age 45-54 PrEP Users 58 non-null int64 24 Age 45-54 PrEP Rate 58 non-null int64 25 Age 45-54 PrEP Rate Stability 58 non-null object 26 Age 55+ PrEP Users 58 non-null int64 27 Age 55+ PrEP Rate 58 non-null int64 28 Age 55+ PrEP Rate Stability 58 non-null object dtypes: int64(18), object(11) memory usage: 13.6+ KB
#Extract Columns and Variables to Keep:
ca_prep_df = ca_prep_data.iloc[:,[0,4,3,1,5,6]]
ca_prep_df
GEO ID | Year | State | County | County PrEP Users | County PrEP Rate | |
---|---|---|---|---|---|---|
187 | 6001 | 2020 | California | Alameda County | 1857 | 131 |
188 | 6003 | 2020 | California | Alpine County | -1 | -1 |
189 | 6005 | 2020 | California | Amador County | 14 | 40 |
190 | 6007 | 2020 | California | Butte County | 55 | 29 |
191 | 6009 | 2020 | California | Calaveras County | 11 | 27 |
192 | 6011 | 2020 | California | Colusa County | 5 | 31 |
193 | 6013 | 2020 | California | Contra Costa County | 646 | 67 |
194 | 6015 | 2020 | California | Del Norte County | 16 | 67 |
195 | 6017 | 2020 | California | El Dorado County | 69 | 42 |
196 | 6019 | 2020 | California | Fresno County | 344 | 44 |
197 | 6021 | 2020 | California | Glenn County | 7 | 31 |
198 | 6023 | 2020 | California | Humboldt County | 74 | 63 |
199 | 6025 | 2020 | California | Imperial County | 349 | 244 |
200 | 6027 | 2020 | California | Inyo County | 7 | 46 |
201 | 6029 | 2020 | California | Kern County | 339 | 48 |
202 | 6031 | 2020 | California | Kings County | 46 | 38 |
203 | 6033 | 2020 | California | Lake County | 42 | 78 |
204 | 6035 | 2020 | California | Lassen County | 11 | 42 |
205 | 6037 | 2020 | California | Los Angeles County | 15431 | 182 |
206 | 6039 | 2020 | California | Madera County | 38 | 31 |
207 | 6041 | 2020 | California | Marin County | 205 | 91 |
208 | 6043 | 2020 | California | Mariposa County | 5 | 31 |
209 | 6045 | 2020 | California | Mendocino County | 58 | 78 |
210 | 6047 | 2020 | California | Merced County | 66 | 30 |
211 | 6049 | 2020 | California | Modoc County | 3 | 41 |
212 | 6051 | 2020 | California | Mono County | 5 | 43 |
213 | 6053 | 2020 | California | Monterey County | 227 | 65 |
214 | 6055 | 2020 | California | Napa County | 81 | 68 |
215 | 6057 | 2020 | California | Nevada County | 27 | 30 |
216 | 6059 | 2020 | California | Orange County | 2332 | 87 |
217 | 6061 | 2020 | California | Placer County | 137 | 41 |
218 | 6063 | 2020 | California | Plumas County | 6 | 34 |
219 | 6065 | 2020 | California | Riverside County | 1737 | 87 |
220 | 6067 | 2020 | California | Sacramento County | 935 | 73 |
221 | 6069 | 2020 | California | San Benito County | 41 | 81 |
222 | 6071 | 2020 | California | San Bernardino County | 863 | 49 |
223 | 6073 | 2020 | California | San Diego County | 3686 | 131 |
224 | 6075 | 2020 | California | San Francisco County | 7056 | 897 |
225 | 6077 | 2020 | California | San Joaquin County | 170 | 28 |
226 | 6079 | 2020 | California | San Luis Obispo County | 142 | 58 |
227 | 6081 | 2020 | California | San Mateo County | 877 | 134 |
228 | 6083 | 2020 | California | Santa Barbara County | 365 | 98 |
229 | 6085 | 2020 | California | Santa Clara County | 1606 | 99 |
230 | 6087 | 2020 | California | Santa Cruz County | 194 | 82 |
231 | 6089 | 2020 | California | Shasta County | 56 | 37 |
232 | 6091 | 2020 | California | Sierra County | -1 | -1 |
233 | 6093 | 2020 | California | Siskiyou County | 14 | 38 |
234 | 6095 | 2020 | California | Solano County | 216 | 58 |
235 | 6097 | 2020 | California | Sonoma County | 337 | 79 |
236 | 6099 | 2020 | California | Stanislaus County | 132 | 30 |
237 | 6101 | 2020 | California | Sutter County | 24 | 31 |
238 | 6103 | 2020 | California | Tehama County | 20 | 37 |
239 | 6105 | 2020 | California | Trinity County | 5 | 44 |
240 | 6107 | 2020 | California | Tulare County | 132 | 36 |
241 | 6109 | 2020 | California | Tuolumne County | 14 | 30 |
242 | 6111 | 2020 | California | Ventura County | 482 | 68 |
243 | 6113 | 2020 | California | Yolo County | 75 | 40 |
244 | 6115 | 2020 | California | Yuba County | 19 | 30 |
# Recheck Dataframe Info:
ca_prep_df.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 58 entries, 187 to 244 Data columns (total 6 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 GEO ID 58 non-null int64 1 Year 58 non-null int64 2 State 58 non-null object 3 County 58 non-null object 4 County PrEP Users 58 non-null int64 5 County PrEP Rate 58 non-null int64 dtypes: int64(4), object(2) memory usage: 3.2+ KB
Above, data extracted with counties in California, county PrEP Users and rates. There are no missing data and all data types are the correct data types for each variable. There are a total of 58 instances and 6 variables.
# Merge ca_new_hiv_df and ca_hiv_df_prevalence
df2 = pd.merge(ca_new_hiv_df, ca_hiv_df_prevalence, how='inner')
df2
GEO ID | Year | State | County Name | New Diagnoses Rate | New Diagnoses Cases | New Diagnoses Black Rate | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Cases | County Cases | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 6001 | 2020 | California | Alameda County | 11.1 | 157 | 34.4 | 50 | 6.0 | 27 | 18.2 | 54 | 3.9 | 18 | 0.0 | 0 | 10.0 | 5 | 26.2 | 3 | 6030 |
1 | 6003 | 2020 | California | Alpine County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -1 |
2 | 6005 | 2020 | California | Amador County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 184 |
3 | 6007 | 2020 | California | Butte County | 5.5 | 10 | 0.0 | 0 | 6.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 249 |
4 | 6009 | 2020 | California | Calaveras County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 50 |
5 | 6011 | 2020 | California | Colusa County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 18 |
6 | 6013 | 2020 | California | Contra Costa County | 7.4 | 72 | 25.7 | 22 | 4.2 | 18 | 8.8 | 21 | 4.4 | 8 | 0.0 | 0 | 5.9 | 2 | 21.3 | 1 | 2709 |
7 | 6015 | 2020 | California | Del Norte County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 38 |
8 | 6017 | 2020 | California | El Dorado County | 3.6 | 6 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 209 |
9 | 6019 | 2020 | California | Fresno County | 15.0 | 120 | 32.2 | 12 | 10.6 | 26 | 18.3 | 75 | 5.8 | 5 | 20.1 | 1 | 7.9 | 1 | 0.0 | 0 | 2134 |
10 | 6021 | 2020 | California | Glenn County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 23 |
11 | 6023 | 2020 | California | Humboldt County | 4.3 | 5 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 216 |
12 | 6025 | 2020 | California | Imperial County | 16.8 | 24 | -1.0 | -1 | -1.0 | -1 | 17.5 | 21 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 370 |
13 | 6027 | 2020 | California | Inyo County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 24 |
14 | 6029 | 2020 | California | Kern County | 22.3 | 160 | 50.0 | 19 | 16.5 | 41 | 25.3 | 95 | 10.8 | 4 | 0.0 | 0 | 8.5 | 1 | 0.0 | 0 | 1928 |
15 | 6031 | 2020 | California | Kings County | 6.5 | 8 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 189 |
16 | 6033 | 2020 | California | Lake County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 141 |
17 | 6035 | 2020 | California | Lassen County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 23 |
18 | 6037 | 2020 | California | Los Angeles County | 16.4 | 1382 | 42.8 | 295 | 11.5 | 265 | 18.4 | 724 | 4.3 | 56 | 24.2 | 4 | 23.0 | 37 | 5.2 | 1 | 50243 |
19 | 6039 | 2020 | California | Madera County | 6.3 | 8 | 0.0 | 0 | -1.0 | -1 | 7.1 | 5 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 211 |
20 | 6041 | 2020 | California | Marin County | 6.3 | 14 | -1.0 | -1 | 3.1 | 5 | 15.3 | 5 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 789 |
21 | 6043 | 2020 | California | Mariposa County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 19 |
22 | 6045 | 2020 | California | Mendocino County | 6.8 | 5 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 173 |
23 | 6047 | 2020 | California | Merced County | 14.0 | 31 | 0.0 | 0 | 17.6 | 11 | 12.3 | 16 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 347 |
24 | 6049 | 2020 | California | Modoc County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -1 |
25 | 6051 | 2020 | California | Mono County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 8 |
26 | 6053 | 2020 | California | Monterey County | 3.1 | 11 | 0.0 | 0 | -1.0 | -1 | 4.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 745 |
27 | 6055 | 2020 | California | Napa County | 4.3 | 5 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 287 |
28 | 6057 | 2020 | California | Nevada County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 126 |
29 | 6059 | 2020 | California | Orange County | 9.8 | 264 | 30.2 | 14 | 6.5 | 72 | 16.9 | 145 | 4.5 | 27 | 0.0 | 0 | 8.0 | 5 | 13.3 | 1 | 7092 |
30 | 6061 | 2020 | California | Placer County | 5.6 | 19 | -1.0 | -1 | 4.4 | 11 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 371 |
31 | 6063 | 2020 | California | Plumas County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 21 |
32 | 6065 | 2020 | California | Riverside County | 11.6 | 239 | 24.1 | 32 | 9.3 | 68 | 12.4 | 123 | 6.9 | 10 | 0.0 | 0 | 14.7 | 6 | 0.0 | 0 | 9765 |
33 | 6067 | 2020 | California | Sacramento County | 11.8 | 153 | 43.5 | 55 | 7.8 | 46 | 11.4 | 33 | 5.0 | 11 | 15.0 | 1 | 11.2 | 6 | 6.5 | 1 | 4519 |
34 | 6069 | 2020 | California | San Benito County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 56 |
35 | 6071 | 2020 | California | San Bernardino County | 14.7 | 263 | 32.8 | 48 | 8.7 | 44 | 16.3 | 154 | 7.7 | 11 | 0.0 | 0 | 15.5 | 5 | 18.2 | 1 | 4845 |
36 | 6073 | 2020 | California | San Diego County | 10.5 | 296 | 32.7 | 44 | 6.2 | 81 | 17.3 | 157 | 2.0 | 7 | 0.0 | 0 | 8.6 | 7 | 0.0 | 0 | 13331 |
37 | 6075 | 2020 | California | San Francisco County | 19.6 | 153 | 69.1 | 27 | 14.2 | 45 | 54.5 | 61 | 5.6 | 16 | 130.3 | 2 | 4.3 | 1 | 35.1 | 1 | 11803 |
38 | 6077 | 2020 | California | San Joaquin County | 13.3 | 83 | 44.1 | 20 | 11.1 | 22 | 13.3 | 33 | 7.6 | 8 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 1432 |
39 | 6079 | 2020 | California | San Luis Obispo County | 4.4 | 11 | 0.0 | 0 | 4.6 | 8 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 385 |
40 | 6081 | 2020 | California | San Mateo County | 6.9 | 45 | 19.7 | 3 | 5.4 | 14 | 12.9 | 19 | 3.9 | 8 | 0.0 | 0 | 5.2 | 1 | 0.0 | 0 | 1674 |
41 | 6083 | 2020 | California | Santa Barbara County | 6.2 | 23 | -1.0 | -1 | 2.9 | 5 | 9.5 | 15 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 591 |
42 | 6085 | 2020 | California | Santa Clara County | 6.5 | 105 | 22.8 | 9 | 3.9 | 20 | 16.1 | 61 | 1.2 | 8 | 0.0 | 0 | 16.7 | 7 | 0.0 | 0 | 3443 |
43 | 6087 | 2020 | California | Santa Cruz County | 5.5 | 13 | 0.0 | 0 | 5.7 | 8 | 6.9 | 5 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 503 |
44 | 6089 | 2020 | California | Shasta County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 205 |
45 | 6091 | 2020 | California | Sierra County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -1 |
46 | 6093 | 2020 | California | Siskiyou County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 63 |
47 | 6095 | 2020 | California | Solano County | 12.2 | 46 | 24.6 | 13 | 6.9 | 10 | 11.4 | 11 | 9.8 | 6 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 1287 |
48 | 6097 | 2020 | California | Sonoma County | 8.7 | 37 | -1.0 | -1 | 6.9 | 19 | 11.2 | 12 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 1438 |
49 | 6099 | 2020 | California | Stanislaus County | 6.1 | 27 | -1.0 | -1 | 5.8 | 11 | 6.9 | 14 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 824 |
50 | 6101 | 2020 | California | Sutter County | 7.6 | 6 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 119 |
51 | 6103 | 2020 | California | Tehama County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 47 |
52 | 6105 | 2020 | California | Trinity County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 16 |
53 | 6107 | 2020 | California | Tulare County | 7.9 | 29 | 0.0 | 0 | 8.2 | 9 | 8.2 | 19 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 516 |
54 | 6109 | 2020 | California | Tuolumne County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 59 |
55 | 6111 | 2020 | California | Ventura County | 7.7 | 55 | 7.5 | 1 | 3.0 | 10 | 14.9 | 43 | 0.0 | 0 | 0.0 | 0 | 6.6 | 1 | 0.0 | 0 | 1139 |
56 | 6113 | 2020 | California | Yolo County | 5.9 | 11 | -1.0 | -1 | -1.0 | -1 | 12.4 | 7 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 310 |
57 | 6115 | 2020 | California | Yuba County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 101 |
# Merge df2 to ca_prep_df
merged_df = pd.merge(df2, ca_prep_df, how='inner')
merged_df
GEO ID | Year | State | County Name | New Diagnoses Rate | New Diagnoses Cases | New Diagnoses Black Rate | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Cases | County Cases | County | County PrEP Users | County PrEP Rate | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 6001 | 2020 | California | Alameda County | 11.1 | 157 | 34.4 | 50 | 6.0 | 27 | 18.2 | 54 | 3.9 | 18 | 0.0 | 0 | 10.0 | 5 | 26.2 | 3 | 6030 | Alameda County | 1857 | 131 |
1 | 6003 | 2020 | California | Alpine County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -1 | Alpine County | -1 | -1 |
2 | 6005 | 2020 | California | Amador County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 184 | Amador County | 14 | 40 |
3 | 6007 | 2020 | California | Butte County | 5.5 | 10 | 0.0 | 0 | 6.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 249 | Butte County | 55 | 29 |
4 | 6009 | 2020 | California | Calaveras County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 50 | Calaveras County | 11 | 27 |
5 | 6011 | 2020 | California | Colusa County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 18 | Colusa County | 5 | 31 |
6 | 6013 | 2020 | California | Contra Costa County | 7.4 | 72 | 25.7 | 22 | 4.2 | 18 | 8.8 | 21 | 4.4 | 8 | 0.0 | 0 | 5.9 | 2 | 21.3 | 1 | 2709 | Contra Costa County | 646 | 67 |
7 | 6015 | 2020 | California | Del Norte County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 38 | Del Norte County | 16 | 67 |
8 | 6017 | 2020 | California | El Dorado County | 3.6 | 6 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 209 | El Dorado County | 69 | 42 |
9 | 6019 | 2020 | California | Fresno County | 15.0 | 120 | 32.2 | 12 | 10.6 | 26 | 18.3 | 75 | 5.8 | 5 | 20.1 | 1 | 7.9 | 1 | 0.0 | 0 | 2134 | Fresno County | 344 | 44 |
10 | 6021 | 2020 | California | Glenn County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 23 | Glenn County | 7 | 31 |
11 | 6023 | 2020 | California | Humboldt County | 4.3 | 5 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 216 | Humboldt County | 74 | 63 |
12 | 6025 | 2020 | California | Imperial County | 16.8 | 24 | -1.0 | -1 | -1.0 | -1 | 17.5 | 21 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 370 | Imperial County | 349 | 244 |
13 | 6027 | 2020 | California | Inyo County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 24 | Inyo County | 7 | 46 |
14 | 6029 | 2020 | California | Kern County | 22.3 | 160 | 50.0 | 19 | 16.5 | 41 | 25.3 | 95 | 10.8 | 4 | 0.0 | 0 | 8.5 | 1 | 0.0 | 0 | 1928 | Kern County | 339 | 48 |
15 | 6031 | 2020 | California | Kings County | 6.5 | 8 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 189 | Kings County | 46 | 38 |
16 | 6033 | 2020 | California | Lake County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 141 | Lake County | 42 | 78 |
17 | 6035 | 2020 | California | Lassen County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 23 | Lassen County | 11 | 42 |
18 | 6037 | 2020 | California | Los Angeles County | 16.4 | 1382 | 42.8 | 295 | 11.5 | 265 | 18.4 | 724 | 4.3 | 56 | 24.2 | 4 | 23.0 | 37 | 5.2 | 1 | 50243 | Los Angeles County | 15431 | 182 |
19 | 6039 | 2020 | California | Madera County | 6.3 | 8 | 0.0 | 0 | -1.0 | -1 | 7.1 | 5 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 211 | Madera County | 38 | 31 |
20 | 6041 | 2020 | California | Marin County | 6.3 | 14 | -1.0 | -1 | 3.1 | 5 | 15.3 | 5 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 789 | Marin County | 205 | 91 |
21 | 6043 | 2020 | California | Mariposa County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 19 | Mariposa County | 5 | 31 |
22 | 6045 | 2020 | California | Mendocino County | 6.8 | 5 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 173 | Mendocino County | 58 | 78 |
23 | 6047 | 2020 | California | Merced County | 14.0 | 31 | 0.0 | 0 | 17.6 | 11 | 12.3 | 16 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 347 | Merced County | 66 | 30 |
24 | 6049 | 2020 | California | Modoc County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -1 | Modoc County | 3 | 41 |
25 | 6051 | 2020 | California | Mono County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 8 | Mono County | 5 | 43 |
26 | 6053 | 2020 | California | Monterey County | 3.1 | 11 | 0.0 | 0 | -1.0 | -1 | 4.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 745 | Monterey County | 227 | 65 |
27 | 6055 | 2020 | California | Napa County | 4.3 | 5 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 287 | Napa County | 81 | 68 |
28 | 6057 | 2020 | California | Nevada County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 126 | Nevada County | 27 | 30 |
29 | 6059 | 2020 | California | Orange County | 9.8 | 264 | 30.2 | 14 | 6.5 | 72 | 16.9 | 145 | 4.5 | 27 | 0.0 | 0 | 8.0 | 5 | 13.3 | 1 | 7092 | Orange County | 2332 | 87 |
30 | 6061 | 2020 | California | Placer County | 5.6 | 19 | -1.0 | -1 | 4.4 | 11 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 371 | Placer County | 137 | 41 |
31 | 6063 | 2020 | California | Plumas County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 21 | Plumas County | 6 | 34 |
32 | 6065 | 2020 | California | Riverside County | 11.6 | 239 | 24.1 | 32 | 9.3 | 68 | 12.4 | 123 | 6.9 | 10 | 0.0 | 0 | 14.7 | 6 | 0.0 | 0 | 9765 | Riverside County | 1737 | 87 |
33 | 6067 | 2020 | California | Sacramento County | 11.8 | 153 | 43.5 | 55 | 7.8 | 46 | 11.4 | 33 | 5.0 | 11 | 15.0 | 1 | 11.2 | 6 | 6.5 | 1 | 4519 | Sacramento County | 935 | 73 |
34 | 6069 | 2020 | California | San Benito County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 56 | San Benito County | 41 | 81 |
35 | 6071 | 2020 | California | San Bernardino County | 14.7 | 263 | 32.8 | 48 | 8.7 | 44 | 16.3 | 154 | 7.7 | 11 | 0.0 | 0 | 15.5 | 5 | 18.2 | 1 | 4845 | San Bernardino County | 863 | 49 |
36 | 6073 | 2020 | California | San Diego County | 10.5 | 296 | 32.7 | 44 | 6.2 | 81 | 17.3 | 157 | 2.0 | 7 | 0.0 | 0 | 8.6 | 7 | 0.0 | 0 | 13331 | San Diego County | 3686 | 131 |
37 | 6075 | 2020 | California | San Francisco County | 19.6 | 153 | 69.1 | 27 | 14.2 | 45 | 54.5 | 61 | 5.6 | 16 | 130.3 | 2 | 4.3 | 1 | 35.1 | 1 | 11803 | San Francisco County | 7056 | 897 |
38 | 6077 | 2020 | California | San Joaquin County | 13.3 | 83 | 44.1 | 20 | 11.1 | 22 | 13.3 | 33 | 7.6 | 8 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 1432 | San Joaquin County | 170 | 28 |
39 | 6079 | 2020 | California | San Luis Obispo County | 4.4 | 11 | 0.0 | 0 | 4.6 | 8 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 385 | San Luis Obispo County | 142 | 58 |
40 | 6081 | 2020 | California | San Mateo County | 6.9 | 45 | 19.7 | 3 | 5.4 | 14 | 12.9 | 19 | 3.9 | 8 | 0.0 | 0 | 5.2 | 1 | 0.0 | 0 | 1674 | San Mateo County | 877 | 134 |
41 | 6083 | 2020 | California | Santa Barbara County | 6.2 | 23 | -1.0 | -1 | 2.9 | 5 | 9.5 | 15 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 591 | Santa Barbara County | 365 | 98 |
42 | 6085 | 2020 | California | Santa Clara County | 6.5 | 105 | 22.8 | 9 | 3.9 | 20 | 16.1 | 61 | 1.2 | 8 | 0.0 | 0 | 16.7 | 7 | 0.0 | 0 | 3443 | Santa Clara County | 1606 | 99 |
43 | 6087 | 2020 | California | Santa Cruz County | 5.5 | 13 | 0.0 | 0 | 5.7 | 8 | 6.9 | 5 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 503 | Santa Cruz County | 194 | 82 |
44 | 6089 | 2020 | California | Shasta County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 205 | Shasta County | 56 | 37 |
45 | 6091 | 2020 | California | Sierra County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -1 | Sierra County | -1 | -1 |
46 | 6093 | 2020 | California | Siskiyou County | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 63 | Siskiyou County | 14 | 38 |
47 | 6095 | 2020 | California | Solano County | 12.2 | 46 | 24.6 | 13 | 6.9 | 10 | 11.4 | 11 | 9.8 | 6 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 1287 | Solano County | 216 | 58 |
48 | 6097 | 2020 | California | Sonoma County | 8.7 | 37 | -1.0 | -1 | 6.9 | 19 | 11.2 | 12 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 1438 | Sonoma County | 337 | 79 |
49 | 6099 | 2020 | California | Stanislaus County | 6.1 | 27 | -1.0 | -1 | 5.8 | 11 | 6.9 | 14 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 824 | Stanislaus County | 132 | 30 |
50 | 6101 | 2020 | California | Sutter County | 7.6 | 6 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 119 | Sutter County | 24 | 31 |
51 | 6103 | 2020 | California | Tehama County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 47 | Tehama County | 20 | 37 |
52 | 6105 | 2020 | California | Trinity County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 16 | Trinity County | 5 | 44 |
53 | 6107 | 2020 | California | Tulare County | 7.9 | 29 | 0.0 | 0 | 8.2 | 9 | 8.2 | 19 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 516 | Tulare County | 132 | 36 |
54 | 6109 | 2020 | California | Tuolumne County | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 59 | Tuolumne County | 14 | 30 |
55 | 6111 | 2020 | California | Ventura County | 7.7 | 55 | 7.5 | 1 | 3.0 | 10 | 14.9 | 43 | 0.0 | 0 | 0.0 | 0 | 6.6 | 1 | 0.0 | 0 | 1139 | Ventura County | 482 | 68 |
56 | 6113 | 2020 | California | Yolo County | 5.9 | 11 | -1.0 | -1 | -1.0 | -1 | 12.4 | 7 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 310 | Yolo County | 75 | 40 |
57 | 6115 | 2020 | California | Yuba County | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 101 | Yuba County | 19 | 30 |
merged_df.info() #check df info
<class 'pandas.core.frame.DataFrame'> Int64Index: 58 entries, 0 to 57 Data columns (total 24 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 GEO ID 58 non-null int64 1 Year 58 non-null int64 2 State 58 non-null object 3 County Name 58 non-null object 4 New Diagnoses Rate 58 non-null float64 5 New Diagnoses Cases 58 non-null int64 6 New Diagnoses Black Rate 58 non-null float64 7 New Diagnoses Black Cases 58 non-null int64 8 New Diagnoses White Rate 58 non-null float64 9 New Diagnoses White Cases 58 non-null int64 10 New Diagnoses Hispanic Rate 58 non-null float64 11 New Diagnoses Hispanic Cases 58 non-null int64 12 New Diagnoses Asian Rate 58 non-null float64 13 New Diagnoses Asian Cases 58 non-null int64 14 New Diagnoses American Indian/Alaska Native Rate 58 non-null float64 15 New Diagnoses American Indian/Alaska Native Cases 58 non-null int64 16 New Diagnoses Multiracial Rate 58 non-null float64 17 New Diagnoses Multiracial Cases 58 non-null int64 18 New Diagnoses Native Hawaiian/Pacific Islander Rate 58 non-null float64 19 New Diagnoses Native Hawaiian/Pacific Islander Cases 58 non-null int64 20 County Cases 58 non-null int64 21 County 58 non-null object 22 County PrEP Users 58 non-null int64 23 County PrEP Rate 58 non-null int64 dtypes: float64(8), int64(13), object(3) memory usage: 11.3+ KB
#Rearrange and Extract Variables to Keep:
ca2020_hiv_df = merged_df.iloc[:,[0,1,2,21,20,23,22,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]]
ca2020_hiv_df
GEO ID | Year | State | County | County Cases | County PrEP Rate | County PrEP Users | New Diagnoses Rate | New Diagnoses Cases | New Diagnoses Black Rate | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Cases | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 6001 | 2020 | California | Alameda County | 6030 | 131 | 1857 | 11.1 | 157 | 34.4 | 50 | 6.0 | 27 | 18.2 | 54 | 3.9 | 18 | 0.0 | 0 | 10.0 | 5 | 26.2 | 3 |
1 | 6003 | 2020 | California | Alpine County | -1 | -1 | -1 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
2 | 6005 | 2020 | California | Amador County | 184 | 40 | 14 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
3 | 6007 | 2020 | California | Butte County | 249 | 29 | 55 | 5.5 | 10 | 0.0 | 0 | 6.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 |
4 | 6009 | 2020 | California | Calaveras County | 50 | 27 | 11 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
5 | 6011 | 2020 | California | Colusa County | 18 | 31 | 5 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
6 | 6013 | 2020 | California | Contra Costa County | 2709 | 67 | 646 | 7.4 | 72 | 25.7 | 22 | 4.2 | 18 | 8.8 | 21 | 4.4 | 8 | 0.0 | 0 | 5.9 | 2 | 21.3 | 1 |
7 | 6015 | 2020 | California | Del Norte County | 38 | 67 | 16 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
8 | 6017 | 2020 | California | El Dorado County | 209 | 42 | 69 | 3.6 | 6 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
9 | 6019 | 2020 | California | Fresno County | 2134 | 44 | 344 | 15.0 | 120 | 32.2 | 12 | 10.6 | 26 | 18.3 | 75 | 5.8 | 5 | 20.1 | 1 | 7.9 | 1 | 0.0 | 0 |
10 | 6021 | 2020 | California | Glenn County | 23 | 31 | 7 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
11 | 6023 | 2020 | California | Humboldt County | 216 | 63 | 74 | 4.3 | 5 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 |
12 | 6025 | 2020 | California | Imperial County | 370 | 244 | 349 | 16.8 | 24 | -1.0 | -1 | -1.0 | -1 | 17.5 | 21 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 |
13 | 6027 | 2020 | California | Inyo County | 24 | 46 | 7 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
14 | 6029 | 2020 | California | Kern County | 1928 | 48 | 339 | 22.3 | 160 | 50.0 | 19 | 16.5 | 41 | 25.3 | 95 | 10.8 | 4 | 0.0 | 0 | 8.5 | 1 | 0.0 | 0 |
15 | 6031 | 2020 | California | Kings County | 189 | 38 | 46 | 6.5 | 8 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
16 | 6033 | 2020 | California | Lake County | 141 | 78 | 42 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
17 | 6035 | 2020 | California | Lassen County | 23 | 42 | 11 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
18 | 6037 | 2020 | California | Los Angeles County | 50243 | 182 | 15431 | 16.4 | 1382 | 42.8 | 295 | 11.5 | 265 | 18.4 | 724 | 4.3 | 56 | 24.2 | 4 | 23.0 | 37 | 5.2 | 1 |
19 | 6039 | 2020 | California | Madera County | 211 | 31 | 38 | 6.3 | 8 | 0.0 | 0 | -1.0 | -1 | 7.1 | 5 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 |
20 | 6041 | 2020 | California | Marin County | 789 | 91 | 205 | 6.3 | 14 | -1.0 | -1 | 3.1 | 5 | 15.3 | 5 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
21 | 6043 | 2020 | California | Mariposa County | 19 | 31 | 5 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
22 | 6045 | 2020 | California | Mendocino County | 173 | 78 | 58 | 6.8 | 5 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 |
23 | 6047 | 2020 | California | Merced County | 347 | 30 | 66 | 14.0 | 31 | 0.0 | 0 | 17.6 | 11 | 12.3 | 16 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 |
24 | 6049 | 2020 | California | Modoc County | -1 | 41 | 3 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
25 | 6051 | 2020 | California | Mono County | 8 | 43 | 5 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
26 | 6053 | 2020 | California | Monterey County | 745 | 65 | 227 | 3.1 | 11 | 0.0 | 0 | -1.0 | -1 | 4.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
27 | 6055 | 2020 | California | Napa County | 287 | 68 | 81 | 4.3 | 5 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
28 | 6057 | 2020 | California | Nevada County | 126 | 30 | 27 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
29 | 6059 | 2020 | California | Orange County | 7092 | 87 | 2332 | 9.8 | 264 | 30.2 | 14 | 6.5 | 72 | 16.9 | 145 | 4.5 | 27 | 0.0 | 0 | 8.0 | 5 | 13.3 | 1 |
30 | 6061 | 2020 | California | Placer County | 371 | 41 | 137 | 5.6 | 19 | -1.0 | -1 | 4.4 | 11 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
31 | 6063 | 2020 | California | Plumas County | 21 | 34 | 6 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
32 | 6065 | 2020 | California | Riverside County | 9765 | 87 | 1737 | 11.6 | 239 | 24.1 | 32 | 9.3 | 68 | 12.4 | 123 | 6.9 | 10 | 0.0 | 0 | 14.7 | 6 | 0.0 | 0 |
33 | 6067 | 2020 | California | Sacramento County | 4519 | 73 | 935 | 11.8 | 153 | 43.5 | 55 | 7.8 | 46 | 11.4 | 33 | 5.0 | 11 | 15.0 | 1 | 11.2 | 6 | 6.5 | 1 |
34 | 6069 | 2020 | California | San Benito County | 56 | 81 | 41 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
35 | 6071 | 2020 | California | San Bernardino County | 4845 | 49 | 863 | 14.7 | 263 | 32.8 | 48 | 8.7 | 44 | 16.3 | 154 | 7.7 | 11 | 0.0 | 0 | 15.5 | 5 | 18.2 | 1 |
36 | 6073 | 2020 | California | San Diego County | 13331 | 131 | 3686 | 10.5 | 296 | 32.7 | 44 | 6.2 | 81 | 17.3 | 157 | 2.0 | 7 | 0.0 | 0 | 8.6 | 7 | 0.0 | 0 |
37 | 6075 | 2020 | California | San Francisco County | 11803 | 897 | 7056 | 19.6 | 153 | 69.1 | 27 | 14.2 | 45 | 54.5 | 61 | 5.6 | 16 | 130.3 | 2 | 4.3 | 1 | 35.1 | 1 |
38 | 6077 | 2020 | California | San Joaquin County | 1432 | 28 | 170 | 13.3 | 83 | 44.1 | 20 | 11.1 | 22 | 13.3 | 33 | 7.6 | 8 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
39 | 6079 | 2020 | California | San Luis Obispo County | 385 | 58 | 142 | 4.4 | 11 | 0.0 | 0 | 4.6 | 8 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
40 | 6081 | 2020 | California | San Mateo County | 1674 | 134 | 877 | 6.9 | 45 | 19.7 | 3 | 5.4 | 14 | 12.9 | 19 | 3.9 | 8 | 0.0 | 0 | 5.2 | 1 | 0.0 | 0 |
41 | 6083 | 2020 | California | Santa Barbara County | 591 | 98 | 365 | 6.2 | 23 | -1.0 | -1 | 2.9 | 5 | 9.5 | 15 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 |
42 | 6085 | 2020 | California | Santa Clara County | 3443 | 99 | 1606 | 6.5 | 105 | 22.8 | 9 | 3.9 | 20 | 16.1 | 61 | 1.2 | 8 | 0.0 | 0 | 16.7 | 7 | 0.0 | 0 |
43 | 6087 | 2020 | California | Santa Cruz County | 503 | 82 | 194 | 5.5 | 13 | 0.0 | 0 | 5.7 | 8 | 6.9 | 5 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
44 | 6089 | 2020 | California | Shasta County | 205 | 37 | 56 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
45 | 6091 | 2020 | California | Sierra County | -1 | -1 | -1 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
46 | 6093 | 2020 | California | Siskiyou County | 63 | 38 | 14 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
47 | 6095 | 2020 | California | Solano County | 1287 | 58 | 216 | 12.2 | 46 | 24.6 | 13 | 6.9 | 10 | 11.4 | 11 | 9.8 | 6 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
48 | 6097 | 2020 | California | Sonoma County | 1438 | 79 | 337 | 8.7 | 37 | -1.0 | -1 | 6.9 | 19 | 11.2 | 12 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 |
49 | 6099 | 2020 | California | Stanislaus County | 824 | 30 | 132 | 6.1 | 27 | -1.0 | -1 | 5.8 | 11 | 6.9 | 14 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
50 | 6101 | 2020 | California | Sutter County | 119 | 31 | 24 | 7.6 | 6 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
51 | 6103 | 2020 | California | Tehama County | 47 | 37 | 20 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
52 | 6105 | 2020 | California | Trinity County | 16 | 44 | 5 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
53 | 6107 | 2020 | California | Tulare County | 516 | 36 | 132 | 7.9 | 29 | 0.0 | 0 | 8.2 | 9 | 8.2 | 19 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 |
54 | 6109 | 2020 | California | Tuolumne County | 59 | 30 | 14 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
55 | 6111 | 2020 | California | Ventura County | 1139 | 68 | 482 | 7.7 | 55 | 7.5 | 1 | 3.0 | 10 | 14.9 | 43 | 0.0 | 0 | 0.0 | 0 | 6.6 | 1 | 0.0 | 0 |
56 | 6113 | 2020 | California | Yolo County | 310 | 40 | 75 | 5.9 | 11 | -1.0 | -1 | -1.0 | -1 | 12.4 | 7 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
57 | 6115 | 2020 | California | Yuba County | 101 | 30 | 19 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
# Drop the Year & State columns:
ca2020_hiv_df2 = ca2020_hiv_df.drop(['Year', 'State'], axis=1)
ca2020_hiv_df2
GEO ID | County | County Cases | County PrEP Rate | County PrEP Users | New Diagnoses Rate | New Diagnoses Cases | New Diagnoses Black Rate | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Cases | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 6001 | Alameda | 6030 | 131 | 1857 | 11.1 | 157 | 34.4 | 50 | 6.0 | 27 | 18.2 | 54 | 3.9 | 18 | 0.0 | 0 | 10.0 | 5 | 26.2 | 3 |
1 | 6003 | Alpine | -1 | -1 | -1 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
2 | 6005 | Amador | 184 | 40 | 14 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
3 | 6007 | Butte | 249 | 29 | 55 | 5.5 | 10 | 0.0 | 0 | 6.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 |
4 | 6009 | Calaveras | 50 | 27 | 11 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
5 | 6011 | Colusa | 18 | 31 | 5 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
6 | 6013 | Contra Costa | 2709 | 67 | 646 | 7.4 | 72 | 25.7 | 22 | 4.2 | 18 | 8.8 | 21 | 4.4 | 8 | 0.0 | 0 | 5.9 | 2 | 21.3 | 1 |
7 | 6015 | Del Norte | 38 | 67 | 16 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
8 | 6017 | El Dorado | 209 | 42 | 69 | 3.6 | 6 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
9 | 6019 | Fresno | 2134 | 44 | 344 | 15.0 | 120 | 32.2 | 12 | 10.6 | 26 | 18.3 | 75 | 5.8 | 5 | 20.1 | 1 | 7.9 | 1 | 0.0 | 0 |
10 | 6021 | Glenn | 23 | 31 | 7 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
11 | 6023 | Humboldt | 216 | 63 | 74 | 4.3 | 5 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 |
12 | 6025 | Imperial | 370 | 244 | 349 | 16.8 | 24 | -1.0 | -1 | -1.0 | -1 | 17.5 | 21 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 |
13 | 6027 | Inyo | 24 | 46 | 7 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
14 | 6029 | Kern | 1928 | 48 | 339 | 22.3 | 160 | 50.0 | 19 | 16.5 | 41 | 25.3 | 95 | 10.8 | 4 | 0.0 | 0 | 8.5 | 1 | 0.0 | 0 |
15 | 6031 | Kings | 189 | 38 | 46 | 6.5 | 8 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
16 | 6033 | Lake | 141 | 78 | 42 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
17 | 6035 | Lassen | 23 | 42 | 11 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
18 | 6037 | Los Angeles | 50243 | 182 | 15431 | 16.4 | 1382 | 42.8 | 295 | 11.5 | 265 | 18.4 | 724 | 4.3 | 56 | 24.2 | 4 | 23.0 | 37 | 5.2 | 1 |
19 | 6039 | Madera | 211 | 31 | 38 | 6.3 | 8 | 0.0 | 0 | -1.0 | -1 | 7.1 | 5 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 |
20 | 6041 | Marin | 789 | 91 | 205 | 6.3 | 14 | -1.0 | -1 | 3.1 | 5 | 15.3 | 5 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
21 | 6043 | Mariposa | 19 | 31 | 5 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
22 | 6045 | Mendocino | 173 | 78 | 58 | 6.8 | 5 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 |
23 | 6047 | Merced | 347 | 30 | 66 | 14.0 | 31 | 0.0 | 0 | 17.6 | 11 | 12.3 | 16 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 |
24 | 6049 | Modoc | -1 | 41 | 3 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
25 | 6051 | Mono | 8 | 43 | 5 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
26 | 6053 | Monterey | 745 | 65 | 227 | 3.1 | 11 | 0.0 | 0 | -1.0 | -1 | 4.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
27 | 6055 | Napa | 287 | 68 | 81 | 4.3 | 5 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
28 | 6057 | Nevada | 126 | 30 | 27 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
29 | 6059 | Orange | 7092 | 87 | 2332 | 9.8 | 264 | 30.2 | 14 | 6.5 | 72 | 16.9 | 145 | 4.5 | 27 | 0.0 | 0 | 8.0 | 5 | 13.3 | 1 |
30 | 6061 | Placer | 371 | 41 | 137 | 5.6 | 19 | -1.0 | -1 | 4.4 | 11 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
31 | 6063 | Plumas | 21 | 34 | 6 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
32 | 6065 | Riverside | 9765 | 87 | 1737 | 11.6 | 239 | 24.1 | 32 | 9.3 | 68 | 12.4 | 123 | 6.9 | 10 | 0.0 | 0 | 14.7 | 6 | 0.0 | 0 |
33 | 6067 | Sacramento | 4519 | 73 | 935 | 11.8 | 153 | 43.5 | 55 | 7.8 | 46 | 11.4 | 33 | 5.0 | 11 | 15.0 | 1 | 11.2 | 6 | 6.5 | 1 |
34 | 6069 | San Benito | 56 | 81 | 41 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
35 | 6071 | San Bernardino | 4845 | 49 | 863 | 14.7 | 263 | 32.8 | 48 | 8.7 | 44 | 16.3 | 154 | 7.7 | 11 | 0.0 | 0 | 15.5 | 5 | 18.2 | 1 |
36 | 6073 | San Diego | 13331 | 131 | 3686 | 10.5 | 296 | 32.7 | 44 | 6.2 | 81 | 17.3 | 157 | 2.0 | 7 | 0.0 | 0 | 8.6 | 7 | 0.0 | 0 |
37 | 6075 | San Francisco | 11803 | 897 | 7056 | 19.6 | 153 | 69.1 | 27 | 14.2 | 45 | 54.5 | 61 | 5.6 | 16 | 130.3 | 2 | 4.3 | 1 | 35.1 | 1 |
38 | 6077 | San Joaquin | 1432 | 28 | 170 | 13.3 | 83 | 44.1 | 20 | 11.1 | 22 | 13.3 | 33 | 7.6 | 8 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
39 | 6079 | San Luis Obispo | 385 | 58 | 142 | 4.4 | 11 | 0.0 | 0 | 4.6 | 8 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
40 | 6081 | San Mateo | 1674 | 134 | 877 | 6.9 | 45 | 19.7 | 3 | 5.4 | 14 | 12.9 | 19 | 3.9 | 8 | 0.0 | 0 | 5.2 | 1 | 0.0 | 0 |
41 | 6083 | Santa Barbara | 591 | 98 | 365 | 6.2 | 23 | -1.0 | -1 | 2.9 | 5 | 9.5 | 15 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 |
42 | 6085 | Santa Clara | 3443 | 99 | 1606 | 6.5 | 105 | 22.8 | 9 | 3.9 | 20 | 16.1 | 61 | 1.2 | 8 | 0.0 | 0 | 16.7 | 7 | 0.0 | 0 |
43 | 6087 | Santa Cruz | 503 | 82 | 194 | 5.5 | 13 | 0.0 | 0 | 5.7 | 8 | 6.9 | 5 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
44 | 6089 | Shasta | 205 | 37 | 56 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
45 | 6091 | Sierra | -1 | -1 | -1 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
46 | 6093 | Siskiyou | 63 | 38 | 14 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
47 | 6095 | Solano | 1287 | 58 | 216 | 12.2 | 46 | 24.6 | 13 | 6.9 | 10 | 11.4 | 11 | 9.8 | 6 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
48 | 6097 | Sonoma | 1438 | 79 | 337 | 8.7 | 37 | -1.0 | -1 | 6.9 | 19 | 11.2 | 12 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 |
49 | 6099 | Stanislaus | 824 | 30 | 132 | 6.1 | 27 | -1.0 | -1 | 5.8 | 11 | 6.9 | 14 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
50 | 6101 | Sutter | 119 | 31 | 24 | 7.6 | 6 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
51 | 6103 | Tehama | 47 | 37 | 20 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
52 | 6105 | Trinity | 16 | 44 | 5 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
53 | 6107 | Tulare | 516 | 36 | 132 | 7.9 | 29 | 0.0 | 0 | 8.2 | 9 | 8.2 | 19 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 |
54 | 6109 | Tuolumne | 59 | 30 | 14 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
55 | 6111 | Ventura | 1139 | 68 | 482 | 7.7 | 55 | 7.5 | 1 | 3.0 | 10 | 14.9 | 43 | 0.0 | 0 | 0.0 | 0 | 6.6 | 1 | 0.0 | 0 |
56 | 6113 | Yolo | 310 | 40 | 75 | 5.9 | 11 | -1.0 | -1 | -1.0 | -1 | 12.4 | 7 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 |
57 | 6115 | Yuba | 101 | 30 | 19 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 |
ca_covid_data = pd.read_csv('/Users/cl/Documents/GEO448/Project/covid19cases_test.csv')
ca_covid_data.head(10)
date | area | area_type | population | cases | cumulative_cases | deaths | cumulative_deaths | total_tests | cumulative_total_tests | positive_tests | cumulative_positive_tests | reported_cases | cumulative_reported_cases | reported_deaths | cumulative_reported_deaths | reported_tests | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2020-02-01 | Alameda | County | 1685886.0 | 3.0 | 3.0 | 0.0 | 0.0 | 4.0 | 4 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN |
1 | 2020-02-02 | Alameda | County | 1685886.0 | 0.0 | 3.0 | 0.0 | 0.0 | 1.0 | 5 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN |
2 | 2020-02-03 | Alameda | County | 1685886.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 5 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN |
3 | 2020-02-04 | Alameda | County | 1685886.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 5 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN |
4 | 2020-02-05 | Alameda | County | 1685886.0 | 0.0 | 3.0 | 0.0 | 0.0 | 1.0 | 6 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN |
5 | 2020-02-06 | Alameda | County | 1685886.0 | 1.0 | 4.0 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN |
6 | 2020-02-07 | Alameda | County | 1685886.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN |
7 | 2020-02-08 | Alameda | County | 1685886.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN |
8 | 2020-02-09 | Alameda | County | 1685886.0 | 1.0 | 5.0 | 0.0 | 0.0 | 1.0 | 7 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN |
9 | 2020-02-10 | Alameda | County | 1685886.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 7 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN |
# Check dataframe info
ca_covid_data.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 61366 entries, 0 to 61365 Data columns (total 17 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 date 61305 non-null object 1 area 61366 non-null object 2 area_type 61366 non-null object 3 population 59354 non-null float64 4 cases 60360 non-null float64 5 cumulative_cases 60360 non-null float64 6 deaths 60360 non-null float64 7 cumulative_deaths 60360 non-null float64 8 total_tests 61305 non-null float64 9 cumulative_total_tests 61366 non-null int64 10 positive_tests 61305 non-null float64 11 cumulative_positive_tests 61366 non-null int64 12 reported_cases 60360 non-null float64 13 cumulative_reported_cases 60360 non-null float64 14 reported_deaths 60360 non-null float64 15 cumulative_reported_deaths 60360 non-null float64 16 reported_tests 41175 non-null float64 dtypes: float64(12), int64(2), object(3) memory usage: 8.0+ MB
# Convert date to date type:
ca_covid_data['date']= pd.to_datetime(ca_covid_data['date'])
# Rename 'area' to 'County'
ca_covid_data = ca_covid_data.rename(columns={"area": "County"})
# Recheck dataframe info
ca_covid_data.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 61366 entries, 0 to 61365 Data columns (total 17 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 date 61305 non-null datetime64[ns] 1 County 61366 non-null object 2 area_type 61366 non-null object 3 population 59354 non-null float64 4 cases 60360 non-null float64 5 cumulative_cases 60360 non-null float64 6 deaths 60360 non-null float64 7 cumulative_deaths 60360 non-null float64 8 total_tests 61305 non-null float64 9 cumulative_total_tests 61366 non-null int64 10 positive_tests 61305 non-null float64 11 cumulative_positive_tests 61366 non-null int64 12 reported_cases 60360 non-null float64 13 cumulative_reported_cases 60360 non-null float64 14 reported_deaths 60360 non-null float64 15 cumulative_reported_deaths 60360 non-null float64 16 reported_tests 41175 non-null float64 dtypes: datetime64[ns](1), float64(12), int64(2), object(2) memory usage: 8.0+ MB
# Extract Columns and Variables to Keep:
ca_covid_df = ca_covid_data.iloc[:,[0,1,2,3,4,6,8,10,12,14,16]]
ca_covid_df.head(5)
date | County | area_type | population | cases | deaths | total_tests | positive_tests | reported_cases | reported_deaths | reported_tests | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2020-02-01 | Alameda | County | 1685886.0 | 3.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | NaN |
1 | 2020-02-02 | Alameda | County | 1685886.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | NaN |
2 | 2020-02-03 | Alameda | County | 1685886.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN |
3 | 2020-02-04 | Alameda | County | 1685886.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN |
4 | 2020-02-05 | Alameda | County | 1685886.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | NaN |
# Extract Data with Dates from 01/01/2021 to 12/31/2021 Only:
start_date = '2021-01-01'
end_date = '2021-12-31'
mask = (ca_covid_df['date'] > start_date) & (ca_covid_df['date'] <= end_date)
ca_covid_df2 = ca_covid_df.loc[mask]
# Group data by monthly aggregation by sum for months:
caMonthly_covid_df = ca_covid_df2.groupby([pd.Grouper(freq='M',key='date'),'County', 'population']).sum()
# View CA Monhtly COVID Data:
caMonthly_covid_df
cases | deaths | total_tests | positive_tests | reported_cases | reported_deaths | reported_tests | |||
---|---|---|---|---|---|---|---|---|---|
date | County | population | |||||||
2021-01-31 | Alameda | 1685886.0 | 18375.0 | 323.0 | 336612.0 | 22026.0 | 20461.0 | 278.0 | 249461.0 |
Alpine | 1117.0 | 4.0 | 0.0 | 194.0 | 0.0 | 4.0 | 0.0 | 84.0 | |
Amador | 38531.0 | 559.0 | 12.0 | 16254.0 | 686.0 | 699.0 | 8.0 | 6509.0 | |
Butte | 217769.0 | 2373.0 | 40.0 | 25887.0 | 2717.0 | 2626.0 | 35.0 | 21739.0 | |
Calaveras | 44289.0 | 537.0 | 13.0 | 5290.0 | 596.0 | 592.0 | 0.0 | 3723.0 | |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2021-12-31 | Tulare | 484423.0 | 3044.0 | 58.0 | 58361.0 | 3187.0 | 2041.0 | 61.0 | 59517.0 |
Tuolumne | 52351.0 | 582.0 | 6.0 | 8489.0 | 616.0 | 401.0 | 0.0 | 8236.0 | |
Ventura | 852747.0 | 16693.0 | 33.0 | 180196.0 | 19430.0 | 8391.0 | 20.0 | 161586.0 | |
Yolo | 223612.0 | 2500.0 | 4.0 | 114002.0 | 2491.0 | 1371.0 | 10.0 | 110767.0 | |
Yuba | 79290.0 | 660.0 | 5.0 | 8384.0 | 728.0 | 446.0 | 10.0 | 8002.0 |
708 rows × 7 columns
caMonthly_covid_df.info() #Check DF Info
<class 'pandas.core.frame.DataFrame'> MultiIndex: 708 entries, (Timestamp('2021-01-31 00:00:00', freq='M'), 'Alameda', 1685886.0) to (Timestamp('2021-12-31 00:00:00', freq='M'), 'Yuba', 79290.0) Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 cases 708 non-null float64 1 deaths 708 non-null float64 2 total_tests 708 non-null float64 3 positive_tests 708 non-null float64 4 reported_cases 708 non-null float64 5 reported_deaths 708 non-null float64 6 reported_tests 708 non-null float64 dtypes: float64(7) memory usage: 42.0+ KB
# Group data by year aggregation:
caYear_covid_df = ca_covid_df2.groupby([pd.Grouper(freq='Y',key='date'),'County', 'population']).sum()
# View CA Yearly COVID Data:
caYear_covid_df
cases | deaths | total_tests | positive_tests | reported_cases | reported_deaths | reported_tests | |||
---|---|---|---|---|---|---|---|---|---|
date | County | population | |||||||
2021-12-31 | Alameda | 1685886.0 | 88478.0 | 887.0 | 3625096.0 | 110982.0 | 79968.0 | 949.0 | 3421039.0 |
Alpine | 1117.0 | 42.0 | 0.0 | 1256.0 | 32.0 | 45.0 | 0.0 | 1114.0 | |
Amador | 38531.0 | 3326.0 | 46.0 | 119657.0 | 3850.0 | 3400.0 | 46.0 | 109341.0 | |
Butte | 217769.0 | 15031.0 | 231.0 | 240176.0 | 17085.0 | 14880.0 | 236.0 | 232849.0 | |
Calaveras | 44289.0 | 3540.0 | 64.0 | 55562.0 | 4143.0 | 3482.0 | 72.0 | 54116.0 | |
California | 40129160.0 | 3036732.0 | 44109.0 | 87840492.0 | 3835762.0 | 2845529.0 | 49611.0 | 86450869.0 | |
Colusa | 22593.0 | 1313.0 | 12.0 | 18847.0 | 1291.0 | 1345.0 | 14.0 | 18367.0 | |
Contra Costa | 1160099.0 | 74071.0 | 634.0 | 2040461.0 | 87392.0 | 68181.0 | 722.0 | 1941843.0 | |
Del Norte | 27558.0 | 3094.0 | 40.0 | 120105.0 | 3545.0 | 3083.0 | 41.0 | 112826.0 | |
El Dorado | 193098.0 | 11837.0 | 130.0 | 225776.0 | 13670.0 | 11789.0 | 145.0 | 221964.0 | |
Fresno | 1032227.0 | 81519.0 | 1454.0 | 1407947.0 | 103136.0 | 82443.0 | 1662.0 | 1361232.0 | |
Glenn | 29348.0 | 2024.0 | 22.0 | 24602.0 | 2218.0 | 2143.0 | 30.0 | 22735.0 | |
Humboldt | 134098.0 | 9069.0 | 99.0 | 185188.0 | 10926.0 | 8598.0 | 98.0 | 174099.0 | |
Imperial | 191649.0 | 15042.0 | 314.0 | 292679.0 | 20494.0 | 14957.0 | 382.0 | 269580.0 | |
Inyo | 18453.0 | 2162.0 | 23.0 | 20563.0 | 2001.0 | 2120.0 | 29.0 | 18796.0 | |
Kern | 927251.0 | 69264.0 | 1318.0 | 1287274.0 | 81319.0 | 70552.0 | 1308.0 | 1262587.0 | |
Kings | 156444.0 | 18067.0 | 257.0 | 383526.0 | 21848.0 | 17960.0 | 278.0 | 355495.0 | |
Lake | 64871.0 | 5121.0 | 85.0 | 80290.0 | 6172.0 | 5172.0 | 93.0 | 77156.0 | |
Lassen | 30065.0 | 2563.0 | 43.0 | 148684.0 | 3378.0 | 2712.0 | 54.0 | 137275.0 | |
Los Angeles | 10257557.0 | 896443.0 | 14813.0 | 34154701.0 | 1158760.0 | 820545.0 | 16856.0 | 35212183.0 | |
Madera | 160089.0 | 13950.0 | 178.0 | 299144.0 | 16484.0 | 14250.0 | 254.0 | 283661.0 | |
Marin | 260800.0 | 11834.0 | 97.0 | 521158.0 | 13806.0 | 10654.0 | 101.0 | 482077.0 | |
Mariposa | 17795.0 | 1314.0 | 19.0 | 26423.0 | 1564.0 | 1273.0 | 3.0 | 24653.0 | |
Mendocino | 88439.0 | 6140.0 | 75.0 | 114111.0 | 7202.0 | 6022.0 | 77.0 | 104353.0 | |
Merced | 287420.0 | 25371.0 | 422.0 | 408417.0 | 31783.0 | 25651.0 | 465.0 | 387631.0 | |
Modoc | 9475.0 | 341.0 | 6.0 | 4226.0 | 187.0 | 360.0 | 6.0 | 3737.0 | |
Mono | 13961.0 | 1324.0 | 1.0 | 21364.0 | 1602.0 | 1217.0 | 1.0 | 20695.0 | |
Monterey | 448732.0 | 22995.0 | 377.0 | 591842.0 | 26639.0 | 21786.0 | 452.0 | 519254.0 | |
Napa | 139652.0 | 9298.0 | 78.0 | 268230.0 | 10223.0 | 8540.0 | 79.0 | 243740.0 | |
Nevada | 98710.0 | 7834.0 | 55.0 | 133055.0 | 9032.0 | 7636.0 | 95.0 | 126607.0 | |
Orange | 3228519.0 | 191419.0 | 3281.0 | 4218004.0 | 243395.0 | 174086.0 | 3997.0 | 4061425.0 | |
Placer | 400434.0 | 27283.0 | 327.0 | 528098.0 | 30702.0 | 26870.0 | 356.0 | 513462.0 | |
Plumas | 18997.0 | 1568.0 | 8.0 | 28957.0 | 1591.0 | 1582.0 | 11.0 | 26557.0 | |
Riverside | 2468145.0 | 216175.0 | 3150.0 | 3340252.0 | 278870.0 | 208450.0 | 3511.0 | 3177348.0 | |
Sacramento | 1567975.0 | 112565.0 | 1458.0 | 2538054.0 | 134541.0 | 106606.0 | 1600.0 | 2429617.0 | |
San Benito | 64022.0 | 4738.0 | 55.0 | 94024.0 | 6062.0 | 4547.0 | 51.0 | 87026.0 | |
San Bernardino | 2217398.0 | 194632.0 | 3693.0 | 3408407.0 | 239831.0 | 182627.0 | 4461.0 | 3273382.0 | |
San Diego | 3370418.0 | 291421.0 | 2674.0 | 6735412.0 | 384075.0 | 267016.0 | 2877.0 | 6583538.0 | |
San Francisco | 892280.0 | 47010.0 | 430.0 | 2153149.0 | 58717.0 | 40353.0 | 495.0 | 1984056.0 | |
San Joaquin | 782545.0 | 61585.0 | 1135.0 | 1233392.0 | 73338.0 | 60000.0 | 1245.0 | 1193147.0 | |
San Luis Obispo | 278862.0 | 21610.0 | 261.0 | 537932.0 | 25116.0 | 21182.0 | 271.0 | 507570.0 | |
San Mateo | 778001.0 | 41680.0 | 338.0 | 2232098.0 | 53689.0 | 35463.0 | 387.0 | 2017530.0 | |
Santa Barbara | 456373.0 | 32944.0 | 392.0 | 724964.0 | 40798.0 | 31796.0 | 404.0 | 683898.0 | |
Santa Clara | 1967585.0 | 100671.0 | 1084.0 | 5121735.0 | 121951.0 | 92643.0 | 1289.0 | 4879392.0 | |
Santa Cruz | 273999.0 | 14067.0 | 123.0 | 640017.0 | 16662.0 | 13834.0 | 144.0 | 608319.0 | |
Shasta | 177925.0 | 14865.0 | 341.0 | 273979.0 | 15806.0 | 15059.0 | 363.0 | 260557.0 | |
Sierra | 3115.0 | 180.0 | 3.0 | 3179.0 | 195.0 | 180.0 | 0.0 | 3029.0 | |
Siskiyou | 43956.0 | 2494.0 | 52.0 | 30583.0 | 2762.0 | 2530.0 | 58.0 | 28919.0 | |
Solano | 444255.0 | 31056.0 | 254.0 | 798527.0 | 34925.0 | 29564.0 | 282.0 | 736040.0 | |
Sonoma | 496668.0 | 28517.0 | 220.0 | 856175.0 | 32473.0 | 26527.0 | 221.0 | 808371.0 | |
Stanislaus | 562303.0 | 48674.0 | 807.0 | 765079.0 | 59177.0 | 49389.0 | 779.0 | 734288.0 | |
Sutter | 105747.0 | 8184.0 | 125.0 | 118877.0 | 9729.0 | 8188.0 | 141.0 | 115339.0 | |
Tehama | 65885.0 | 5796.0 | 125.0 | 64217.0 | 6378.0 | 5865.0 | 130.0 | 61227.0 | |
Trinity | 13354.0 | 498.0 | 15.0 | 6364.0 | 672.0 | 589.0 | 15.0 | 6879.0 | |
Tulare | 484423.0 | 37326.0 | 790.0 | 647145.0 | 42952.0 | 37947.0 | 706.0 | 641000.0 | |
Tuolumne | 52351.0 | 5321.0 | 123.0 | 109808.0 | 6254.0 | 5135.0 | 78.0 | 103187.0 | |
Ventura | 852747.0 | 70945.0 | 847.0 | 1671607.0 | 88960.0 | 65966.0 | 958.0 | 1626635.0 | |
Yolo | 223612.0 | 13861.0 | 135.0 | 1005823.0 | 15058.0 | 13286.0 | 150.0 | 985222.0 | |
Yuba | 79290.0 | 6984.0 | 83.0 | 90173.0 | 8325.0 | 6999.0 | 80.0 | 88194.0 |
caYear_covid_df.info() #Check DF Info
<class 'pandas.core.frame.DataFrame'> MultiIndex: 59 entries, (Timestamp('2021-12-31 00:00:00', freq='A-DEC'), 'Alameda', 1685886.0) to (Timestamp('2021-12-31 00:00:00', freq='A-DEC'), 'Yuba', 79290.0) Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 cases 59 non-null float64 1 deaths 59 non-null float64 2 total_tests 59 non-null float64 3 positive_tests 59 non-null float64 4 reported_cases 59 non-null float64 5 reported_deaths 59 non-null float64 6 reported_tests 59 non-null float64 dtypes: float64(7) memory usage: 4.5+ KB
CA2021_covid_df = caYear_covid_df.reset_index()
CA2021_covid_df
date | County | population | cases | deaths | total_tests | positive_tests | reported_cases | reported_deaths | reported_tests | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 2021-12-31 | Alameda | 1685886.0 | 88478.0 | 887.0 | 3625096.0 | 110982.0 | 79968.0 | 949.0 | 3421039.0 |
1 | 2021-12-31 | Alpine | 1117.0 | 42.0 | 0.0 | 1256.0 | 32.0 | 45.0 | 0.0 | 1114.0 |
2 | 2021-12-31 | Amador | 38531.0 | 3326.0 | 46.0 | 119657.0 | 3850.0 | 3400.0 | 46.0 | 109341.0 |
3 | 2021-12-31 | Butte | 217769.0 | 15031.0 | 231.0 | 240176.0 | 17085.0 | 14880.0 | 236.0 | 232849.0 |
4 | 2021-12-31 | Calaveras | 44289.0 | 3540.0 | 64.0 | 55562.0 | 4143.0 | 3482.0 | 72.0 | 54116.0 |
5 | 2021-12-31 | California | 40129160.0 | 3036732.0 | 44109.0 | 87840492.0 | 3835762.0 | 2845529.0 | 49611.0 | 86450869.0 |
6 | 2021-12-31 | Colusa | 22593.0 | 1313.0 | 12.0 | 18847.0 | 1291.0 | 1345.0 | 14.0 | 18367.0 |
7 | 2021-12-31 | Contra Costa | 1160099.0 | 74071.0 | 634.0 | 2040461.0 | 87392.0 | 68181.0 | 722.0 | 1941843.0 |
8 | 2021-12-31 | Del Norte | 27558.0 | 3094.0 | 40.0 | 120105.0 | 3545.0 | 3083.0 | 41.0 | 112826.0 |
9 | 2021-12-31 | El Dorado | 193098.0 | 11837.0 | 130.0 | 225776.0 | 13670.0 | 11789.0 | 145.0 | 221964.0 |
10 | 2021-12-31 | Fresno | 1032227.0 | 81519.0 | 1454.0 | 1407947.0 | 103136.0 | 82443.0 | 1662.0 | 1361232.0 |
11 | 2021-12-31 | Glenn | 29348.0 | 2024.0 | 22.0 | 24602.0 | 2218.0 | 2143.0 | 30.0 | 22735.0 |
12 | 2021-12-31 | Humboldt | 134098.0 | 9069.0 | 99.0 | 185188.0 | 10926.0 | 8598.0 | 98.0 | 174099.0 |
13 | 2021-12-31 | Imperial | 191649.0 | 15042.0 | 314.0 | 292679.0 | 20494.0 | 14957.0 | 382.0 | 269580.0 |
14 | 2021-12-31 | Inyo | 18453.0 | 2162.0 | 23.0 | 20563.0 | 2001.0 | 2120.0 | 29.0 | 18796.0 |
15 | 2021-12-31 | Kern | 927251.0 | 69264.0 | 1318.0 | 1287274.0 | 81319.0 | 70552.0 | 1308.0 | 1262587.0 |
16 | 2021-12-31 | Kings | 156444.0 | 18067.0 | 257.0 | 383526.0 | 21848.0 | 17960.0 | 278.0 | 355495.0 |
17 | 2021-12-31 | Lake | 64871.0 | 5121.0 | 85.0 | 80290.0 | 6172.0 | 5172.0 | 93.0 | 77156.0 |
18 | 2021-12-31 | Lassen | 30065.0 | 2563.0 | 43.0 | 148684.0 | 3378.0 | 2712.0 | 54.0 | 137275.0 |
19 | 2021-12-31 | Los Angeles | 10257557.0 | 896443.0 | 14813.0 | 34154701.0 | 1158760.0 | 820545.0 | 16856.0 | 35212183.0 |
20 | 2021-12-31 | Madera | 160089.0 | 13950.0 | 178.0 | 299144.0 | 16484.0 | 14250.0 | 254.0 | 283661.0 |
21 | 2021-12-31 | Marin | 260800.0 | 11834.0 | 97.0 | 521158.0 | 13806.0 | 10654.0 | 101.0 | 482077.0 |
22 | 2021-12-31 | Mariposa | 17795.0 | 1314.0 | 19.0 | 26423.0 | 1564.0 | 1273.0 | 3.0 | 24653.0 |
23 | 2021-12-31 | Mendocino | 88439.0 | 6140.0 | 75.0 | 114111.0 | 7202.0 | 6022.0 | 77.0 | 104353.0 |
24 | 2021-12-31 | Merced | 287420.0 | 25371.0 | 422.0 | 408417.0 | 31783.0 | 25651.0 | 465.0 | 387631.0 |
25 | 2021-12-31 | Modoc | 9475.0 | 341.0 | 6.0 | 4226.0 | 187.0 | 360.0 | 6.0 | 3737.0 |
26 | 2021-12-31 | Mono | 13961.0 | 1324.0 | 1.0 | 21364.0 | 1602.0 | 1217.0 | 1.0 | 20695.0 |
27 | 2021-12-31 | Monterey | 448732.0 | 22995.0 | 377.0 | 591842.0 | 26639.0 | 21786.0 | 452.0 | 519254.0 |
28 | 2021-12-31 | Napa | 139652.0 | 9298.0 | 78.0 | 268230.0 | 10223.0 | 8540.0 | 79.0 | 243740.0 |
29 | 2021-12-31 | Nevada | 98710.0 | 7834.0 | 55.0 | 133055.0 | 9032.0 | 7636.0 | 95.0 | 126607.0 |
30 | 2021-12-31 | Orange | 3228519.0 | 191419.0 | 3281.0 | 4218004.0 | 243395.0 | 174086.0 | 3997.0 | 4061425.0 |
31 | 2021-12-31 | Placer | 400434.0 | 27283.0 | 327.0 | 528098.0 | 30702.0 | 26870.0 | 356.0 | 513462.0 |
32 | 2021-12-31 | Plumas | 18997.0 | 1568.0 | 8.0 | 28957.0 | 1591.0 | 1582.0 | 11.0 | 26557.0 |
33 | 2021-12-31 | Riverside | 2468145.0 | 216175.0 | 3150.0 | 3340252.0 | 278870.0 | 208450.0 | 3511.0 | 3177348.0 |
34 | 2021-12-31 | Sacramento | 1567975.0 | 112565.0 | 1458.0 | 2538054.0 | 134541.0 | 106606.0 | 1600.0 | 2429617.0 |
35 | 2021-12-31 | San Benito | 64022.0 | 4738.0 | 55.0 | 94024.0 | 6062.0 | 4547.0 | 51.0 | 87026.0 |
36 | 2021-12-31 | San Bernardino | 2217398.0 | 194632.0 | 3693.0 | 3408407.0 | 239831.0 | 182627.0 | 4461.0 | 3273382.0 |
37 | 2021-12-31 | San Diego | 3370418.0 | 291421.0 | 2674.0 | 6735412.0 | 384075.0 | 267016.0 | 2877.0 | 6583538.0 |
38 | 2021-12-31 | San Francisco | 892280.0 | 47010.0 | 430.0 | 2153149.0 | 58717.0 | 40353.0 | 495.0 | 1984056.0 |
39 | 2021-12-31 | San Joaquin | 782545.0 | 61585.0 | 1135.0 | 1233392.0 | 73338.0 | 60000.0 | 1245.0 | 1193147.0 |
40 | 2021-12-31 | San Luis Obispo | 278862.0 | 21610.0 | 261.0 | 537932.0 | 25116.0 | 21182.0 | 271.0 | 507570.0 |
41 | 2021-12-31 | San Mateo | 778001.0 | 41680.0 | 338.0 | 2232098.0 | 53689.0 | 35463.0 | 387.0 | 2017530.0 |
42 | 2021-12-31 | Santa Barbara | 456373.0 | 32944.0 | 392.0 | 724964.0 | 40798.0 | 31796.0 | 404.0 | 683898.0 |
43 | 2021-12-31 | Santa Clara | 1967585.0 | 100671.0 | 1084.0 | 5121735.0 | 121951.0 | 92643.0 | 1289.0 | 4879392.0 |
44 | 2021-12-31 | Santa Cruz | 273999.0 | 14067.0 | 123.0 | 640017.0 | 16662.0 | 13834.0 | 144.0 | 608319.0 |
45 | 2021-12-31 | Shasta | 177925.0 | 14865.0 | 341.0 | 273979.0 | 15806.0 | 15059.0 | 363.0 | 260557.0 |
46 | 2021-12-31 | Sierra | 3115.0 | 180.0 | 3.0 | 3179.0 | 195.0 | 180.0 | 0.0 | 3029.0 |
47 | 2021-12-31 | Siskiyou | 43956.0 | 2494.0 | 52.0 | 30583.0 | 2762.0 | 2530.0 | 58.0 | 28919.0 |
48 | 2021-12-31 | Solano | 444255.0 | 31056.0 | 254.0 | 798527.0 | 34925.0 | 29564.0 | 282.0 | 736040.0 |
49 | 2021-12-31 | Sonoma | 496668.0 | 28517.0 | 220.0 | 856175.0 | 32473.0 | 26527.0 | 221.0 | 808371.0 |
50 | 2021-12-31 | Stanislaus | 562303.0 | 48674.0 | 807.0 | 765079.0 | 59177.0 | 49389.0 | 779.0 | 734288.0 |
51 | 2021-12-31 | Sutter | 105747.0 | 8184.0 | 125.0 | 118877.0 | 9729.0 | 8188.0 | 141.0 | 115339.0 |
52 | 2021-12-31 | Tehama | 65885.0 | 5796.0 | 125.0 | 64217.0 | 6378.0 | 5865.0 | 130.0 | 61227.0 |
53 | 2021-12-31 | Trinity | 13354.0 | 498.0 | 15.0 | 6364.0 | 672.0 | 589.0 | 15.0 | 6879.0 |
54 | 2021-12-31 | Tulare | 484423.0 | 37326.0 | 790.0 | 647145.0 | 42952.0 | 37947.0 | 706.0 | 641000.0 |
55 | 2021-12-31 | Tuolumne | 52351.0 | 5321.0 | 123.0 | 109808.0 | 6254.0 | 5135.0 | 78.0 | 103187.0 |
56 | 2021-12-31 | Ventura | 852747.0 | 70945.0 | 847.0 | 1671607.0 | 88960.0 | 65966.0 | 958.0 | 1626635.0 |
57 | 2021-12-31 | Yolo | 223612.0 | 13861.0 | 135.0 | 1005823.0 | 15058.0 | 13286.0 | 150.0 | 985222.0 |
58 | 2021-12-31 | Yuba | 79290.0 | 6984.0 | 83.0 | 90173.0 | 8325.0 | 6999.0 | 80.0 | 88194.0 |
Above, grouping and aggregating the data resulted in the data being grouped by county and summed by date (which now only represent 2021). There are now no more missing data and all data types are numeric.
ca_vacc_data = pd.read_csv('/Users/cl/Documents/GEO448/Project/covid19vaccinesbycountybydemographic.csv')
ca_vacc_data.head(10)
county | county_type | demographic_category | demographic_value | est_population | est_age_12plus_pop | est_age_5plus_pop | administered_date | partially_vaccinated | total_partially_vaccinated | fully_vaccinated | cumulative_fully_vaccinated | at_least_one_dose | cumulative_at_least_one_dose | cumulative_unvax_total_pop | cumulative_unvax_12plus_pop | cumulative_unvax_5plus_pop | suppress_data | booster_recip_count | cumulative_booster_recip_count | booster_eligible_population | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Alameda | MIXED | Age Group | 12-17 | 120945.0 | 120945.0 | 120945.0 | 2022-10-17 | 3.0 | 6287.0 | 2.0 | 103277.0 | 3.0 | 109564.0 | 11381.0 | 11381.0 | 11381.0 | False | 0 | 59041 | 102155 |
1 | Alameda | MIXED | Age Group | 12-17 | 120945.0 | 120945.0 | 120945.0 | 2022-10-16 | 0.0 | 6286.0 | 0.0 | 103275.0 | 0.0 | 109561.0 | 11384.0 | 11384.0 | 11384.0 | False | 0 | 59041 | 102155 |
2 | Alameda | MIXED | Age Group | 12-17 | 120945.0 | 120945.0 | 120945.0 | 2022-10-15 | 4.0 | 6286.0 | 1.0 | 103275.0 | 4.0 | 109561.0 | 11384.0 | 11384.0 | 11384.0 | False | 0 | 59041 | 102155 |
3 | Alameda | MIXED | Age Group | 12-17 | 120945.0 | 120945.0 | 120945.0 | 2022-10-14 | 9.0 | 6283.0 | 2.0 | 103274.0 | 9.0 | 109557.0 | 11388.0 | 11388.0 | 11388.0 | False | 0 | 59041 | 102155 |
4 | Alameda | MIXED | Age Group | 12-17 | 120945.0 | 120945.0 | 120945.0 | 2022-10-13 | 2.0 | 6276.0 | 1.0 | 103272.0 | 2.0 | 109548.0 | 11397.0 | 11397.0 | 11397.0 | False | 0 | 59041 | 102155 |
5 | Alameda | MIXED | Age Group | 12-17 | 120945.0 | 120945.0 | 120945.0 | 2022-10-12 | 5.0 | 6275.0 | 3.0 | 103271.0 | 5.0 | 109546.0 | 11399.0 | 11399.0 | 11399.0 | False | 0 | 59041 | 102155 |
6 | Alameda | MIXED | Age Group | 12-17 | 120945.0 | 120945.0 | 120945.0 | 2022-10-11 | 7.0 | 6273.0 | 4.0 | 103268.0 | 7.0 | 109541.0 | 11404.0 | 11404.0 | 11404.0 | False | 0 | 59041 | 102155 |
7 | Alameda | MIXED | Age Group | 12-17 | 120945.0 | 120945.0 | 120945.0 | 2022-10-10 | 4.0 | 6270.0 | 2.0 | 103264.0 | 4.0 | 109534.0 | 11411.0 | 11411.0 | 11411.0 | False | 0 | 59041 | 102155 |
8 | Alameda | MIXED | Age Group | 12-17 | 120945.0 | 120945.0 | 120945.0 | 2022-10-09 | 2.0 | 6268.0 | 1.0 | 103262.0 | 2.0 | 109530.0 | 11415.0 | 11415.0 | 11415.0 | False | 0 | 59041 | 102155 |
9 | Alameda | MIXED | Age Group | 12-17 | 120945.0 | 120945.0 | 120945.0 | 2022-10-08 | 2.0 | 6267.0 | 0.0 | 103261.0 | 2.0 | 109528.0 | 11417.0 | 11417.0 | 11417.0 | False | 0 | 59041 | 102155 |
# Check dataframe info
ca_vacc_data.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 911629 entries, 0 to 911628 Data columns (total 21 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 county 911629 non-null object 1 county_type 911629 non-null object 2 demographic_category 911629 non-null object 3 demographic_value 911629 non-null object 4 est_population 778212 non-null float64 5 est_age_12plus_pop 778212 non-null float64 6 est_age_5plus_pop 778212 non-null float64 7 administered_date 911629 non-null object 8 partially_vaccinated 897791 non-null float64 9 total_partially_vaccinated 897791 non-null float64 10 fully_vaccinated 897791 non-null float64 11 cumulative_fully_vaccinated 897791 non-null float64 12 at_least_one_dose 897791 non-null float64 13 cumulative_at_least_one_dose 897791 non-null float64 14 cumulative_unvax_total_pop 765188 non-null float64 15 cumulative_unvax_12plus_pop 765188 non-null float64 16 cumulative_unvax_5plus_pop 765188 non-null float64 17 suppress_data 911629 non-null bool 18 booster_recip_count 911629 non-null int64 19 cumulative_booster_recip_count 911629 non-null int64 20 booster_eligible_population 911629 non-null int64 dtypes: bool(1), float64(12), int64(3), object(5) memory usage: 140.0+ MB
# Create a new variable date with date type using the administered date:
ca_vacc_data['date']= pd.to_datetime(ca_vacc_data['administered_date'])
# Extract Columns and Variables to Keep:
ca_vacc_df2 = ca_vacc_data.iloc[:,[0,7,8,10,18,21]]
# Extract Data with Dates from 01/01/2021 to 12/31/2021 Only:
start_date = '2021-01-01'
end_date = '2021-12-31'
mask = (ca_vacc_df2['date'] > start_date) & (ca_vacc_df2['date'] <= end_date)
ca_vacc_df3 = ca_vacc_df2.loc[mask]
# Recheck info for extracted data:
ca_vacc_df3.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 408030 entries, 290 to 911468 Data columns (total 6 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 county 408030 non-null object 1 administered_date 408030 non-null object 2 partially_vaccinated 401842 non-null float64 3 fully_vaccinated 401842 non-null float64 4 booster_recip_count 408030 non-null int64 5 date 408030 non-null datetime64[ns] dtypes: datetime64[ns](1), float64(2), int64(1), object(2) memory usage: 21.8+ MB
# View the head for extracted data:
ca_vacc_df3.head(10)
county | administered_date | partially_vaccinated | fully_vaccinated | booster_recip_count | date | |
---|---|---|---|---|---|---|
290 | Alameda | 2021-12-31 | 45.0 | 55.0 | 144 | 2021-12-31 |
291 | Alameda | 2021-12-30 | 181.0 | 137.0 | 539 | 2021-12-30 |
292 | Alameda | 2021-12-29 | 167.0 | 218.0 | 510 | 2021-12-29 |
293 | Alameda | 2021-12-28 | 205.0 | 190.0 | 464 | 2021-12-28 |
294 | Alameda | 2021-12-27 | 111.0 | 134.0 | 424 | 2021-12-27 |
295 | Alameda | 2021-12-26 | 38.0 | 34.0 | 181 | 2021-12-26 |
296 | Alameda | 2021-12-25 | 1.0 | 1.0 | 0 | 2021-12-25 |
297 | Alameda | 2021-12-24 | 24.0 | 52.0 | 192 | 2021-12-24 |
298 | Alameda | 2021-12-23 | 130.0 | 139.0 | 661 | 2021-12-23 |
299 | Alameda | 2021-12-22 | 168.0 | 167.0 | 565 | 2021-12-22 |
# Group data by monthly aggregation by sum for months:
caMonthly_vacc_df = ca_vacc_df3.groupby([pd.Grouper(freq='M',key='date'),'county']).sum()
caMonthly_vacc_df
partially_vaccinated | fully_vaccinated | booster_recip_count | ||
---|---|---|---|---|
date | county | |||
2021-01-31 | Alameda | 300759.0 | 87910.0 | 0 |
Alpine | 549.0 | 26.0 | 0 | |
Amador | 8222.0 | 2039.0 | 0 | |
Butte | 53463.0 | 14946.0 | 0 | |
Calaveras | 8783.0 | 1839.0 | 0 | |
... | ... | ... | ... | ... |
2021-12-31 | Tulare | 30296.0 | 28187.0 | 78491 |
Tuolumne | 2415.0 | 1578.0 | 9368 | |
Ventura | 50370.0 | 54577.0 | 263047 | |
Yolo | 13747.0 | 19232.0 | 76949 | |
Yuba | 3786.0 | 3834.0 | 13093 |
708 rows × 3 columns
# Group data by monthly aggregation by sum for months:
ca2021_vacc_df = ca_vacc_df3.groupby([pd.Grouper(freq='Y',key='date'),'county']).sum()
ca2021_vacc_df
partially_vaccinated | fully_vaccinated | booster_recip_count | ||
---|---|---|---|---|
date | county | |||
2021-12-31 | Alameda | 3777616.0 | 3903944.0 | 1794082 |
Alpine | 1953.0 | 1746.0 | 665 | |
Amador | 64856.0 | 60826.0 | 23347 | |
Butte | 326051.0 | 333391.0 | 128099 | |
Calaveras | 74861.0 | 69925.0 | 26732 | |
Colusa | 36881.0 | 36354.0 | 8935 | |
Contra Costa | 2659318.0 | 2718869.0 | 1218085 | |
Del Norte | 36867.0 | 37096.0 | 13630 | |
El Dorado | 332572.0 | 336526.0 | 145605 | |
Fresno | 1752383.0 | 1709869.0 | 561323 | |
Glenn | 42278.0 | 43653.0 | 13967 | |
Humboldt | 248241.0 | 256882.0 | 107666 | |
Imperial | 523794.0 | 453346.0 | 120293 | |
Inyo | 31900.0 | 32815.0 | 15545 | |
Kern | 1371125.0 | 1344753.0 | 385137 | |
Kings | 195768.0 | 191330.0 | 54654 | |
Lake | 100938.0 | 100824.0 | 36015 | |
Lassen | 22235.0 | 24596.0 | 7849 | |
Los Angeles | 21122804.0 | 20920505.0 | 8057173 | |
Madera | 246508.0 | 238451.0 | 75904 | |
Marin | 645880.0 | 656920.0 | 355216 | |
Mariposa | 28478.0 | 21710.0 | 5766 | |
Mendocino | 174319.0 | 170898.0 | 72501 | |
Merced | 460622.0 | 403335.0 | 96301 | |
Modoc | 10180.0 | 11201.0 | 4346 | |
Mono | 25687.0 | 25534.0 | 10491 | |
Monterey | 880348.0 | 870430.0 | 302930 | |
Napa | 314734.0 | 310243.0 | 143712 | |
Nevada | 183325.0 | 178874.0 | 77952 | |
Orange | 6645164.0 | 6617632.0 | 2772794 | |
Placer | 764677.0 | 772712.0 | 338400 | |
Plumas | 28951.0 | 30855.0 | 13117 | |
Riverside | 4238465.0 | 4105594.0 | 1362541 | |
Sacramento | 2990218.0 | 2966984.0 | 1165767 | |
San Benito | 124737.0 | 124546.0 | 42121 | |
San Bernardino | 3525915.0 | 3476473.0 | 1065249 | |
San Diego | 6988308.0 | 7016623.0 | 2672215 | |
San Francisco | 2089662.0 | 2144298.0 | 1177199 | |
San Joaquin | 1456593.0 | 1320639.0 | 371591 | |
San Luis Obispo | 510206.0 | 517929.0 | 239369 | |
San Mateo | 1815337.0 | 1839145.0 | 929376 | |
Santa Barbara | 879394.0 | 872777.0 | 339398 | |
Santa Clara | 4645203.0 | 4755576.0 | 2340830 | |
Santa Cruz | 603595.0 | 602284.0 | 270602 | |
Shasta | 233655.0 | 235476.0 | 87089 | |
Sierra | 4325.0 | 4488.0 | 1802 | |
Siskiyou | 62186.0 | 60676.0 | 24271 | |
Solano | 888702.0 | 856535.0 | 329696 | |
Sonoma | 1097284.0 | 1111186.0 | 515953 | |
Stanislaus | 963030.0 | 885788.0 | 230770 | |
Statewide | 80966936.0 | 80161357.0 | 31686096 | |
Sutter | 163389.0 | 164552.0 | 51596 | |
Tehama | 82520.0 | 82476.0 | 27806 | |
Trinity | 16861.0 | 17210.0 | 7378 | |
Tulare | 736805.0 | 699230.0 | 207671 | |
Tuolumne | 87200.0 | 82434.0 | 33788 | |
Ventura | 1729287.0 | 1744257.0 | 686694 | |
Yolo | 447676.0 | 445754.0 | 192169 | |
Yuba | 105863.0 | 108672.0 | 30518 |
# Reindex and view the aggregated data:
ca2021_vacc_df2 = ca2021_vacc_df.reset_index()
ca2021_vacc_df2
date | county | partially_vaccinated | fully_vaccinated | booster_recip_count | |
---|---|---|---|---|---|
0 | 2021-12-31 | Alameda | 3777616.0 | 3903944.0 | 1794082 |
1 | 2021-12-31 | Alpine | 1953.0 | 1746.0 | 665 |
2 | 2021-12-31 | Amador | 64856.0 | 60826.0 | 23347 |
3 | 2021-12-31 | Butte | 326051.0 | 333391.0 | 128099 |
4 | 2021-12-31 | Calaveras | 74861.0 | 69925.0 | 26732 |
5 | 2021-12-31 | Colusa | 36881.0 | 36354.0 | 8935 |
6 | 2021-12-31 | Contra Costa | 2659318.0 | 2718869.0 | 1218085 |
7 | 2021-12-31 | Del Norte | 36867.0 | 37096.0 | 13630 |
8 | 2021-12-31 | El Dorado | 332572.0 | 336526.0 | 145605 |
9 | 2021-12-31 | Fresno | 1752383.0 | 1709869.0 | 561323 |
10 | 2021-12-31 | Glenn | 42278.0 | 43653.0 | 13967 |
11 | 2021-12-31 | Humboldt | 248241.0 | 256882.0 | 107666 |
12 | 2021-12-31 | Imperial | 523794.0 | 453346.0 | 120293 |
13 | 2021-12-31 | Inyo | 31900.0 | 32815.0 | 15545 |
14 | 2021-12-31 | Kern | 1371125.0 | 1344753.0 | 385137 |
15 | 2021-12-31 | Kings | 195768.0 | 191330.0 | 54654 |
16 | 2021-12-31 | Lake | 100938.0 | 100824.0 | 36015 |
17 | 2021-12-31 | Lassen | 22235.0 | 24596.0 | 7849 |
18 | 2021-12-31 | Los Angeles | 21122804.0 | 20920505.0 | 8057173 |
19 | 2021-12-31 | Madera | 246508.0 | 238451.0 | 75904 |
20 | 2021-12-31 | Marin | 645880.0 | 656920.0 | 355216 |
21 | 2021-12-31 | Mariposa | 28478.0 | 21710.0 | 5766 |
22 | 2021-12-31 | Mendocino | 174319.0 | 170898.0 | 72501 |
23 | 2021-12-31 | Merced | 460622.0 | 403335.0 | 96301 |
24 | 2021-12-31 | Modoc | 10180.0 | 11201.0 | 4346 |
25 | 2021-12-31 | Mono | 25687.0 | 25534.0 | 10491 |
26 | 2021-12-31 | Monterey | 880348.0 | 870430.0 | 302930 |
27 | 2021-12-31 | Napa | 314734.0 | 310243.0 | 143712 |
28 | 2021-12-31 | Nevada | 183325.0 | 178874.0 | 77952 |
29 | 2021-12-31 | Orange | 6645164.0 | 6617632.0 | 2772794 |
30 | 2021-12-31 | Placer | 764677.0 | 772712.0 | 338400 |
31 | 2021-12-31 | Plumas | 28951.0 | 30855.0 | 13117 |
32 | 2021-12-31 | Riverside | 4238465.0 | 4105594.0 | 1362541 |
33 | 2021-12-31 | Sacramento | 2990218.0 | 2966984.0 | 1165767 |
34 | 2021-12-31 | San Benito | 124737.0 | 124546.0 | 42121 |
35 | 2021-12-31 | San Bernardino | 3525915.0 | 3476473.0 | 1065249 |
36 | 2021-12-31 | San Diego | 6988308.0 | 7016623.0 | 2672215 |
37 | 2021-12-31 | San Francisco | 2089662.0 | 2144298.0 | 1177199 |
38 | 2021-12-31 | San Joaquin | 1456593.0 | 1320639.0 | 371591 |
39 | 2021-12-31 | San Luis Obispo | 510206.0 | 517929.0 | 239369 |
40 | 2021-12-31 | San Mateo | 1815337.0 | 1839145.0 | 929376 |
41 | 2021-12-31 | Santa Barbara | 879394.0 | 872777.0 | 339398 |
42 | 2021-12-31 | Santa Clara | 4645203.0 | 4755576.0 | 2340830 |
43 | 2021-12-31 | Santa Cruz | 603595.0 | 602284.0 | 270602 |
44 | 2021-12-31 | Shasta | 233655.0 | 235476.0 | 87089 |
45 | 2021-12-31 | Sierra | 4325.0 | 4488.0 | 1802 |
46 | 2021-12-31 | Siskiyou | 62186.0 | 60676.0 | 24271 |
47 | 2021-12-31 | Solano | 888702.0 | 856535.0 | 329696 |
48 | 2021-12-31 | Sonoma | 1097284.0 | 1111186.0 | 515953 |
49 | 2021-12-31 | Stanislaus | 963030.0 | 885788.0 | 230770 |
50 | 2021-12-31 | Statewide | 80966936.0 | 80161357.0 | 31686096 |
51 | 2021-12-31 | Sutter | 163389.0 | 164552.0 | 51596 |
52 | 2021-12-31 | Tehama | 82520.0 | 82476.0 | 27806 |
53 | 2021-12-31 | Trinity | 16861.0 | 17210.0 | 7378 |
54 | 2021-12-31 | Tulare | 736805.0 | 699230.0 | 207671 |
55 | 2021-12-31 | Tuolumne | 87200.0 | 82434.0 | 33788 |
56 | 2021-12-31 | Ventura | 1729287.0 | 1744257.0 | 686694 |
57 | 2021-12-31 | Yolo | 447676.0 | 445754.0 | 192169 |
58 | 2021-12-31 | Yuba | 105863.0 | 108672.0 | 30518 |
# COVID Dataset: Remove the County, 'California' as this is an aggegation and not an actual county
cond = CA2021_covid_df['County'] != 'California'
CA2021_covid_df2 = CA2021_covid_df[cond]
CA2021_covid_df2.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 58 entries, 0 to 58 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 date 58 non-null datetime64[ns] 1 County 58 non-null object 2 population 58 non-null float64 3 cases 58 non-null float64 4 deaths 58 non-null float64 5 total_tests 58 non-null float64 6 positive_tests 58 non-null float64 7 reported_cases 58 non-null float64 8 reported_deaths 58 non-null float64 9 reported_tests 58 non-null float64 dtypes: datetime64[ns](1), float64(8), object(1) memory usage: 5.0+ KB
# Vaccine Dataset: Remove the County, 'Statewide' as this is an aggegation and not an actual county
cond = ca2021_vacc_df2['county'] != 'Statewide'
ca2021_vacc_df3 = ca2021_vacc_df2[cond]
ca2021_vacc_df3.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 58 entries, 0 to 58 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 date 58 non-null datetime64[ns] 1 county 58 non-null object 2 partially_vaccinated 58 non-null float64 3 fully_vaccinated 58 non-null float64 4 booster_recip_count 58 non-null int64 dtypes: datetime64[ns](1), float64(2), int64(1), object(1) memory usage: 2.7+ KB
# Rename columns in Vaccine Dataset:
ca2021_vacc_df3 = ca2021_vacc_df3.rename(columns={'county': 'County', 'booster_recip_count': 'boosted'})
# Merge CA2021_covid_df2 and ca2021_vacc_df3:
merged_df = pd.merge(CA2021_covid_df2, ca2021_vacc_df3, how='inner')
merged_df
date | County | population | cases | deaths | total_tests | positive_tests | reported_cases | reported_deaths | reported_tests | partially_vaccinated | fully_vaccinated | boosted | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2021-12-31 | Alameda | 1685886.0 | 88478.0 | 887.0 | 3625096.0 | 110982.0 | 79968.0 | 949.0 | 3421039.0 | 3777616.0 | 3903944.0 | 1794082 |
1 | 2021-12-31 | Alpine | 1117.0 | 42.0 | 0.0 | 1256.0 | 32.0 | 45.0 | 0.0 | 1114.0 | 1953.0 | 1746.0 | 665 |
2 | 2021-12-31 | Amador | 38531.0 | 3326.0 | 46.0 | 119657.0 | 3850.0 | 3400.0 | 46.0 | 109341.0 | 64856.0 | 60826.0 | 23347 |
3 | 2021-12-31 | Butte | 217769.0 | 15031.0 | 231.0 | 240176.0 | 17085.0 | 14880.0 | 236.0 | 232849.0 | 326051.0 | 333391.0 | 128099 |
4 | 2021-12-31 | Calaveras | 44289.0 | 3540.0 | 64.0 | 55562.0 | 4143.0 | 3482.0 | 72.0 | 54116.0 | 74861.0 | 69925.0 | 26732 |
5 | 2021-12-31 | Colusa | 22593.0 | 1313.0 | 12.0 | 18847.0 | 1291.0 | 1345.0 | 14.0 | 18367.0 | 36881.0 | 36354.0 | 8935 |
6 | 2021-12-31 | Contra Costa | 1160099.0 | 74071.0 | 634.0 | 2040461.0 | 87392.0 | 68181.0 | 722.0 | 1941843.0 | 2659318.0 | 2718869.0 | 1218085 |
7 | 2021-12-31 | Del Norte | 27558.0 | 3094.0 | 40.0 | 120105.0 | 3545.0 | 3083.0 | 41.0 | 112826.0 | 36867.0 | 37096.0 | 13630 |
8 | 2021-12-31 | El Dorado | 193098.0 | 11837.0 | 130.0 | 225776.0 | 13670.0 | 11789.0 | 145.0 | 221964.0 | 332572.0 | 336526.0 | 145605 |
9 | 2021-12-31 | Fresno | 1032227.0 | 81519.0 | 1454.0 | 1407947.0 | 103136.0 | 82443.0 | 1662.0 | 1361232.0 | 1752383.0 | 1709869.0 | 561323 |
10 | 2021-12-31 | Glenn | 29348.0 | 2024.0 | 22.0 | 24602.0 | 2218.0 | 2143.0 | 30.0 | 22735.0 | 42278.0 | 43653.0 | 13967 |
11 | 2021-12-31 | Humboldt | 134098.0 | 9069.0 | 99.0 | 185188.0 | 10926.0 | 8598.0 | 98.0 | 174099.0 | 248241.0 | 256882.0 | 107666 |
12 | 2021-12-31 | Imperial | 191649.0 | 15042.0 | 314.0 | 292679.0 | 20494.0 | 14957.0 | 382.0 | 269580.0 | 523794.0 | 453346.0 | 120293 |
13 | 2021-12-31 | Inyo | 18453.0 | 2162.0 | 23.0 | 20563.0 | 2001.0 | 2120.0 | 29.0 | 18796.0 | 31900.0 | 32815.0 | 15545 |
14 | 2021-12-31 | Kern | 927251.0 | 69264.0 | 1318.0 | 1287274.0 | 81319.0 | 70552.0 | 1308.0 | 1262587.0 | 1371125.0 | 1344753.0 | 385137 |
15 | 2021-12-31 | Kings | 156444.0 | 18067.0 | 257.0 | 383526.0 | 21848.0 | 17960.0 | 278.0 | 355495.0 | 195768.0 | 191330.0 | 54654 |
16 | 2021-12-31 | Lake | 64871.0 | 5121.0 | 85.0 | 80290.0 | 6172.0 | 5172.0 | 93.0 | 77156.0 | 100938.0 | 100824.0 | 36015 |
17 | 2021-12-31 | Lassen | 30065.0 | 2563.0 | 43.0 | 148684.0 | 3378.0 | 2712.0 | 54.0 | 137275.0 | 22235.0 | 24596.0 | 7849 |
18 | 2021-12-31 | Los Angeles | 10257557.0 | 896443.0 | 14813.0 | 34154701.0 | 1158760.0 | 820545.0 | 16856.0 | 35212183.0 | 21122804.0 | 20920505.0 | 8057173 |
19 | 2021-12-31 | Madera | 160089.0 | 13950.0 | 178.0 | 299144.0 | 16484.0 | 14250.0 | 254.0 | 283661.0 | 246508.0 | 238451.0 | 75904 |
20 | 2021-12-31 | Marin | 260800.0 | 11834.0 | 97.0 | 521158.0 | 13806.0 | 10654.0 | 101.0 | 482077.0 | 645880.0 | 656920.0 | 355216 |
21 | 2021-12-31 | Mariposa | 17795.0 | 1314.0 | 19.0 | 26423.0 | 1564.0 | 1273.0 | 3.0 | 24653.0 | 28478.0 | 21710.0 | 5766 |
22 | 2021-12-31 | Mendocino | 88439.0 | 6140.0 | 75.0 | 114111.0 | 7202.0 | 6022.0 | 77.0 | 104353.0 | 174319.0 | 170898.0 | 72501 |
23 | 2021-12-31 | Merced | 287420.0 | 25371.0 | 422.0 | 408417.0 | 31783.0 | 25651.0 | 465.0 | 387631.0 | 460622.0 | 403335.0 | 96301 |
24 | 2021-12-31 | Modoc | 9475.0 | 341.0 | 6.0 | 4226.0 | 187.0 | 360.0 | 6.0 | 3737.0 | 10180.0 | 11201.0 | 4346 |
25 | 2021-12-31 | Mono | 13961.0 | 1324.0 | 1.0 | 21364.0 | 1602.0 | 1217.0 | 1.0 | 20695.0 | 25687.0 | 25534.0 | 10491 |
26 | 2021-12-31 | Monterey | 448732.0 | 22995.0 | 377.0 | 591842.0 | 26639.0 | 21786.0 | 452.0 | 519254.0 | 880348.0 | 870430.0 | 302930 |
27 | 2021-12-31 | Napa | 139652.0 | 9298.0 | 78.0 | 268230.0 | 10223.0 | 8540.0 | 79.0 | 243740.0 | 314734.0 | 310243.0 | 143712 |
28 | 2021-12-31 | Nevada | 98710.0 | 7834.0 | 55.0 | 133055.0 | 9032.0 | 7636.0 | 95.0 | 126607.0 | 183325.0 | 178874.0 | 77952 |
29 | 2021-12-31 | Orange | 3228519.0 | 191419.0 | 3281.0 | 4218004.0 | 243395.0 | 174086.0 | 3997.0 | 4061425.0 | 6645164.0 | 6617632.0 | 2772794 |
30 | 2021-12-31 | Placer | 400434.0 | 27283.0 | 327.0 | 528098.0 | 30702.0 | 26870.0 | 356.0 | 513462.0 | 764677.0 | 772712.0 | 338400 |
31 | 2021-12-31 | Plumas | 18997.0 | 1568.0 | 8.0 | 28957.0 | 1591.0 | 1582.0 | 11.0 | 26557.0 | 28951.0 | 30855.0 | 13117 |
32 | 2021-12-31 | Riverside | 2468145.0 | 216175.0 | 3150.0 | 3340252.0 | 278870.0 | 208450.0 | 3511.0 | 3177348.0 | 4238465.0 | 4105594.0 | 1362541 |
33 | 2021-12-31 | Sacramento | 1567975.0 | 112565.0 | 1458.0 | 2538054.0 | 134541.0 | 106606.0 | 1600.0 | 2429617.0 | 2990218.0 | 2966984.0 | 1165767 |
34 | 2021-12-31 | San Benito | 64022.0 | 4738.0 | 55.0 | 94024.0 | 6062.0 | 4547.0 | 51.0 | 87026.0 | 124737.0 | 124546.0 | 42121 |
35 | 2021-12-31 | San Bernardino | 2217398.0 | 194632.0 | 3693.0 | 3408407.0 | 239831.0 | 182627.0 | 4461.0 | 3273382.0 | 3525915.0 | 3476473.0 | 1065249 |
36 | 2021-12-31 | San Diego | 3370418.0 | 291421.0 | 2674.0 | 6735412.0 | 384075.0 | 267016.0 | 2877.0 | 6583538.0 | 6988308.0 | 7016623.0 | 2672215 |
37 | 2021-12-31 | San Francisco | 892280.0 | 47010.0 | 430.0 | 2153149.0 | 58717.0 | 40353.0 | 495.0 | 1984056.0 | 2089662.0 | 2144298.0 | 1177199 |
38 | 2021-12-31 | San Joaquin | 782545.0 | 61585.0 | 1135.0 | 1233392.0 | 73338.0 | 60000.0 | 1245.0 | 1193147.0 | 1456593.0 | 1320639.0 | 371591 |
39 | 2021-12-31 | San Luis Obispo | 278862.0 | 21610.0 | 261.0 | 537932.0 | 25116.0 | 21182.0 | 271.0 | 507570.0 | 510206.0 | 517929.0 | 239369 |
40 | 2021-12-31 | San Mateo | 778001.0 | 41680.0 | 338.0 | 2232098.0 | 53689.0 | 35463.0 | 387.0 | 2017530.0 | 1815337.0 | 1839145.0 | 929376 |
41 | 2021-12-31 | Santa Barbara | 456373.0 | 32944.0 | 392.0 | 724964.0 | 40798.0 | 31796.0 | 404.0 | 683898.0 | 879394.0 | 872777.0 | 339398 |
42 | 2021-12-31 | Santa Clara | 1967585.0 | 100671.0 | 1084.0 | 5121735.0 | 121951.0 | 92643.0 | 1289.0 | 4879392.0 | 4645203.0 | 4755576.0 | 2340830 |
43 | 2021-12-31 | Santa Cruz | 273999.0 | 14067.0 | 123.0 | 640017.0 | 16662.0 | 13834.0 | 144.0 | 608319.0 | 603595.0 | 602284.0 | 270602 |
44 | 2021-12-31 | Shasta | 177925.0 | 14865.0 | 341.0 | 273979.0 | 15806.0 | 15059.0 | 363.0 | 260557.0 | 233655.0 | 235476.0 | 87089 |
45 | 2021-12-31 | Sierra | 3115.0 | 180.0 | 3.0 | 3179.0 | 195.0 | 180.0 | 0.0 | 3029.0 | 4325.0 | 4488.0 | 1802 |
46 | 2021-12-31 | Siskiyou | 43956.0 | 2494.0 | 52.0 | 30583.0 | 2762.0 | 2530.0 | 58.0 | 28919.0 | 62186.0 | 60676.0 | 24271 |
47 | 2021-12-31 | Solano | 444255.0 | 31056.0 | 254.0 | 798527.0 | 34925.0 | 29564.0 | 282.0 | 736040.0 | 888702.0 | 856535.0 | 329696 |
48 | 2021-12-31 | Sonoma | 496668.0 | 28517.0 | 220.0 | 856175.0 | 32473.0 | 26527.0 | 221.0 | 808371.0 | 1097284.0 | 1111186.0 | 515953 |
49 | 2021-12-31 | Stanislaus | 562303.0 | 48674.0 | 807.0 | 765079.0 | 59177.0 | 49389.0 | 779.0 | 734288.0 | 963030.0 | 885788.0 | 230770 |
50 | 2021-12-31 | Sutter | 105747.0 | 8184.0 | 125.0 | 118877.0 | 9729.0 | 8188.0 | 141.0 | 115339.0 | 163389.0 | 164552.0 | 51596 |
51 | 2021-12-31 | Tehama | 65885.0 | 5796.0 | 125.0 | 64217.0 | 6378.0 | 5865.0 | 130.0 | 61227.0 | 82520.0 | 82476.0 | 27806 |
52 | 2021-12-31 | Trinity | 13354.0 | 498.0 | 15.0 | 6364.0 | 672.0 | 589.0 | 15.0 | 6879.0 | 16861.0 | 17210.0 | 7378 |
53 | 2021-12-31 | Tulare | 484423.0 | 37326.0 | 790.0 | 647145.0 | 42952.0 | 37947.0 | 706.0 | 641000.0 | 736805.0 | 699230.0 | 207671 |
54 | 2021-12-31 | Tuolumne | 52351.0 | 5321.0 | 123.0 | 109808.0 | 6254.0 | 5135.0 | 78.0 | 103187.0 | 87200.0 | 82434.0 | 33788 |
55 | 2021-12-31 | Ventura | 852747.0 | 70945.0 | 847.0 | 1671607.0 | 88960.0 | 65966.0 | 958.0 | 1626635.0 | 1729287.0 | 1744257.0 | 686694 |
56 | 2021-12-31 | Yolo | 223612.0 | 13861.0 | 135.0 | 1005823.0 | 15058.0 | 13286.0 | 150.0 | 985222.0 | 447676.0 | 445754.0 | 192169 |
57 | 2021-12-31 | Yuba | 79290.0 | 6984.0 | 83.0 | 90173.0 | 8325.0 | 6999.0 | 80.0 | 88194.0 | 105863.0 | 108672.0 | 30518 |
# Drop the date column:
ca2021_covidvacc_df = merged_df.drop(['date'], axis=1)
ca2021_covidvacc_df
County | population | cases | deaths | total_tests | positive_tests | reported_cases | reported_deaths | reported_tests | partially_vaccinated | fully_vaccinated | boosted | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Alameda | 1685886.0 | 88478.0 | 887.0 | 3625096.0 | 110982.0 | 79968.0 | 949.0 | 3421039.0 | 3777616.0 | 3903944.0 | 1794082 |
1 | Alpine | 1117.0 | 42.0 | 0.0 | 1256.0 | 32.0 | 45.0 | 0.0 | 1114.0 | 1953.0 | 1746.0 | 665 |
2 | Amador | 38531.0 | 3326.0 | 46.0 | 119657.0 | 3850.0 | 3400.0 | 46.0 | 109341.0 | 64856.0 | 60826.0 | 23347 |
3 | Butte | 217769.0 | 15031.0 | 231.0 | 240176.0 | 17085.0 | 14880.0 | 236.0 | 232849.0 | 326051.0 | 333391.0 | 128099 |
4 | Calaveras | 44289.0 | 3540.0 | 64.0 | 55562.0 | 4143.0 | 3482.0 | 72.0 | 54116.0 | 74861.0 | 69925.0 | 26732 |
5 | Colusa | 22593.0 | 1313.0 | 12.0 | 18847.0 | 1291.0 | 1345.0 | 14.0 | 18367.0 | 36881.0 | 36354.0 | 8935 |
6 | Contra Costa | 1160099.0 | 74071.0 | 634.0 | 2040461.0 | 87392.0 | 68181.0 | 722.0 | 1941843.0 | 2659318.0 | 2718869.0 | 1218085 |
7 | Del Norte | 27558.0 | 3094.0 | 40.0 | 120105.0 | 3545.0 | 3083.0 | 41.0 | 112826.0 | 36867.0 | 37096.0 | 13630 |
8 | El Dorado | 193098.0 | 11837.0 | 130.0 | 225776.0 | 13670.0 | 11789.0 | 145.0 | 221964.0 | 332572.0 | 336526.0 | 145605 |
9 | Fresno | 1032227.0 | 81519.0 | 1454.0 | 1407947.0 | 103136.0 | 82443.0 | 1662.0 | 1361232.0 | 1752383.0 | 1709869.0 | 561323 |
10 | Glenn | 29348.0 | 2024.0 | 22.0 | 24602.0 | 2218.0 | 2143.0 | 30.0 | 22735.0 | 42278.0 | 43653.0 | 13967 |
11 | Humboldt | 134098.0 | 9069.0 | 99.0 | 185188.0 | 10926.0 | 8598.0 | 98.0 | 174099.0 | 248241.0 | 256882.0 | 107666 |
12 | Imperial | 191649.0 | 15042.0 | 314.0 | 292679.0 | 20494.0 | 14957.0 | 382.0 | 269580.0 | 523794.0 | 453346.0 | 120293 |
13 | Inyo | 18453.0 | 2162.0 | 23.0 | 20563.0 | 2001.0 | 2120.0 | 29.0 | 18796.0 | 31900.0 | 32815.0 | 15545 |
14 | Kern | 927251.0 | 69264.0 | 1318.0 | 1287274.0 | 81319.0 | 70552.0 | 1308.0 | 1262587.0 | 1371125.0 | 1344753.0 | 385137 |
15 | Kings | 156444.0 | 18067.0 | 257.0 | 383526.0 | 21848.0 | 17960.0 | 278.0 | 355495.0 | 195768.0 | 191330.0 | 54654 |
16 | Lake | 64871.0 | 5121.0 | 85.0 | 80290.0 | 6172.0 | 5172.0 | 93.0 | 77156.0 | 100938.0 | 100824.0 | 36015 |
17 | Lassen | 30065.0 | 2563.0 | 43.0 | 148684.0 | 3378.0 | 2712.0 | 54.0 | 137275.0 | 22235.0 | 24596.0 | 7849 |
18 | Los Angeles | 10257557.0 | 896443.0 | 14813.0 | 34154701.0 | 1158760.0 | 820545.0 | 16856.0 | 35212183.0 | 21122804.0 | 20920505.0 | 8057173 |
19 | Madera | 160089.0 | 13950.0 | 178.0 | 299144.0 | 16484.0 | 14250.0 | 254.0 | 283661.0 | 246508.0 | 238451.0 | 75904 |
20 | Marin | 260800.0 | 11834.0 | 97.0 | 521158.0 | 13806.0 | 10654.0 | 101.0 | 482077.0 | 645880.0 | 656920.0 | 355216 |
21 | Mariposa | 17795.0 | 1314.0 | 19.0 | 26423.0 | 1564.0 | 1273.0 | 3.0 | 24653.0 | 28478.0 | 21710.0 | 5766 |
22 | Mendocino | 88439.0 | 6140.0 | 75.0 | 114111.0 | 7202.0 | 6022.0 | 77.0 | 104353.0 | 174319.0 | 170898.0 | 72501 |
23 | Merced | 287420.0 | 25371.0 | 422.0 | 408417.0 | 31783.0 | 25651.0 | 465.0 | 387631.0 | 460622.0 | 403335.0 | 96301 |
24 | Modoc | 9475.0 | 341.0 | 6.0 | 4226.0 | 187.0 | 360.0 | 6.0 | 3737.0 | 10180.0 | 11201.0 | 4346 |
25 | Mono | 13961.0 | 1324.0 | 1.0 | 21364.0 | 1602.0 | 1217.0 | 1.0 | 20695.0 | 25687.0 | 25534.0 | 10491 |
26 | Monterey | 448732.0 | 22995.0 | 377.0 | 591842.0 | 26639.0 | 21786.0 | 452.0 | 519254.0 | 880348.0 | 870430.0 | 302930 |
27 | Napa | 139652.0 | 9298.0 | 78.0 | 268230.0 | 10223.0 | 8540.0 | 79.0 | 243740.0 | 314734.0 | 310243.0 | 143712 |
28 | Nevada | 98710.0 | 7834.0 | 55.0 | 133055.0 | 9032.0 | 7636.0 | 95.0 | 126607.0 | 183325.0 | 178874.0 | 77952 |
29 | Orange | 3228519.0 | 191419.0 | 3281.0 | 4218004.0 | 243395.0 | 174086.0 | 3997.0 | 4061425.0 | 6645164.0 | 6617632.0 | 2772794 |
30 | Placer | 400434.0 | 27283.0 | 327.0 | 528098.0 | 30702.0 | 26870.0 | 356.0 | 513462.0 | 764677.0 | 772712.0 | 338400 |
31 | Plumas | 18997.0 | 1568.0 | 8.0 | 28957.0 | 1591.0 | 1582.0 | 11.0 | 26557.0 | 28951.0 | 30855.0 | 13117 |
32 | Riverside | 2468145.0 | 216175.0 | 3150.0 | 3340252.0 | 278870.0 | 208450.0 | 3511.0 | 3177348.0 | 4238465.0 | 4105594.0 | 1362541 |
33 | Sacramento | 1567975.0 | 112565.0 | 1458.0 | 2538054.0 | 134541.0 | 106606.0 | 1600.0 | 2429617.0 | 2990218.0 | 2966984.0 | 1165767 |
34 | San Benito | 64022.0 | 4738.0 | 55.0 | 94024.0 | 6062.0 | 4547.0 | 51.0 | 87026.0 | 124737.0 | 124546.0 | 42121 |
35 | San Bernardino | 2217398.0 | 194632.0 | 3693.0 | 3408407.0 | 239831.0 | 182627.0 | 4461.0 | 3273382.0 | 3525915.0 | 3476473.0 | 1065249 |
36 | San Diego | 3370418.0 | 291421.0 | 2674.0 | 6735412.0 | 384075.0 | 267016.0 | 2877.0 | 6583538.0 | 6988308.0 | 7016623.0 | 2672215 |
37 | San Francisco | 892280.0 | 47010.0 | 430.0 | 2153149.0 | 58717.0 | 40353.0 | 495.0 | 1984056.0 | 2089662.0 | 2144298.0 | 1177199 |
38 | San Joaquin | 782545.0 | 61585.0 | 1135.0 | 1233392.0 | 73338.0 | 60000.0 | 1245.0 | 1193147.0 | 1456593.0 | 1320639.0 | 371591 |
39 | San Luis Obispo | 278862.0 | 21610.0 | 261.0 | 537932.0 | 25116.0 | 21182.0 | 271.0 | 507570.0 | 510206.0 | 517929.0 | 239369 |
40 | San Mateo | 778001.0 | 41680.0 | 338.0 | 2232098.0 | 53689.0 | 35463.0 | 387.0 | 2017530.0 | 1815337.0 | 1839145.0 | 929376 |
41 | Santa Barbara | 456373.0 | 32944.0 | 392.0 | 724964.0 | 40798.0 | 31796.0 | 404.0 | 683898.0 | 879394.0 | 872777.0 | 339398 |
42 | Santa Clara | 1967585.0 | 100671.0 | 1084.0 | 5121735.0 | 121951.0 | 92643.0 | 1289.0 | 4879392.0 | 4645203.0 | 4755576.0 | 2340830 |
43 | Santa Cruz | 273999.0 | 14067.0 | 123.0 | 640017.0 | 16662.0 | 13834.0 | 144.0 | 608319.0 | 603595.0 | 602284.0 | 270602 |
44 | Shasta | 177925.0 | 14865.0 | 341.0 | 273979.0 | 15806.0 | 15059.0 | 363.0 | 260557.0 | 233655.0 | 235476.0 | 87089 |
45 | Sierra | 3115.0 | 180.0 | 3.0 | 3179.0 | 195.0 | 180.0 | 0.0 | 3029.0 | 4325.0 | 4488.0 | 1802 |
46 | Siskiyou | 43956.0 | 2494.0 | 52.0 | 30583.0 | 2762.0 | 2530.0 | 58.0 | 28919.0 | 62186.0 | 60676.0 | 24271 |
47 | Solano | 444255.0 | 31056.0 | 254.0 | 798527.0 | 34925.0 | 29564.0 | 282.0 | 736040.0 | 888702.0 | 856535.0 | 329696 |
48 | Sonoma | 496668.0 | 28517.0 | 220.0 | 856175.0 | 32473.0 | 26527.0 | 221.0 | 808371.0 | 1097284.0 | 1111186.0 | 515953 |
49 | Stanislaus | 562303.0 | 48674.0 | 807.0 | 765079.0 | 59177.0 | 49389.0 | 779.0 | 734288.0 | 963030.0 | 885788.0 | 230770 |
50 | Sutter | 105747.0 | 8184.0 | 125.0 | 118877.0 | 9729.0 | 8188.0 | 141.0 | 115339.0 | 163389.0 | 164552.0 | 51596 |
51 | Tehama | 65885.0 | 5796.0 | 125.0 | 64217.0 | 6378.0 | 5865.0 | 130.0 | 61227.0 | 82520.0 | 82476.0 | 27806 |
52 | Trinity | 13354.0 | 498.0 | 15.0 | 6364.0 | 672.0 | 589.0 | 15.0 | 6879.0 | 16861.0 | 17210.0 | 7378 |
53 | Tulare | 484423.0 | 37326.0 | 790.0 | 647145.0 | 42952.0 | 37947.0 | 706.0 | 641000.0 | 736805.0 | 699230.0 | 207671 |
54 | Tuolumne | 52351.0 | 5321.0 | 123.0 | 109808.0 | 6254.0 | 5135.0 | 78.0 | 103187.0 | 87200.0 | 82434.0 | 33788 |
55 | Ventura | 852747.0 | 70945.0 | 847.0 | 1671607.0 | 88960.0 | 65966.0 | 958.0 | 1626635.0 | 1729287.0 | 1744257.0 | 686694 |
56 | Yolo | 223612.0 | 13861.0 | 135.0 | 1005823.0 | 15058.0 | 13286.0 | 150.0 | 985222.0 | 447676.0 | 445754.0 | 192169 |
57 | Yuba | 79290.0 | 6984.0 | 83.0 | 90173.0 | 8325.0 | 6999.0 | 80.0 | 88194.0 | 105863.0 | 108672.0 | 30518 |
For the analysis, it will be more beneficial to obtain the rate of cases, deaths, tests, and vaccinations per county. The rate will be calculated as the value divided by the county's population * 100.
# Calculate rates for cases, death, and tests
ca2021_covidvacc_df['COVID Cases_Rate'] = (ca2021_covidvacc_df['cases']/ca2021_covidvacc_df['population'])*100
ca2021_covidvacc_df['COVID Deaths_Rate'] = (ca2021_covidvacc_df['deaths']/ca2021_covidvacc_df['population'])*100
ca2021_covidvacc_df['Total COVID Tests_Rate'] = (ca2021_covidvacc_df['total_tests']/ca2021_covidvacc_df['population'])*100
ca2021_covidvacc_df['Positive COVID Tests_Rate'] = (ca2021_covidvacc_df['positive_tests']/ca2021_covidvacc_df['population'])*100
# Calculate rates for vaccinations
ca2021_covidvacc_df['Partially Vaccinated_Rate'] = (ca2021_covidvacc_df['partially_vaccinated']/ca2021_covidvacc_df['population'])*100
ca2021_covidvacc_df['Fully Vaccinated_Rate'] = (ca2021_covidvacc_df['fully_vaccinated']/ca2021_covidvacc_df['population'])*100
ca2021_covidvacc_df['Boosted_Rate'] = (ca2021_covidvacc_df['boosted']/ca2021_covidvacc_df['population'])*100
# View DF with new features
ca2021_covidvacc_df
County | population | cases | deaths | total_tests | positive_tests | reported_cases | reported_deaths | reported_tests | partially_vaccinated | fully_vaccinated | boosted | COVID Cases_Rate | COVID Deaths_Rate | Total COVID Tests_Rate | Positive COVID Tests_Rate | Partially Vaccinated_Rate | Fully Vaccinated_Rate | Boosted_Rate | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Alameda | 1685886.0 | 88478.0 | 887.0 | 3625096.0 | 110982.0 | 79968.0 | 949.0 | 3421039.0 | 3777616.0 | 3903944.0 | 1794082 | 5.248160 | 0.052613 | 215.026164 | 6.583007 | 224.073039 | 231.566310 | 106.417753 |
1 | Alpine | 1117.0 | 42.0 | 0.0 | 1256.0 | 32.0 | 45.0 | 0.0 | 1114.0 | 1953.0 | 1746.0 | 665 | 3.760072 | 0.000000 | 112.444047 | 2.864816 | 174.843330 | 156.311549 | 59.534467 |
2 | Amador | 38531.0 | 3326.0 | 46.0 | 119657.0 | 3850.0 | 3400.0 | 46.0 | 109341.0 | 64856.0 | 60826.0 | 23347 | 8.632011 | 0.119384 | 310.547351 | 9.991955 | 168.321611 | 157.862500 | 60.592769 |
3 | Butte | 217769.0 | 15031.0 | 231.0 | 240176.0 | 17085.0 | 14880.0 | 236.0 | 232849.0 | 326051.0 | 333391.0 | 128099 | 6.902268 | 0.106076 | 110.289343 | 7.845469 | 149.723331 | 153.093875 | 58.823340 |
4 | Calaveras | 44289.0 | 3540.0 | 64.0 | 55562.0 | 4143.0 | 3482.0 | 72.0 | 54116.0 | 74861.0 | 69925.0 | 26732 | 7.992955 | 0.144505 | 125.453273 | 9.354467 | 169.028427 | 157.883447 | 60.358102 |
5 | Colusa | 22593.0 | 1313.0 | 12.0 | 18847.0 | 1291.0 | 1345.0 | 14.0 | 18367.0 | 36881.0 | 36354.0 | 8935 | 5.811535 | 0.053114 | 83.419643 | 5.714159 | 163.240827 | 160.908246 | 39.547648 |
6 | Contra Costa | 1160099.0 | 74071.0 | 634.0 | 2040461.0 | 87392.0 | 68181.0 | 722.0 | 1941843.0 | 2659318.0 | 2718869.0 | 1218085 | 6.384886 | 0.054651 | 175.886799 | 7.533150 | 229.231988 | 234.365257 | 104.998367 |
7 | Del Norte | 27558.0 | 3094.0 | 40.0 | 120105.0 | 3545.0 | 3083.0 | 41.0 | 112826.0 | 36867.0 | 37096.0 | 13630 | 11.227230 | 0.145148 | 435.826257 | 12.863778 | 133.779665 | 134.610639 | 49.459322 |
8 | El Dorado | 193098.0 | 11837.0 | 130.0 | 225776.0 | 13670.0 | 11789.0 | 145.0 | 221964.0 | 332572.0 | 336526.0 | 145605 | 6.130048 | 0.067323 | 116.923013 | 7.079307 | 172.229645 | 174.277310 | 75.404717 |
9 | Fresno | 1032227.0 | 81519.0 | 1454.0 | 1407947.0 | 103136.0 | 82443.0 | 1662.0 | 1361232.0 | 1752383.0 | 1709869.0 | 561323 | 7.897391 | 0.140860 | 136.398970 | 9.991601 | 169.767212 | 165.648544 | 54.379802 |
10 | Glenn | 29348.0 | 2024.0 | 22.0 | 24602.0 | 2218.0 | 2143.0 | 30.0 | 22735.0 | 42278.0 | 43653.0 | 13967 | 6.896552 | 0.074963 | 83.828540 | 7.557585 | 144.057517 | 148.742674 | 47.590977 |
11 | Humboldt | 134098.0 | 9069.0 | 99.0 | 185188.0 | 10926.0 | 8598.0 | 98.0 | 174099.0 | 248241.0 | 256882.0 | 107666 | 6.762964 | 0.073827 | 138.099002 | 8.147773 | 185.119092 | 191.562887 | 80.289042 |
12 | Imperial | 191649.0 | 15042.0 | 314.0 | 292679.0 | 20494.0 | 14957.0 | 382.0 | 269580.0 | 523794.0 | 453346.0 | 120293 | 7.848723 | 0.163841 | 152.716163 | 10.693507 | 273.309018 | 236.550152 | 62.767351 |
13 | Inyo | 18453.0 | 2162.0 | 23.0 | 20563.0 | 2001.0 | 2120.0 | 29.0 | 18796.0 | 31900.0 | 32815.0 | 15545 | 11.716252 | 0.124641 | 111.434455 | 10.843765 | 172.871620 | 177.830163 | 84.241045 |
14 | Kern | 927251.0 | 69264.0 | 1318.0 | 1287274.0 | 81319.0 | 70552.0 | 1308.0 | 1262587.0 | 1371125.0 | 1344753.0 | 385137 | 7.469822 | 0.142141 | 138.826920 | 8.769902 | 147.869886 | 145.025781 | 41.535356 |
15 | Kings | 156444.0 | 18067.0 | 257.0 | 383526.0 | 21848.0 | 17960.0 | 278.0 | 355495.0 | 195768.0 | 191330.0 | 54654 | 11.548541 | 0.164276 | 245.152259 | 13.965381 | 125.136151 | 122.299353 | 34.935184 |
16 | Lake | 64871.0 | 5121.0 | 85.0 | 80290.0 | 6172.0 | 5172.0 | 93.0 | 77156.0 | 100938.0 | 100824.0 | 36015 | 7.894128 | 0.131029 | 123.768710 | 9.514267 | 155.598033 | 155.422300 | 55.517874 |
17 | Lassen | 30065.0 | 2563.0 | 43.0 | 148684.0 | 3378.0 | 2712.0 | 54.0 | 137275.0 | 22235.0 | 24596.0 | 7849 | 8.524863 | 0.143023 | 494.541826 | 11.235656 | 73.956428 | 81.809413 | 26.106769 |
18 | Los Angeles | 10257557.0 | 896443.0 | 14813.0 | 34154701.0 | 1158760.0 | 820545.0 | 16856.0 | 35212183.0 | 21122804.0 | 20920505.0 | 8057173 | 8.739342 | 0.144411 | 332.971106 | 11.296647 | 205.924315 | 203.952120 | 78.548654 |
19 | Madera | 160089.0 | 13950.0 | 178.0 | 299144.0 | 16484.0 | 14250.0 | 254.0 | 283661.0 | 246508.0 | 238451.0 | 75904 | 8.713903 | 0.111188 | 186.861059 | 10.296772 | 153.981848 | 148.949022 | 47.413626 |
20 | Marin | 260800.0 | 11834.0 | 97.0 | 521158.0 | 13806.0 | 10654.0 | 101.0 | 482077.0 | 645880.0 | 656920.0 | 355216 | 4.537577 | 0.037193 | 199.830521 | 5.293712 | 247.653374 | 251.886503 | 136.202454 |
21 | Mariposa | 17795.0 | 1314.0 | 19.0 | 26423.0 | 1564.0 | 1273.0 | 3.0 | 24653.0 | 28478.0 | 21710.0 | 5766 | 7.384097 | 0.106772 | 148.485530 | 8.788986 | 160.033717 | 122.000562 | 32.402360 |
22 | Mendocino | 88439.0 | 6140.0 | 75.0 | 114111.0 | 7202.0 | 6022.0 | 77.0 | 104353.0 | 174319.0 | 170898.0 | 72501 | 6.942638 | 0.084804 | 129.027918 | 8.143466 | 197.106480 | 193.238277 | 81.978539 |
23 | Merced | 287420.0 | 25371.0 | 422.0 | 408417.0 | 31783.0 | 25651.0 | 465.0 | 387631.0 | 460622.0 | 403335.0 | 96301 | 8.827152 | 0.146823 | 142.097627 | 11.058034 | 160.260942 | 140.329483 | 33.505323 |
24 | Modoc | 9475.0 | 341.0 | 6.0 | 4226.0 | 187.0 | 360.0 | 6.0 | 3737.0 | 10180.0 | 11201.0 | 4346 | 3.598945 | 0.063325 | 44.601583 | 1.973615 | 107.440633 | 118.216359 | 45.868074 |
25 | Mono | 13961.0 | 1324.0 | 1.0 | 21364.0 | 1602.0 | 1217.0 | 1.0 | 20695.0 | 25687.0 | 25534.0 | 10491 | 9.483561 | 0.007163 | 153.026288 | 11.474823 | 183.991118 | 182.895208 | 75.145047 |
26 | Monterey | 448732.0 | 22995.0 | 377.0 | 591842.0 | 26639.0 | 21786.0 | 452.0 | 519254.0 | 880348.0 | 870430.0 | 302930 | 5.124440 | 0.084015 | 131.892087 | 5.936506 | 196.185697 | 193.975469 | 67.508000 |
27 | Napa | 139652.0 | 9298.0 | 78.0 | 268230.0 | 10223.0 | 8540.0 | 79.0 | 243740.0 | 314734.0 | 310243.0 | 143712 | 6.657978 | 0.055853 | 192.070289 | 7.320339 | 225.370206 | 222.154355 | 102.907227 |
28 | Nevada | 98710.0 | 7834.0 | 55.0 | 133055.0 | 9032.0 | 7636.0 | 95.0 | 126607.0 | 183325.0 | 178874.0 | 77952 | 7.936379 | 0.055719 | 134.793841 | 9.150035 | 185.720798 | 181.211630 | 78.970722 |
29 | Orange | 3228519.0 | 191419.0 | 3281.0 | 4218004.0 | 243395.0 | 174086.0 | 3997.0 | 4061425.0 | 6645164.0 | 6617632.0 | 2772794 | 5.929003 | 0.101626 | 130.648263 | 7.538906 | 205.827006 | 204.974231 | 85.884395 |
30 | Placer | 400434.0 | 27283.0 | 327.0 | 528098.0 | 30702.0 | 26870.0 | 356.0 | 513462.0 | 764677.0 | 772712.0 | 338400 | 6.813358 | 0.081661 | 131.881409 | 7.667181 | 190.962056 | 192.968629 | 84.508308 |
31 | Plumas | 18997.0 | 1568.0 | 8.0 | 28957.0 | 1591.0 | 1582.0 | 11.0 | 26557.0 | 28951.0 | 30855.0 | 13117 | 8.253935 | 0.042112 | 152.429331 | 8.375007 | 152.397747 | 162.420382 | 69.047744 |
32 | Riverside | 2468145.0 | 216175.0 | 3150.0 | 3340252.0 | 278870.0 | 208450.0 | 3511.0 | 3177348.0 | 4238465.0 | 4105594.0 | 1362541 | 8.758602 | 0.127626 | 135.334512 | 11.298769 | 171.726742 | 166.343306 | 55.205063 |
33 | Sacramento | 1567975.0 | 112565.0 | 1458.0 | 2538054.0 | 134541.0 | 106606.0 | 1600.0 | 2429617.0 | 2990218.0 | 2966984.0 | 1165767 | 7.179005 | 0.092986 | 161.868270 | 8.580558 | 190.705719 | 189.223935 | 74.348571 |
34 | San Benito | 64022.0 | 4738.0 | 55.0 | 94024.0 | 6062.0 | 4547.0 | 51.0 | 87026.0 | 124737.0 | 124546.0 | 42121 | 7.400581 | 0.085908 | 146.862016 | 9.468620 | 194.834588 | 194.536253 | 65.791447 |
35 | San Bernardino | 2217398.0 | 194632.0 | 3693.0 | 3408407.0 | 239831.0 | 182627.0 | 4461.0 | 3273382.0 | 3525915.0 | 3476473.0 | 1065249 | 8.777495 | 0.166547 | 153.712008 | 10.815875 | 159.011373 | 156.781642 | 48.040496 |
36 | San Diego | 3370418.0 | 291421.0 | 2674.0 | 6735412.0 | 384075.0 | 267016.0 | 2877.0 | 6583538.0 | 6988308.0 | 7016623.0 | 2672215 | 8.646435 | 0.079337 | 199.839070 | 11.395471 | 207.342472 | 208.182576 | 79.284380 |
37 | San Francisco | 892280.0 | 47010.0 | 430.0 | 2153149.0 | 58717.0 | 40353.0 | 495.0 | 1984056.0 | 2089662.0 | 2144298.0 | 1177199 | 5.268526 | 0.048191 | 241.308670 | 6.580558 | 234.193527 | 240.316717 | 131.931569 |
38 | San Joaquin | 782545.0 | 61585.0 | 1135.0 | 1233392.0 | 73338.0 | 60000.0 | 1245.0 | 1193147.0 | 1456593.0 | 1320639.0 | 371591 | 7.869835 | 0.145040 | 157.612917 | 9.371729 | 186.135366 | 168.762052 | 47.484937 |
39 | San Luis Obispo | 278862.0 | 21610.0 | 261.0 | 537932.0 | 25116.0 | 21182.0 | 271.0 | 507570.0 | 510206.0 | 517929.0 | 239369 | 7.749353 | 0.093595 | 192.902583 | 9.006605 | 182.960030 | 185.729501 | 85.837798 |
40 | San Mateo | 778001.0 | 41680.0 | 338.0 | 2232098.0 | 53689.0 | 35463.0 | 387.0 | 2017530.0 | 1815337.0 | 1839145.0 | 929376 | 5.357320 | 0.043445 | 286.901688 | 6.900891 | 233.333505 | 236.393655 | 119.456916 |
41 | Santa Barbara | 456373.0 | 32944.0 | 392.0 | 724964.0 | 40798.0 | 31796.0 | 404.0 | 683898.0 | 879394.0 | 872777.0 | 339398 | 7.218657 | 0.085895 | 158.853394 | 8.939617 | 192.691943 | 191.242032 | 74.368554 |
42 | Santa Clara | 1967585.0 | 100671.0 | 1084.0 | 5121735.0 | 121951.0 | 92643.0 | 1289.0 | 4879392.0 | 4645203.0 | 4755576.0 | 2340830 | 5.116475 | 0.055093 | 260.305654 | 6.198004 | 236.086522 | 241.696089 | 118.969701 |
43 | Santa Cruz | 273999.0 | 14067.0 | 123.0 | 640017.0 | 16662.0 | 13834.0 | 144.0 | 608319.0 | 603595.0 | 602284.0 | 270602 | 5.133960 | 0.044891 | 233.583699 | 6.081044 | 220.290950 | 219.812481 | 98.760214 |
44 | Shasta | 177925.0 | 14865.0 | 341.0 | 273979.0 | 15806.0 | 15059.0 | 363.0 | 260557.0 | 233655.0 | 235476.0 | 87089 | 8.354644 | 0.191654 | 153.985668 | 8.883518 | 131.322186 | 132.345651 | 48.947028 |
45 | Sierra | 3115.0 | 180.0 | 3.0 | 3179.0 | 195.0 | 180.0 | 0.0 | 3029.0 | 4325.0 | 4488.0 | 1802 | 5.778491 | 0.096308 | 102.054575 | 6.260032 | 138.844302 | 144.077047 | 57.849117 |
46 | Siskiyou | 43956.0 | 2494.0 | 52.0 | 30583.0 | 2762.0 | 2530.0 | 58.0 | 28919.0 | 62186.0 | 60676.0 | 24271 | 5.673856 | 0.118300 | 69.576395 | 6.283556 | 141.473291 | 138.038038 | 55.216580 |
47 | Solano | 444255.0 | 31056.0 | 254.0 | 798527.0 | 34925.0 | 29564.0 | 282.0 | 736040.0 | 888702.0 | 856535.0 | 329696 | 6.990580 | 0.057174 | 179.745191 | 7.861476 | 200.043218 | 192.802557 | 74.213233 |
48 | Sonoma | 496668.0 | 28517.0 | 220.0 | 856175.0 | 32473.0 | 26527.0 | 221.0 | 808371.0 | 1097284.0 | 1111186.0 | 515953 | 5.741662 | 0.044295 | 172.383765 | 6.538170 | 220.929071 | 223.728124 | 103.882875 |
49 | Stanislaus | 562303.0 | 48674.0 | 807.0 | 765079.0 | 59177.0 | 49389.0 | 779.0 | 734288.0 | 963030.0 | 885788.0 | 230770 | 8.656187 | 0.143517 | 136.061696 | 10.524041 | 171.265314 | 157.528592 | 41.040151 |
50 | Sutter | 105747.0 | 8184.0 | 125.0 | 118877.0 | 9729.0 | 8188.0 | 141.0 | 115339.0 | 163389.0 | 164552.0 | 51596 | 7.739227 | 0.118207 | 112.416428 | 9.200261 | 154.509348 | 155.609143 | 48.791928 |
51 | Tehama | 65885.0 | 5796.0 | 125.0 | 64217.0 | 6378.0 | 5865.0 | 130.0 | 61227.0 | 82520.0 | 82476.0 | 27806 | 8.797147 | 0.189725 | 97.468316 | 9.680504 | 125.248539 | 125.181756 | 42.203840 |
52 | Trinity | 13354.0 | 498.0 | 15.0 | 6364.0 | 672.0 | 589.0 | 15.0 | 6879.0 | 16861.0 | 17210.0 | 7378 | 3.729220 | 0.112326 | 47.656133 | 5.032200 | 126.261794 | 128.875243 | 55.249363 |
53 | Tulare | 484423.0 | 37326.0 | 790.0 | 647145.0 | 42952.0 | 37947.0 | 706.0 | 641000.0 | 736805.0 | 699230.0 | 207671 | 7.705249 | 0.163081 | 133.590891 | 8.866631 | 152.099508 | 144.342857 | 42.869765 |
54 | Tuolumne | 52351.0 | 5321.0 | 123.0 | 109808.0 | 6254.0 | 5135.0 | 78.0 | 103187.0 | 87200.0 | 82434.0 | 33788 | 10.164085 | 0.234953 | 209.753395 | 11.946286 | 166.567974 | 157.464041 | 64.541270 |
55 | Ventura | 852747.0 | 70945.0 | 847.0 | 1671607.0 | 88960.0 | 65966.0 | 958.0 | 1626635.0 | 1729287.0 | 1744257.0 | 686694 | 8.319584 | 0.099326 | 196.026137 | 10.432168 | 202.790159 | 204.545662 | 80.527284 |
56 | Yolo | 223612.0 | 13861.0 | 135.0 | 1005823.0 | 15058.0 | 13286.0 | 150.0 | 985222.0 | 447676.0 | 445754.0 | 192169 | 6.198683 | 0.060372 | 449.807255 | 6.733986 | 200.202136 | 199.342611 | 85.938590 |
57 | Yuba | 79290.0 | 6984.0 | 83.0 | 90173.0 | 8325.0 | 6999.0 | 80.0 | 88194.0 | 105863.0 | 108672.0 | 30518 | 8.808173 | 0.104679 | 113.725564 | 10.499432 | 133.513684 | 137.056375 | 38.489091 |
# Check the head for HIV DF:
ca2020_hiv_df2.head()
GEO ID | County | County Cases | County PrEP Rate | County PrEP Users | New Diagnoses Rate | New Diagnoses Cases | New Diagnoses Black Rate | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Cases | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 6001 | Alameda County | 6030 | 131 | 1857 | 11.1 | 157 | 34.4 | 50 | 6.0 | 27 | 18.2 | 54 | 3.9 | 18 | 0.0 | 0 | 10.0 | 5 | 26.2 | 3 |
1 | 6003 | Alpine County | -1 | -1 | -1 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
2 | 6005 | Amador County | 184 | 40 | 14 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
3 | 6007 | Butte County | 249 | 29 | 55 | 5.5 | 10 | 0.0 | 0 | 6.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 |
4 | 6009 | Calaveras County | 50 | 27 | 11 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
# Check the head for COVID DF:
ca2021_covidvacc_df.head()
County | population | cases | deaths | total_tests | positive_tests | reported_cases | reported_deaths | reported_tests | partially_vaccinated | fully_vaccinated | boosted | COVID Cases_Rate | COVID Deaths_Rate | Total COVID Tests_Rate | Positive COVID Tests_Rate | Partially Vaccinated_Rate | Fully Vaccinated_Rate | Boosted_Rate | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Alameda | 1685886.0 | 88478.0 | 887.0 | 3625096.0 | 110982.0 | 79968.0 | 949.0 | 3421039.0 | 3777616.0 | 3903944.0 | 1794082 | 5.248160 | 0.052613 | 215.026164 | 6.583007 | 224.073039 | 231.566310 | 106.417753 |
1 | Alpine | 1117.0 | 42.0 | 0.0 | 1256.0 | 32.0 | 45.0 | 0.0 | 1114.0 | 1953.0 | 1746.0 | 665 | 3.760072 | 0.000000 | 112.444047 | 2.864816 | 174.843330 | 156.311549 | 59.534467 |
2 | Amador | 38531.0 | 3326.0 | 46.0 | 119657.0 | 3850.0 | 3400.0 | 46.0 | 109341.0 | 64856.0 | 60826.0 | 23347 | 8.632011 | 0.119384 | 310.547351 | 9.991955 | 168.321611 | 157.862500 | 60.592769 |
3 | Butte | 217769.0 | 15031.0 | 231.0 | 240176.0 | 17085.0 | 14880.0 | 236.0 | 232849.0 | 326051.0 | 333391.0 | 128099 | 6.902268 | 0.106076 | 110.289343 | 7.845469 | 149.723331 | 153.093875 | 58.823340 |
4 | Calaveras | 44289.0 | 3540.0 | 64.0 | 55562.0 | 4143.0 | 3482.0 | 72.0 | 54116.0 | 74861.0 | 69925.0 | 26732 | 7.992955 | 0.144505 | 125.453273 | 9.354467 | 169.028427 | 157.883447 | 60.358102 |
# Update the 'County' column in HIV DF so that it matches entries in COVID DF:
ca2020_hiv_df2['County'] = ca2020_hiv_df2['County'].str.replace('County', '')
ca2020_hiv_df2.head()
GEO ID | County | County Cases | County PrEP Rate | County PrEP Users | New Diagnoses Rate | New Diagnoses Cases | New Diagnoses Black Rate | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Cases | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 6001 | Alameda | 6030 | 131 | 1857 | 11.1 | 157 | 34.4 | 50 | 6.0 | 27 | 18.2 | 54 | 3.9 | 18 | 0.0 | 0 | 10.0 | 5 | 26.2 | 3 |
1 | 6003 | Alpine | -1 | -1 | -1 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
2 | 6005 | Amador | 184 | 40 | 14 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
3 | 6007 | Butte | 249 | 29 | 55 | 5.5 | 10 | 0.0 | 0 | 6.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 |
4 | 6009 | Calaveras | 50 | 27 | 11 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 |
# Check Data Types and Data Quality for HIV DF:
ca2020_hiv_df2.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 58 entries, 0 to 57 Data columns (total 21 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 GEO ID 58 non-null int64 1 County 58 non-null object 2 County Cases 58 non-null int64 3 County PrEP Rate 58 non-null int64 4 County PrEP Users 58 non-null int64 5 New Diagnoses Rate 58 non-null float64 6 New Diagnoses Cases 58 non-null int64 7 New Diagnoses Black Rate 58 non-null float64 8 New Diagnoses Black Cases 58 non-null int64 9 New Diagnoses White Rate 58 non-null float64 10 New Diagnoses White Cases 58 non-null int64 11 New Diagnoses Hispanic Rate 58 non-null float64 12 New Diagnoses Hispanic Cases 58 non-null int64 13 New Diagnoses Asian Rate 58 non-null float64 14 New Diagnoses Asian Cases 58 non-null int64 15 New Diagnoses American Indian/Alaska Native Rate 58 non-null float64 16 New Diagnoses American Indian/Alaska Native Cases 58 non-null int64 17 New Diagnoses Multiracial Rate 58 non-null float64 18 New Diagnoses Multiracial Cases 58 non-null int64 19 New Diagnoses Native Hawaiian/Pacific Islander Rate 58 non-null float64 20 New Diagnoses Native Hawaiian/Pacific Islander Cases 58 non-null int64 dtypes: float64(8), int64(12), object(1) memory usage: 10.0+ KB
# Check Data Types and Data Quality for COVID DF:
ca2021_covidvacc_df.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 58 entries, 0 to 57 Data columns (total 19 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 County 58 non-null object 1 population 58 non-null float64 2 cases 58 non-null float64 3 deaths 58 non-null float64 4 total_tests 58 non-null float64 5 positive_tests 58 non-null float64 6 reported_cases 58 non-null float64 7 reported_deaths 58 non-null float64 8 reported_tests 58 non-null float64 9 partially_vaccinated 58 non-null float64 10 fully_vaccinated 58 non-null float64 11 boosted 58 non-null int64 12 COVID Cases_Rate 58 non-null float64 13 COVID Deaths_Rate 58 non-null float64 14 Total COVID Tests_Rate 58 non-null float64 15 Positive COVID Tests_Rate 58 non-null float64 16 Partially Vaccinated_Rate 58 non-null float64 17 Fully Vaccinated_Rate 58 non-null float64 18 Boosted_Rate 58 non-null float64 dtypes: float64(17), int64(1), object(1) memory usage: 9.1+ KB
# Merge the HIV and COVID DF (reset index and drop from each):
merged_df = pd.concat([ca2020_hiv_df2.reset_index(drop=True),ca2021_covidvacc_df.reset_index(drop=True)], axis=1)
merged_df ##covid df and hiv df combined
GEO ID | County | County Cases | County PrEP Rate | County PrEP Users | New Diagnoses Rate | New Diagnoses Cases | New Diagnoses Black Rate | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Cases | County | population | cases | deaths | total_tests | positive_tests | reported_cases | reported_deaths | reported_tests | partially_vaccinated | fully_vaccinated | boosted | COVID Cases_Rate | COVID Deaths_Rate | Total COVID Tests_Rate | Positive COVID Tests_Rate | Partially Vaccinated_Rate | Fully Vaccinated_Rate | Boosted_Rate | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 6001 | Alameda | 6030 | 131 | 1857 | 11.1 | 157 | 34.4 | 50 | 6.0 | 27 | 18.2 | 54 | 3.9 | 18 | 0.0 | 0 | 10.0 | 5 | 26.2 | 3 | Alameda | 1685886.0 | 88478.0 | 887.0 | 3625096.0 | 110982.0 | 79968.0 | 949.0 | 3421039.0 | 3777616.0 | 3903944.0 | 1794082 | 5.248160 | 0.052613 | 215.026164 | 6.583007 | 224.073039 | 231.566310 | 106.417753 |
1 | 6003 | Alpine | -1 | -1 | -1 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | Alpine | 1117.0 | 42.0 | 0.0 | 1256.0 | 32.0 | 45.0 | 0.0 | 1114.0 | 1953.0 | 1746.0 | 665 | 3.760072 | 0.000000 | 112.444047 | 2.864816 | 174.843330 | 156.311549 | 59.534467 |
2 | 6005 | Amador | 184 | 40 | 14 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | Amador | 38531.0 | 3326.0 | 46.0 | 119657.0 | 3850.0 | 3400.0 | 46.0 | 109341.0 | 64856.0 | 60826.0 | 23347 | 8.632011 | 0.119384 | 310.547351 | 9.991955 | 168.321611 | 157.862500 | 60.592769 |
3 | 6007 | Butte | 249 | 29 | 55 | 5.5 | 10 | 0.0 | 0 | 6.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | Butte | 217769.0 | 15031.0 | 231.0 | 240176.0 | 17085.0 | 14880.0 | 236.0 | 232849.0 | 326051.0 | 333391.0 | 128099 | 6.902268 | 0.106076 | 110.289343 | 7.845469 | 149.723331 | 153.093875 | 58.823340 |
4 | 6009 | Calaveras | 50 | 27 | 11 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | Calaveras | 44289.0 | 3540.0 | 64.0 | 55562.0 | 4143.0 | 3482.0 | 72.0 | 54116.0 | 74861.0 | 69925.0 | 26732 | 7.992955 | 0.144505 | 125.453273 | 9.354467 | 169.028427 | 157.883447 | 60.358102 |
5 | 6011 | Colusa | 18 | 31 | 5 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | Colusa | 22593.0 | 1313.0 | 12.0 | 18847.0 | 1291.0 | 1345.0 | 14.0 | 18367.0 | 36881.0 | 36354.0 | 8935 | 5.811535 | 0.053114 | 83.419643 | 5.714159 | 163.240827 | 160.908246 | 39.547648 |
6 | 6013 | Contra Costa | 2709 | 67 | 646 | 7.4 | 72 | 25.7 | 22 | 4.2 | 18 | 8.8 | 21 | 4.4 | 8 | 0.0 | 0 | 5.9 | 2 | 21.3 | 1 | Contra Costa | 1160099.0 | 74071.0 | 634.0 | 2040461.0 | 87392.0 | 68181.0 | 722.0 | 1941843.0 | 2659318.0 | 2718869.0 | 1218085 | 6.384886 | 0.054651 | 175.886799 | 7.533150 | 229.231988 | 234.365257 | 104.998367 |
7 | 6015 | Del Norte | 38 | 67 | 16 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | Del Norte | 27558.0 | 3094.0 | 40.0 | 120105.0 | 3545.0 | 3083.0 | 41.0 | 112826.0 | 36867.0 | 37096.0 | 13630 | 11.227230 | 0.145148 | 435.826257 | 12.863778 | 133.779665 | 134.610639 | 49.459322 |
8 | 6017 | El Dorado | 209 | 42 | 69 | 3.6 | 6 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | El Dorado | 193098.0 | 11837.0 | 130.0 | 225776.0 | 13670.0 | 11789.0 | 145.0 | 221964.0 | 332572.0 | 336526.0 | 145605 | 6.130048 | 0.067323 | 116.923013 | 7.079307 | 172.229645 | 174.277310 | 75.404717 |
9 | 6019 | Fresno | 2134 | 44 | 344 | 15.0 | 120 | 32.2 | 12 | 10.6 | 26 | 18.3 | 75 | 5.8 | 5 | 20.1 | 1 | 7.9 | 1 | 0.0 | 0 | Fresno | 1032227.0 | 81519.0 | 1454.0 | 1407947.0 | 103136.0 | 82443.0 | 1662.0 | 1361232.0 | 1752383.0 | 1709869.0 | 561323 | 7.897391 | 0.140860 | 136.398970 | 9.991601 | 169.767212 | 165.648544 | 54.379802 |
10 | 6021 | Glenn | 23 | 31 | 7 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | Glenn | 29348.0 | 2024.0 | 22.0 | 24602.0 | 2218.0 | 2143.0 | 30.0 | 22735.0 | 42278.0 | 43653.0 | 13967 | 6.896552 | 0.074963 | 83.828540 | 7.557585 | 144.057517 | 148.742674 | 47.590977 |
11 | 6023 | Humboldt | 216 | 63 | 74 | 4.3 | 5 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | Humboldt | 134098.0 | 9069.0 | 99.0 | 185188.0 | 10926.0 | 8598.0 | 98.0 | 174099.0 | 248241.0 | 256882.0 | 107666 | 6.762964 | 0.073827 | 138.099002 | 8.147773 | 185.119092 | 191.562887 | 80.289042 |
12 | 6025 | Imperial | 370 | 244 | 349 | 16.8 | 24 | -1.0 | -1 | -1.0 | -1 | 17.5 | 21 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | Imperial | 191649.0 | 15042.0 | 314.0 | 292679.0 | 20494.0 | 14957.0 | 382.0 | 269580.0 | 523794.0 | 453346.0 | 120293 | 7.848723 | 0.163841 | 152.716163 | 10.693507 | 273.309018 | 236.550152 | 62.767351 |
13 | 6027 | Inyo | 24 | 46 | 7 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | Inyo | 18453.0 | 2162.0 | 23.0 | 20563.0 | 2001.0 | 2120.0 | 29.0 | 18796.0 | 31900.0 | 32815.0 | 15545 | 11.716252 | 0.124641 | 111.434455 | 10.843765 | 172.871620 | 177.830163 | 84.241045 |
14 | 6029 | Kern | 1928 | 48 | 339 | 22.3 | 160 | 50.0 | 19 | 16.5 | 41 | 25.3 | 95 | 10.8 | 4 | 0.0 | 0 | 8.5 | 1 | 0.0 | 0 | Kern | 927251.0 | 69264.0 | 1318.0 | 1287274.0 | 81319.0 | 70552.0 | 1308.0 | 1262587.0 | 1371125.0 | 1344753.0 | 385137 | 7.469822 | 0.142141 | 138.826920 | 8.769902 | 147.869886 | 145.025781 | 41.535356 |
15 | 6031 | Kings | 189 | 38 | 46 | 6.5 | 8 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | Kings | 156444.0 | 18067.0 | 257.0 | 383526.0 | 21848.0 | 17960.0 | 278.0 | 355495.0 | 195768.0 | 191330.0 | 54654 | 11.548541 | 0.164276 | 245.152259 | 13.965381 | 125.136151 | 122.299353 | 34.935184 |
16 | 6033 | Lake | 141 | 78 | 42 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | Lake | 64871.0 | 5121.0 | 85.0 | 80290.0 | 6172.0 | 5172.0 | 93.0 | 77156.0 | 100938.0 | 100824.0 | 36015 | 7.894128 | 0.131029 | 123.768710 | 9.514267 | 155.598033 | 155.422300 | 55.517874 |
17 | 6035 | Lassen | 23 | 42 | 11 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | Lassen | 30065.0 | 2563.0 | 43.0 | 148684.0 | 3378.0 | 2712.0 | 54.0 | 137275.0 | 22235.0 | 24596.0 | 7849 | 8.524863 | 0.143023 | 494.541826 | 11.235656 | 73.956428 | 81.809413 | 26.106769 |
18 | 6037 | Los Angeles | 50243 | 182 | 15431 | 16.4 | 1382 | 42.8 | 295 | 11.5 | 265 | 18.4 | 724 | 4.3 | 56 | 24.2 | 4 | 23.0 | 37 | 5.2 | 1 | Los Angeles | 10257557.0 | 896443.0 | 14813.0 | 34154701.0 | 1158760.0 | 820545.0 | 16856.0 | 35212183.0 | 21122804.0 | 20920505.0 | 8057173 | 8.739342 | 0.144411 | 332.971106 | 11.296647 | 205.924315 | 203.952120 | 78.548654 |
19 | 6039 | Madera | 211 | 31 | 38 | 6.3 | 8 | 0.0 | 0 | -1.0 | -1 | 7.1 | 5 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | Madera | 160089.0 | 13950.0 | 178.0 | 299144.0 | 16484.0 | 14250.0 | 254.0 | 283661.0 | 246508.0 | 238451.0 | 75904 | 8.713903 | 0.111188 | 186.861059 | 10.296772 | 153.981848 | 148.949022 | 47.413626 |
20 | 6041 | Marin | 789 | 91 | 205 | 6.3 | 14 | -1.0 | -1 | 3.1 | 5 | 15.3 | 5 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | Marin | 260800.0 | 11834.0 | 97.0 | 521158.0 | 13806.0 | 10654.0 | 101.0 | 482077.0 | 645880.0 | 656920.0 | 355216 | 4.537577 | 0.037193 | 199.830521 | 5.293712 | 247.653374 | 251.886503 | 136.202454 |
21 | 6043 | Mariposa | 19 | 31 | 5 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | Mariposa | 17795.0 | 1314.0 | 19.0 | 26423.0 | 1564.0 | 1273.0 | 3.0 | 24653.0 | 28478.0 | 21710.0 | 5766 | 7.384097 | 0.106772 | 148.485530 | 8.788986 | 160.033717 | 122.000562 | 32.402360 |
22 | 6045 | Mendocino | 173 | 78 | 58 | 6.8 | 5 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | Mendocino | 88439.0 | 6140.0 | 75.0 | 114111.0 | 7202.0 | 6022.0 | 77.0 | 104353.0 | 174319.0 | 170898.0 | 72501 | 6.942638 | 0.084804 | 129.027918 | 8.143466 | 197.106480 | 193.238277 | 81.978539 |
23 | 6047 | Merced | 347 | 30 | 66 | 14.0 | 31 | 0.0 | 0 | 17.6 | 11 | 12.3 | 16 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | Merced | 287420.0 | 25371.0 | 422.0 | 408417.0 | 31783.0 | 25651.0 | 465.0 | 387631.0 | 460622.0 | 403335.0 | 96301 | 8.827152 | 0.146823 | 142.097627 | 11.058034 | 160.260942 | 140.329483 | 33.505323 |
24 | 6049 | Modoc | -1 | 41 | 3 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | Modoc | 9475.0 | 341.0 | 6.0 | 4226.0 | 187.0 | 360.0 | 6.0 | 3737.0 | 10180.0 | 11201.0 | 4346 | 3.598945 | 0.063325 | 44.601583 | 1.973615 | 107.440633 | 118.216359 | 45.868074 |
25 | 6051 | Mono | 8 | 43 | 5 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | Mono | 13961.0 | 1324.0 | 1.0 | 21364.0 | 1602.0 | 1217.0 | 1.0 | 20695.0 | 25687.0 | 25534.0 | 10491 | 9.483561 | 0.007163 | 153.026288 | 11.474823 | 183.991118 | 182.895208 | 75.145047 |
26 | 6053 | Monterey | 745 | 65 | 227 | 3.1 | 11 | 0.0 | 0 | -1.0 | -1 | 4.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | Monterey | 448732.0 | 22995.0 | 377.0 | 591842.0 | 26639.0 | 21786.0 | 452.0 | 519254.0 | 880348.0 | 870430.0 | 302930 | 5.124440 | 0.084015 | 131.892087 | 5.936506 | 196.185697 | 193.975469 | 67.508000 |
27 | 6055 | Napa | 287 | 68 | 81 | 4.3 | 5 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | Napa | 139652.0 | 9298.0 | 78.0 | 268230.0 | 10223.0 | 8540.0 | 79.0 | 243740.0 | 314734.0 | 310243.0 | 143712 | 6.657978 | 0.055853 | 192.070289 | 7.320339 | 225.370206 | 222.154355 | 102.907227 |
28 | 6057 | Nevada | 126 | 30 | 27 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | Nevada | 98710.0 | 7834.0 | 55.0 | 133055.0 | 9032.0 | 7636.0 | 95.0 | 126607.0 | 183325.0 | 178874.0 | 77952 | 7.936379 | 0.055719 | 134.793841 | 9.150035 | 185.720798 | 181.211630 | 78.970722 |
29 | 6059 | Orange | 7092 | 87 | 2332 | 9.8 | 264 | 30.2 | 14 | 6.5 | 72 | 16.9 | 145 | 4.5 | 27 | 0.0 | 0 | 8.0 | 5 | 13.3 | 1 | Orange | 3228519.0 | 191419.0 | 3281.0 | 4218004.0 | 243395.0 | 174086.0 | 3997.0 | 4061425.0 | 6645164.0 | 6617632.0 | 2772794 | 5.929003 | 0.101626 | 130.648263 | 7.538906 | 205.827006 | 204.974231 | 85.884395 |
30 | 6061 | Placer | 371 | 41 | 137 | 5.6 | 19 | -1.0 | -1 | 4.4 | 11 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | Placer | 400434.0 | 27283.0 | 327.0 | 528098.0 | 30702.0 | 26870.0 | 356.0 | 513462.0 | 764677.0 | 772712.0 | 338400 | 6.813358 | 0.081661 | 131.881409 | 7.667181 | 190.962056 | 192.968629 | 84.508308 |
31 | 6063 | Plumas | 21 | 34 | 6 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | Plumas | 18997.0 | 1568.0 | 8.0 | 28957.0 | 1591.0 | 1582.0 | 11.0 | 26557.0 | 28951.0 | 30855.0 | 13117 | 8.253935 | 0.042112 | 152.429331 | 8.375007 | 152.397747 | 162.420382 | 69.047744 |
32 | 6065 | Riverside | 9765 | 87 | 1737 | 11.6 | 239 | 24.1 | 32 | 9.3 | 68 | 12.4 | 123 | 6.9 | 10 | 0.0 | 0 | 14.7 | 6 | 0.0 | 0 | Riverside | 2468145.0 | 216175.0 | 3150.0 | 3340252.0 | 278870.0 | 208450.0 | 3511.0 | 3177348.0 | 4238465.0 | 4105594.0 | 1362541 | 8.758602 | 0.127626 | 135.334512 | 11.298769 | 171.726742 | 166.343306 | 55.205063 |
33 | 6067 | Sacramento | 4519 | 73 | 935 | 11.8 | 153 | 43.5 | 55 | 7.8 | 46 | 11.4 | 33 | 5.0 | 11 | 15.0 | 1 | 11.2 | 6 | 6.5 | 1 | Sacramento | 1567975.0 | 112565.0 | 1458.0 | 2538054.0 | 134541.0 | 106606.0 | 1600.0 | 2429617.0 | 2990218.0 | 2966984.0 | 1165767 | 7.179005 | 0.092986 | 161.868270 | 8.580558 | 190.705719 | 189.223935 | 74.348571 |
34 | 6069 | San Benito | 56 | 81 | 41 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | San Benito | 64022.0 | 4738.0 | 55.0 | 94024.0 | 6062.0 | 4547.0 | 51.0 | 87026.0 | 124737.0 | 124546.0 | 42121 | 7.400581 | 0.085908 | 146.862016 | 9.468620 | 194.834588 | 194.536253 | 65.791447 |
35 | 6071 | San Bernardino | 4845 | 49 | 863 | 14.7 | 263 | 32.8 | 48 | 8.7 | 44 | 16.3 | 154 | 7.7 | 11 | 0.0 | 0 | 15.5 | 5 | 18.2 | 1 | San Bernardino | 2217398.0 | 194632.0 | 3693.0 | 3408407.0 | 239831.0 | 182627.0 | 4461.0 | 3273382.0 | 3525915.0 | 3476473.0 | 1065249 | 8.777495 | 0.166547 | 153.712008 | 10.815875 | 159.011373 | 156.781642 | 48.040496 |
36 | 6073 | San Diego | 13331 | 131 | 3686 | 10.5 | 296 | 32.7 | 44 | 6.2 | 81 | 17.3 | 157 | 2.0 | 7 | 0.0 | 0 | 8.6 | 7 | 0.0 | 0 | San Diego | 3370418.0 | 291421.0 | 2674.0 | 6735412.0 | 384075.0 | 267016.0 | 2877.0 | 6583538.0 | 6988308.0 | 7016623.0 | 2672215 | 8.646435 | 0.079337 | 199.839070 | 11.395471 | 207.342472 | 208.182576 | 79.284380 |
37 | 6075 | San Francisco | 11803 | 897 | 7056 | 19.6 | 153 | 69.1 | 27 | 14.2 | 45 | 54.5 | 61 | 5.6 | 16 | 130.3 | 2 | 4.3 | 1 | 35.1 | 1 | San Francisco | 892280.0 | 47010.0 | 430.0 | 2153149.0 | 58717.0 | 40353.0 | 495.0 | 1984056.0 | 2089662.0 | 2144298.0 | 1177199 | 5.268526 | 0.048191 | 241.308670 | 6.580558 | 234.193527 | 240.316717 | 131.931569 |
38 | 6077 | San Joaquin | 1432 | 28 | 170 | 13.3 | 83 | 44.1 | 20 | 11.1 | 22 | 13.3 | 33 | 7.6 | 8 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | San Joaquin | 782545.0 | 61585.0 | 1135.0 | 1233392.0 | 73338.0 | 60000.0 | 1245.0 | 1193147.0 | 1456593.0 | 1320639.0 | 371591 | 7.869835 | 0.145040 | 157.612917 | 9.371729 | 186.135366 | 168.762052 | 47.484937 |
39 | 6079 | San Luis Obispo | 385 | 58 | 142 | 4.4 | 11 | 0.0 | 0 | 4.6 | 8 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | San Luis Obispo | 278862.0 | 21610.0 | 261.0 | 537932.0 | 25116.0 | 21182.0 | 271.0 | 507570.0 | 510206.0 | 517929.0 | 239369 | 7.749353 | 0.093595 | 192.902583 | 9.006605 | 182.960030 | 185.729501 | 85.837798 |
40 | 6081 | San Mateo | 1674 | 134 | 877 | 6.9 | 45 | 19.7 | 3 | 5.4 | 14 | 12.9 | 19 | 3.9 | 8 | 0.0 | 0 | 5.2 | 1 | 0.0 | 0 | San Mateo | 778001.0 | 41680.0 | 338.0 | 2232098.0 | 53689.0 | 35463.0 | 387.0 | 2017530.0 | 1815337.0 | 1839145.0 | 929376 | 5.357320 | 0.043445 | 286.901688 | 6.900891 | 233.333505 | 236.393655 | 119.456916 |
41 | 6083 | Santa Barbara | 591 | 98 | 365 | 6.2 | 23 | -1.0 | -1 | 2.9 | 5 | 9.5 | 15 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | Santa Barbara | 456373.0 | 32944.0 | 392.0 | 724964.0 | 40798.0 | 31796.0 | 404.0 | 683898.0 | 879394.0 | 872777.0 | 339398 | 7.218657 | 0.085895 | 158.853394 | 8.939617 | 192.691943 | 191.242032 | 74.368554 |
42 | 6085 | Santa Clara | 3443 | 99 | 1606 | 6.5 | 105 | 22.8 | 9 | 3.9 | 20 | 16.1 | 61 | 1.2 | 8 | 0.0 | 0 | 16.7 | 7 | 0.0 | 0 | Santa Clara | 1967585.0 | 100671.0 | 1084.0 | 5121735.0 | 121951.0 | 92643.0 | 1289.0 | 4879392.0 | 4645203.0 | 4755576.0 | 2340830 | 5.116475 | 0.055093 | 260.305654 | 6.198004 | 236.086522 | 241.696089 | 118.969701 |
43 | 6087 | Santa Cruz | 503 | 82 | 194 | 5.5 | 13 | 0.0 | 0 | 5.7 | 8 | 6.9 | 5 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | Santa Cruz | 273999.0 | 14067.0 | 123.0 | 640017.0 | 16662.0 | 13834.0 | 144.0 | 608319.0 | 603595.0 | 602284.0 | 270602 | 5.133960 | 0.044891 | 233.583699 | 6.081044 | 220.290950 | 219.812481 | 98.760214 |
44 | 6089 | Shasta | 205 | 37 | 56 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | Shasta | 177925.0 | 14865.0 | 341.0 | 273979.0 | 15806.0 | 15059.0 | 363.0 | 260557.0 | 233655.0 | 235476.0 | 87089 | 8.354644 | 0.191654 | 153.985668 | 8.883518 | 131.322186 | 132.345651 | 48.947028 |
45 | 6091 | Sierra | -1 | -1 | -1 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | Sierra | 3115.0 | 180.0 | 3.0 | 3179.0 | 195.0 | 180.0 | 0.0 | 3029.0 | 4325.0 | 4488.0 | 1802 | 5.778491 | 0.096308 | 102.054575 | 6.260032 | 138.844302 | 144.077047 | 57.849117 |
46 | 6093 | Siskiyou | 63 | 38 | 14 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | Siskiyou | 43956.0 | 2494.0 | 52.0 | 30583.0 | 2762.0 | 2530.0 | 58.0 | 28919.0 | 62186.0 | 60676.0 | 24271 | 5.673856 | 0.118300 | 69.576395 | 6.283556 | 141.473291 | 138.038038 | 55.216580 |
47 | 6095 | Solano | 1287 | 58 | 216 | 12.2 | 46 | 24.6 | 13 | 6.9 | 10 | 11.4 | 11 | 9.8 | 6 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | Solano | 444255.0 | 31056.0 | 254.0 | 798527.0 | 34925.0 | 29564.0 | 282.0 | 736040.0 | 888702.0 | 856535.0 | 329696 | 6.990580 | 0.057174 | 179.745191 | 7.861476 | 200.043218 | 192.802557 | 74.213233 |
48 | 6097 | Sonoma | 1438 | 79 | 337 | 8.7 | 37 | -1.0 | -1 | 6.9 | 19 | 11.2 | 12 | -1.0 | -1 | 0.0 | 0 | -1.0 | -1 | 0.0 | 0 | Sonoma | 496668.0 | 28517.0 | 220.0 | 856175.0 | 32473.0 | 26527.0 | 221.0 | 808371.0 | 1097284.0 | 1111186.0 | 515953 | 5.741662 | 0.044295 | 172.383765 | 6.538170 | 220.929071 | 223.728124 | 103.882875 |
49 | 6099 | Stanislaus | 824 | 30 | 132 | 6.1 | 27 | -1.0 | -1 | 5.8 | 11 | 6.9 | 14 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | Stanislaus | 562303.0 | 48674.0 | 807.0 | 765079.0 | 59177.0 | 49389.0 | 779.0 | 734288.0 | 963030.0 | 885788.0 | 230770 | 8.656187 | 0.143517 | 136.061696 | 10.524041 | 171.265314 | 157.528592 | 41.040151 |
50 | 6101 | Sutter | 119 | 31 | 24 | 7.6 | 6 | 0.0 | 0 | -1.0 | -1 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | Sutter | 105747.0 | 8184.0 | 125.0 | 118877.0 | 9729.0 | 8188.0 | 141.0 | 115339.0 | 163389.0 | 164552.0 | 51596 | 7.739227 | 0.118207 | 112.416428 | 9.200261 | 154.509348 | 155.609143 | 48.791928 |
51 | 6103 | Tehama | 47 | 37 | 20 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | Tehama | 65885.0 | 5796.0 | 125.0 | 64217.0 | 6378.0 | 5865.0 | 130.0 | 61227.0 | 82520.0 | 82476.0 | 27806 | 8.797147 | 0.189725 | 97.468316 | 9.680504 | 125.248539 | 125.181756 | 42.203840 |
52 | 6105 | Trinity | 16 | 44 | 5 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | Trinity | 13354.0 | 498.0 | 15.0 | 6364.0 | 672.0 | 589.0 | 15.0 | 6879.0 | 16861.0 | 17210.0 | 7378 | 3.729220 | 0.112326 | 47.656133 | 5.032200 | 126.261794 | 128.875243 | 55.249363 |
53 | 6107 | Tulare | 516 | 36 | 132 | 7.9 | 29 | 0.0 | 0 | 8.2 | 9 | 8.2 | 19 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | Tulare | 484423.0 | 37326.0 | 790.0 | 647145.0 | 42952.0 | 37947.0 | 706.0 | 641000.0 | 736805.0 | 699230.0 | 207671 | 7.705249 | 0.163081 | 133.590891 | 8.866631 | 152.099508 | 144.342857 | 42.869765 |
54 | 6109 | Tuolumne | 59 | 30 | 14 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | Tuolumne | 52351.0 | 5321.0 | 123.0 | 109808.0 | 6254.0 | 5135.0 | 78.0 | 103187.0 | 87200.0 | 82434.0 | 33788 | 10.164085 | 0.234953 | 209.753395 | 11.946286 | 166.567974 | 157.464041 | 64.541270 |
55 | 6111 | Ventura | 1139 | 68 | 482 | 7.7 | 55 | 7.5 | 1 | 3.0 | 10 | 14.9 | 43 | 0.0 | 0 | 0.0 | 0 | 6.6 | 1 | 0.0 | 0 | Ventura | 852747.0 | 70945.0 | 847.0 | 1671607.0 | 88960.0 | 65966.0 | 958.0 | 1626635.0 | 1729287.0 | 1744257.0 | 686694 | 8.319584 | 0.099326 | 196.026137 | 10.432168 | 202.790159 | 204.545662 | 80.527284 |
56 | 6113 | Yolo | 310 | 40 | 75 | 5.9 | 11 | -1.0 | -1 | -1.0 | -1 | 12.4 | 7 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | Yolo | 223612.0 | 13861.0 | 135.0 | 1005823.0 | 15058.0 | 13286.0 | 150.0 | 985222.0 | 447676.0 | 445754.0 | 192169 | 6.198683 | 0.060372 | 449.807255 | 6.733986 | 200.202136 | 199.342611 | 85.938590 |
57 | 6115 | Yuba | 101 | 30 | 19 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | Yuba | 79290.0 | 6984.0 | 83.0 | 90173.0 | 8325.0 | 6999.0 | 80.0 | 88194.0 | 105863.0 | 108672.0 | 30518 | 8.808173 | 0.104679 | 113.725564 | 10.499432 | 133.513684 | 137.056375 | 38.489091 |
# Recheck Merged DF:
merged_df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 58 entries, 0 to 57 Data columns (total 40 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 GEO ID 58 non-null int64 1 County 58 non-null object 2 County Cases 58 non-null int64 3 County PrEP Rate 58 non-null int64 4 County PrEP Users 58 non-null int64 5 New Diagnoses Rate 58 non-null float64 6 New Diagnoses Cases 58 non-null int64 7 New Diagnoses Black Rate 58 non-null float64 8 New Diagnoses Black Cases 58 non-null int64 9 New Diagnoses White Rate 58 non-null float64 10 New Diagnoses White Cases 58 non-null int64 11 New Diagnoses Hispanic Rate 58 non-null float64 12 New Diagnoses Hispanic Cases 58 non-null int64 13 New Diagnoses Asian Rate 58 non-null float64 14 New Diagnoses Asian Cases 58 non-null int64 15 New Diagnoses American Indian/Alaska Native Rate 58 non-null float64 16 New Diagnoses American Indian/Alaska Native Cases 58 non-null int64 17 New Diagnoses Multiracial Rate 58 non-null float64 18 New Diagnoses Multiracial Cases 58 non-null int64 19 New Diagnoses Native Hawaiian/Pacific Islander Rate 58 non-null float64 20 New Diagnoses Native Hawaiian/Pacific Islander Cases 58 non-null int64 21 County 58 non-null object 22 population 58 non-null float64 23 cases 58 non-null float64 24 deaths 58 non-null float64 25 total_tests 58 non-null float64 26 positive_tests 58 non-null float64 27 reported_cases 58 non-null float64 28 reported_deaths 58 non-null float64 29 reported_tests 58 non-null float64 30 partially_vaccinated 58 non-null float64 31 fully_vaccinated 58 non-null float64 32 boosted 58 non-null int64 33 COVID Cases_Rate 58 non-null float64 34 COVID Deaths_Rate 58 non-null float64 35 Total COVID Tests_Rate 58 non-null float64 36 Positive COVID Tests_Rate 58 non-null float64 37 Partially Vaccinated_Rate 58 non-null float64 38 Fully Vaccinated_Rate 58 non-null float64 39 Boosted_Rate 58 non-null float64 dtypes: float64(25), int64(13), object(2) memory usage: 18.2+ KB
# Rename columns and extract columns in desired order:
ca_hivcovid_df = merged_df.iloc[:,[0,1,22,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,30,31,32,
33, 34, 35, 36, 37, 38, 39]]
ca_hivcovid_df = ca_hivcovid_df.rename(columns={'County Cases': 'Overall HIV Cases', 'County PrEP Rate': 'PrEP Rate',
'County PrEP Users': 'PrEP Users', 'cases': 'COVID Cases',
'deaths': 'COVID Deaths', 'total_tests': 'Total COVID Tests',
'positive_tests': 'Positive COVID Tests',
'partially_vaccinated': 'Partially Vaccinated',
'fully_vaccinated': 'Fully Vaccinated','boosted': 'Boosted'})
# Recheck head of DF:
ca_hivcovid_df.head()
GEO ID | County | population | Overall HIV Cases | PrEP Rate | PrEP Users | New Diagnoses Rate | New Diagnoses Cases | New Diagnoses Black Rate | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Cases | COVID Cases | COVID Deaths | Total COVID Tests | Positive COVID Tests | Partially Vaccinated | Fully Vaccinated | Boosted | COVID Cases_Rate | COVID Deaths_Rate | Total COVID Tests_Rate | Positive COVID Tests_Rate | Partially Vaccinated_Rate | Fully Vaccinated_Rate | Boosted_Rate | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 6001 | Alameda | 1685886.0 | 6030 | 131 | 1857 | 11.1 | 157 | 34.4 | 50 | 6.0 | 27 | 18.2 | 54 | 3.9 | 18 | 0.0 | 0 | 10.0 | 5 | 26.2 | 3 | 88478.0 | 887.0 | 3625096.0 | 110982.0 | 3777616.0 | 3903944.0 | 1794082 | 5.248160 | 0.052613 | 215.026164 | 6.583007 | 224.073039 | 231.566310 | 106.417753 |
1 | 6003 | Alpine | 1117.0 | -1 | -1 | -1 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 42.0 | 0.0 | 1256.0 | 32.0 | 1953.0 | 1746.0 | 665 | 3.760072 | 0.000000 | 112.444047 | 2.864816 | 174.843330 | 156.311549 | 59.534467 |
2 | 6005 | Amador | 38531.0 | 184 | 40 | 14 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 3326.0 | 46.0 | 119657.0 | 3850.0 | 64856.0 | 60826.0 | 23347 | 8.632011 | 0.119384 | 310.547351 | 9.991955 | 168.321611 | 157.862500 | 60.592769 |
3 | 6007 | Butte | 217769.0 | 249 | 29 | 55 | 5.5 | 10 | 0.0 | 0 | 6.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 15031.0 | 231.0 | 240176.0 | 17085.0 | 326051.0 | 333391.0 | 128099 | 6.902268 | 0.106076 | 110.289343 | 7.845469 | 149.723331 | 153.093875 | 58.823340 |
4 | 6009 | Calaveras | 44289.0 | 50 | 27 | 11 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 3540.0 | 64.0 | 55562.0 | 4143.0 | 74861.0 | 69925.0 | 26732 | 7.992955 | 0.144505 | 125.453273 | 9.354467 | 169.028427 | 157.883447 | 60.358102 |
ca_hivcovid_df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 58 entries, 0 to 57 Data columns (total 36 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 GEO ID 58 non-null int64 1 County 58 non-null object 2 population 58 non-null float64 3 Overall HIV Cases 58 non-null int64 4 PrEP Rate 58 non-null int64 5 PrEP Users 58 non-null int64 6 New Diagnoses Rate 58 non-null float64 7 New Diagnoses Cases 58 non-null int64 8 New Diagnoses Black Rate 58 non-null float64 9 New Diagnoses Black Cases 58 non-null int64 10 New Diagnoses White Rate 58 non-null float64 11 New Diagnoses White Cases 58 non-null int64 12 New Diagnoses Hispanic Rate 58 non-null float64 13 New Diagnoses Hispanic Cases 58 non-null int64 14 New Diagnoses Asian Rate 58 non-null float64 15 New Diagnoses Asian Cases 58 non-null int64 16 New Diagnoses American Indian/Alaska Native Rate 58 non-null float64 17 New Diagnoses American Indian/Alaska Native Cases 58 non-null int64 18 New Diagnoses Multiracial Rate 58 non-null float64 19 New Diagnoses Multiracial Cases 58 non-null int64 20 New Diagnoses Native Hawaiian/Pacific Islander Rate 58 non-null float64 21 New Diagnoses Native Hawaiian/Pacific Islander Cases 58 non-null int64 22 COVID Cases 58 non-null float64 23 COVID Deaths 58 non-null float64 24 Total COVID Tests 58 non-null float64 25 Positive COVID Tests 58 non-null float64 26 Partially Vaccinated 58 non-null float64 27 Fully Vaccinated 58 non-null float64 28 Boosted 58 non-null int64 29 COVID Cases_Rate 58 non-null float64 30 COVID Deaths_Rate 58 non-null float64 31 Total COVID Tests_Rate 58 non-null float64 32 Positive COVID Tests_Rate 58 non-null float64 33 Partially Vaccinated_Rate 58 non-null float64 34 Fully Vaccinated_Rate 58 non-null float64 35 Boosted_Rate 58 non-null float64 dtypes: float64(22), int64(13), object(1) memory usage: 16.4+ KB
Above, the merged dataset has 58 entries representing each county in California and 29 columns. Not counting the GEOID, there are a total of 28 features. There are no missing values and all variables are numeric except for County which is a string/object representing the name of the counties.
# Copy DF without GEO ID and Population:
ca_hivcovid_df2 = ca_hivcovid_df.drop(['GEO ID', 'population'], axis = 1)
# Summary Statistics:
ca_hivcovid_df2.describe()
Overall HIV Cases | PrEP Rate | PrEP Users | New Diagnoses Rate | New Diagnoses Cases | New Diagnoses Black Rate | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Cases | COVID Cases | COVID Deaths | Total COVID Tests | Positive COVID Tests | Partially Vaccinated | Fully Vaccinated | Boosted | COVID Cases_Rate | COVID Deaths_Rate | Total COVID Tests_Rate | Positive COVID Tests_Rate | Partially Vaccinated_Rate | Fully Vaccinated_Rate | Boosted_Rate | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 5.800000e+01 | 5.800000e+01 | 5.800000e+01 | 5.800000e+01 | 5.800000e+01 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 |
mean | 2300.603448 | 74.017241 | 719.120690 | 5.520690 | 66.965517 | 8.451724 | 10.655172 | 2.587931 | 14.775862 | 6.048276 | 32.568966 | 0.610345 | 2.672414 | 2.579310 | -0.551724 | 1.760345 | 0.706897 | 1.444828 | -0.568966 | 52353.034483 | 760.500000 | 1.496490e+06 | 6.558221e+04 | 1.372719e+06 | 1.364270e+06 | 5.412361e+05 | 7.322823 | 0.100458 | 172.836819 | 8.590406 | 177.230966 | 174.912079 | 68.303968 |
std | 7010.663457 | 117.514985 | 2255.385812 | 6.058074 | 191.102247 | 17.252859 | 40.583702 | 5.260047 | 38.803166 | 10.284791 | 100.788142 | 3.297244 | 9.209812 | 17.710575 | 1.157317 | 5.592066 | 5.412813 | 7.135879 | 1.109956 | 127223.298231 | 2054.377955 | 4.581755e+06 | 1.644255e+05 | 3.071887e+06 | 3.051943e+06 | 1.198178e+06 | 1.793165 | 0.048063 | 88.974333 | 2.316866 | 37.576817 | 37.439916 | 25.493021 |
min | -1.000000 | -1.000000 | -1.000000 | -1.000000 | -1.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | 42.000000 | 0.000000 | 1.256000e+03 | 3.200000e+01 | 1.953000e+03 | 1.746000e+03 | 6.650000e+02 | 3.598945 | 0.000000 | 44.601583 | 1.973615 | 73.956428 | 81.809413 | 26.106769 |
25% | 56.750000 | 31.750000 | 14.500000 | 0.000000 | 0.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | -2.000000 | 3839.500000 | 55.000000 | 9.113575e+04 | 4.622750e+03 | 7.677575e+04 | 7.305225e+04 | 2.700050e+04 | 5.979265 | 0.057974 | 126.346934 | 6.945495 | 152.793772 | 148.794261 | 48.228354 |
50% | 268.000000 | 44.000000 | 71.500000 | 5.550000 | 9.000000 | -1.000000 | -1.000000 | -1.000000 | -1.000000 | -1.000000 | -1.000000 | -1.000000 | -1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 14008.500000 | 156.500000 | 2.959115e+05 | 1.614500e+04 | 3.293115e+05 | 3.349585e+05 | 1.241960e+05 | 7.435202 | 0.097817 | 150.457430 | 8.827808 | 172.550632 | 167.552679 | 63.654310 |
75% | 1395.750000 | 78.000000 | 342.750000 | 8.500000 | 45.750000 | 16.650000 | 2.500000 | 6.075000 | 13.250000 | 12.400000 | 20.500000 | 0.900000 | 3.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 45677.500000 | 583.000000 | 1.176500e+06 | 5.746000e+04 | 1.302665e+06 | 1.268276e+06 | 3.817505e+05 | 8.605224 | 0.141821 | 195.245248 | 10.398319 | 200.162406 | 198.141022 | 81.615725 |
max | 50243.000000 | 897.000000 | 15431.000000 | 22.300000 | 1382.000000 | 69.100000 | 295.000000 | 17.600000 | 265.000000 | 54.500000 | 724.000000 | 10.800000 | 56.000000 | 130.300000 | 4.000000 | 23.000000 | 37.000000 | 35.100000 | 3.000000 | 896443.000000 | 14813.000000 | 3.415470e+07 | 1.158760e+06 | 2.112280e+07 | 2.092050e+07 | 8.057173e+06 | 11.716252 | 0.234953 | 494.541826 | 13.965381 | 273.309018 | 251.886503 | 136.202454 |
# What is the total number of confirmed COVID cases in 2021?
ca_hivcovid_df2['COVID Cases'].max()
896443.0
# What is the total number of confirmed HIV cases in 2021?
ca_hivcovid_df2['New Diagnoses Cases'].max()
1382
ca_hivcovid_df2.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 58 entries, 0 to 57 Data columns (total 34 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 County 58 non-null object 1 Overall HIV Cases 58 non-null int64 2 PrEP Rate 58 non-null int64 3 PrEP Users 58 non-null int64 4 New Diagnoses Rate 58 non-null float64 5 New Diagnoses Cases 58 non-null int64 6 New Diagnoses Black Rate 58 non-null float64 7 New Diagnoses Black Cases 58 non-null int64 8 New Diagnoses White Rate 58 non-null float64 9 New Diagnoses White Cases 58 non-null int64 10 New Diagnoses Hispanic Rate 58 non-null float64 11 New Diagnoses Hispanic Cases 58 non-null int64 12 New Diagnoses Asian Rate 58 non-null float64 13 New Diagnoses Asian Cases 58 non-null int64 14 New Diagnoses American Indian/Alaska Native Rate 58 non-null float64 15 New Diagnoses American Indian/Alaska Native Cases 58 non-null int64 16 New Diagnoses Multiracial Rate 58 non-null float64 17 New Diagnoses Multiracial Cases 58 non-null int64 18 New Diagnoses Native Hawaiian/Pacific Islander Rate 58 non-null float64 19 New Diagnoses Native Hawaiian/Pacific Islander Cases 58 non-null int64 20 COVID Cases 58 non-null float64 21 COVID Deaths 58 non-null float64 22 Total COVID Tests 58 non-null float64 23 Positive COVID Tests 58 non-null float64 24 Partially Vaccinated 58 non-null float64 25 Fully Vaccinated 58 non-null float64 26 Boosted 58 non-null int64 27 COVID Cases_Rate 58 non-null float64 28 COVID Deaths_Rate 58 non-null float64 29 Total COVID Tests_Rate 58 non-null float64 30 Positive COVID Tests_Rate 58 non-null float64 31 Partially Vaccinated_Rate 58 non-null float64 32 Fully Vaccinated_Rate 58 non-null float64 33 Boosted_Rate 58 non-null float64 dtypes: float64(21), int64(12), object(1) memory usage: 15.5+ KB
# Check Correlation of Features through Correlation Matrix:
# Extract features with rates only to compare relationship between HIV and COVID
corr_features = ca_hivcovid_df2.iloc[:,[2,4,6,8,10,12,14,16,18,27,28,29,30,31,32,33]]
plt.figure(figsize=(20, 16)) #set figure size
heatmap = sns.heatmap(corr_features.corr(), cmap='GnBu', annot=True) #use .corr() function for correlation
heatmap.set_title('Correlation Heatmap of Features by Rate', size=16) #set title
plt.show() #show plot
Above, evaluating the left upper corner, we can see the relationship between the HIV features and the COVID features. There appears to be very little correlation between rate of COVID infections, deaths, tests, and vaccinations to rate of PrEP Users. For new HIV diagnosis, there also appears to be low correlation between rate of COVID infections, deaths, tests, and vaccinations. In terms of ethnic demographics, there appears to be a slightly higher correlation especially for new diagnosis hispanic rate which is positively correlated to partially vaccinated and fully vaccinated rate at 0.52. Surprisingly, rate of PrEP Users is not highly correlated to rate of new diagnosis for HIV, except for two populations, New Diagnoses American Indian/Alaska Native Rate which has the highest correlated at 0.93 and New Diagnoses Native Hawaiian/Pacific Islander Rate which has a positive correlation at 0.74. In contrast, positive COVID tests rate is highly correlated to COVID case rates at 0.94, which is not surprising since a positive tests yields a positive case. In addition, all vaccination features are highly correlated to each other.
# Relationship of New Cases Diagnosis Rate & COVID Cases Rate with Joinplot:
sns.jointplot(ca_hivcovid_df2, y='New Diagnoses Rate', x='COVID Cases_Rate', color='mediumseagreen') # set color
plt.show() # show plot
# Relationship of PrEP Users Rate & Fully Vaccinated Rate with Joinplot:
sns.jointplot(ca_hivcovid_df2, y='PrEP Rate', x='COVID Cases_Rate', color='blue') # set color
plt.show() # show plot
Above, the jointplot for COVID Cases Rate with New Cases Diagnosis shows that the two features are not correlated. The two features do not exhibit a linear correlation and instead points are scattered with little shape and potential outliers. When comparing COVID Cases Rates with PrEP User Rates, the two features are also not linearly correlated. Moreover, new HIV infections or new PrEP users are not directly affecting new COVID cases.
# Check Relationship of New Diagnoses Rate & Fully Vaccinated with Joinplot:
sns.jointplot(ca_hivcovid_df2, y='New Diagnoses Rate', x='Fully Vaccinated_Rate', color='olive') # set color
plt.show() # show plot
# Relationship of New Diagnoses Hispanic Rate & Fully Vaccinated Rate with Joinplot:
sns.jointplot(ca_hivcovid_df2, y='New Diagnoses Hispanic Rate', x='Fully Vaccinated_Rate', color='coral') # set color
plt.show() # show plot
Above, the jointplots for new diagnosis rate with fully vaccinated rate also shows that the two features are not very correlated. The points are highly scattered and do not exhibit a linear relationship although some points are closer in range than others which means there could be potential clusters and outliters. On the other hand, the jointplot for new diagnoses hispanic rate with fully vaccinated rate appears to be grouped in a certain pattern. The relationship is non-linear but perhaps clusters or outliers exist.
Since there is low correlation between the features, having the new HIV diagnoses rate or the COVID cases rate as a target feature for a regression would likely not be appropriate since the data is not linearly correlated. Instead, we will focus on clustering and exploring the relationship of the two with spatial clusters and outliers.
# CDC Social Vulnerability Index for 2020 for California by County:
CA_svi = gpd.read_file('/Users/cl/Documents/GEO448/Project/Shapefiles/SVI2020_CALIFORNIA_county.shp')
# Check the head of data:
CA_svi.head(10)
ST | STATE | ST_ABBR | STCNTY | COUNTY | FIPS | LOCATION | RPL_THEMES | AREA_SQMI | E_TOTPOP | M_TOTPOP | E_HU | M_HU | E_HH | M_HH | E_POV150 | M_POV150 | E_UNEMP | M_UNEMP | E_HBURD | M_HBURD | E_NOHSDP | M_NOHSDP | E_UNINSUR | M_UNINSUR | EP_POV150 | MP_POV150 | EP_UNEMP | MP_UNEMP | EP_HBURD | MP_HBURD | EP_NOHSDP | MP_NOHSDP | EP_UNINSUR | MP_UNINSUR | EPL_POV150 | EPL_UNEMP | EPL_HBURD | EPL_NOHSDP | EPL_UNINSU | SPL_THEME1 | RPL_THEME1 | E_AGE65 | M_AGE65 | E_AGE17 | M_AGE17 | E_DISABL | M_DISABL | E_SNGPNT | M_SNGPNT | E_LIMENG | M_LIMENG | EP_AGE65 | MP_AGE65 | EP_AGE17 | MP_AGE17 | EP_DISABL | MP_DISABL | EP_SNGPNT | MP_SNGPNT | EP_LIMENG | MP_LIMENG | EPL_AGE65 | EPL_AGE17 | EPL_DISABL | EPL_SNGPNT | EPL_LIMENG | SPL_THEME2 | RPL_THEME2 | E_MINRTY | M_MINRTY | EP_MINRTY | MP_MINRTY | EPL_MINRTY | SPL_THEME3 | RPL_THEME3 | E_MUNIT | M_MUNIT | E_MOBILE | M_MOBILE | E_CROWD | M_CROWD | E_NOVEH | M_NOVEH | E_GROUPQ | M_GROUPQ | EP_MUNIT | MP_MUNIT | EP_MOBILE | MP_MOBILE | EP_CROWD | MP_CROWD | EP_NOVEH | MP_NOVEH | EP_GROUPQ | MP_GROUPQ | EPL_MUNIT | EPL_MOBILE | EPL_CROWD | EPL_NOVEH | EPL_GROUPQ | SPL_THEME4 | RPL_THEME4 | SPL_THEMES | E_DAYPOP | E_NOINT | M_NOINT | E_AFAM | M_AFAM | E_HISP | M_HISP | E_ASIAN | M_ASIAN | E_AIAN | M_AIAN | E_NHPI | M_NHPI | E_TWOMORE | M_TWOMORE | E_OTHERRAC | M_OTHERRAC | EP_NOINT | MP_NOINT | EP_AFAM | MP_AFAM | EP_HISP | MP_HISP | EP_ASIAN | MP_ASIAN | EP_AIAN | MP_AIAN | EP_NHPI | MP_NHPI | EP_TWOMORE | MP_TWOMORE | EP_OTHERRA | MP_OTHERRA | F_POV150 | F_UNEMP | F_HBURD | F_NOHSDP | F_UNINSUR | F_THEME1 | F_AGE65 | F_AGE17 | F_DISABL | F_SNGPNT | F_THEME2 | F_MINRTY | F_LIMENG | F_THEME3 | F_MUNIT | F_MOBILE | F_CROWD | F_NOVEH | F_GROUPQ | F_THEME4 | F_TOTAL | SHAPE_STAr | SHAPE_STLe | geometry | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 06 | California | CA | 06001 | Alameda | 06001 | Alameda County, California | 0.3860 | 737.461520 | 1661584 | 0 | 605767 | 422 | 573174 | 1395 | 233543 | 5366 | 43126 | 1796 | 147454 | 2797 | 132307 | 2763 | 70389 | 2810 | 14.3 | 0.3 | 4.7 | 0.2 | 25.7 | 0.5 | 11.2 | 0.2 | 4.3 | 0.2 | 0.1228 | 0.1930 | 0.8947 | 0.3684 | 0.1228 | 1.7017 | 0.2281 | 231186 | 0 | 341591 | 0 | 151635 | 3012 | 29079 | 1353 | 119494 | 3061 | 13.9 | 0.0 | 20.6 | 0.0 | 9.2 | 0.2 | 5.1 | 0.2 | 7.6 | 0.2 | 0.2632 | 0.3509 | 0.1053 | 0.3509 | 0.6140 | 1.6843 | 0.0702 | 1153001 | 6526 | 69.4 | 0.4 | 0.8596 | 0.8596 | 0.8596 | 135019 | 2273 | 7291 | 571 | 45236 | 1588 | 53539 | 1379 | 31878 | 1199 | 22.3 | 0.4 | 1.2 | 0.1 | 7.9 | 0.3 | 9.3 | 0.2 | 1.9 | 0.1 | 0.9298 | 0.0351 | 0.7544 | 0.9825 | 0.4211 | 3.1229 | 0.8772 | 7.3685 | 1715160 | 110366 | 4585 | 167316 | 1387 | 369546 | 0 | 515105 | 2453 | 4942 | 249 | 12924 | 533 | 76404 | 3004 | 6764 | 6764 | 6.8 | 0.0 | 10.1 | 0.1 | 22.2 | 0.0 | 31.0 | 0.1 | 0.3 | 0.1 | 0.8 | 0.1 | 4.6 | 0.2 | 0.4 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 2 | 2 | 0.198466 | 2.756594 | POLYGON ((-122.34225 37.80556, -122.33412 37.8... |
1 | 06 | California | CA | 06003 | Alpine | 06003 | Alpine County, California | 0.3333 | 738.340000 | 1159 | 172 | 1794 | 120 | 397 | 79 | 227 | 92 | 45 | 30 | 46 | 20 | 41 | 24 | 88 | 53 | 19.6 | 7.4 | 10.0 | 6.4 | 11.6 | 4.5 | 4.7 | 2.6 | 7.6 | 4.5 | 0.4211 | 0.9474 | 0.0000 | 0.0000 | 0.6667 | 2.0352 | 0.3684 | 337 | 62 | 252 | 64 | 182 | 65 | 8 | 8 | 17 | 47 | 29.1 | 5.2 | 21.7 | 4.5 | 15.7 | 4.9 | 2.0 | 2.0 | 1.6 | 4.3 | 1.0000 | 0.5088 | 0.7018 | 0.0000 | 0.2105 | 2.4211 | 0.5263 | 564 | 353 | 48.7 | 29.6 | 0.4912 | 0.4912 | 0.4912 | 450 | 100 | 21 | 19 | 15 | 10 | 13 | 8 | 35 | 18 | 25.1 | 5.3 | 1.2 | 1.1 | 3.8 | 2.4 | 3.3 | 2.1 | 3.0 | 1.5 | 0.9649 | 0.0351 | 0.2807 | 0.0526 | 0.7018 | 2.0351 | 0.1930 | 6.9826 | 1299 | 114 | 245 | 10 | 23 | 183 | 111 | 6 | 9 | 333 | 41 | 0 | 13 | 32 | 23 | 0 | 0 | 10.1 | 1.6 | 0.9 | 2.0 | 15.8 | 7.9 | 0.5 | 0.8 | 28.7 | 4.2 | 0.0 | 3.4 | 2.8 | 2.1 | 0.0 | 3.4 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 3 | 0.199004 | 2.156769 | POLYGON ((-120.07239 38.70277, -120.06762 38.7... |
2 | 06 | California | CA | 06005 | Amador | 06005 | Amador County, California | 0.1754 | 594.583866 | 39023 | 0 | 18246 | 170 | 14844 | 451 | 5416 | 776 | 853 | 197 | 4398 | 586 | 2711 | 314 | 1817 | 421 | 15.3 | 2.2 | 5.6 | 1.3 | 29.6 | 3.8 | 8.8 | 1.0 | 5.1 | 1.2 | 0.1754 | 0.3333 | 0.2105 | 0.1579 | 0.2105 | 1.0876 | 0.0877 | 10537 | 98 | 5962 | 67 | 6336 | 679 | 493 | 144 | 418 | 131 | 27.0 | 0.3 | 15.3 | 0.2 | 17.9 | 1.9 | 3.3 | 1.0 | 1.1 | 0.3 | 0.8596 | 0.0175 | 0.8596 | 0.0526 | 0.1053 | 1.8946 | 0.1579 | 9062 | 436 | 23.2 | 1.1 | 0.1754 | 0.1754 | 0.1754 | 908 | 374 | 1349 | 216 | 381 | 138 | 1009 | 383 | 3578 | 380 | 5.0 | 2.0 | 7.4 | 1.2 | 2.6 | 0.9 | 6.8 | 2.6 | 9.2 | 1.0 | 0.3860 | 0.5789 | 0.1579 | 0.7895 | 0.9474 | 2.8597 | 0.6667 | 6.0173 | 37659 | 4304 | 883 | 867 | 125 | 5591 | 0 | 352 | 104 | 205 | 70 | 30 | 35 | 1768 | 244 | 249 | 249 | 12.1 | 0.1 | 2.2 | 0.3 | 14.3 | 0.0 | 0.9 | 0.3 | 0.5 | 0.2 | 0.1 | 0.1 | 4.5 | 0.6 | 0.6 | 0.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0.161967 | 2.874887 | POLYGON ((-121.02741 38.50354, -121.02747 38.5... |
3 | 06 | California | CA | 06007 | Butte | 06007 | Butte County, California | 0.5965 | 1636.488963 | 223344 | 0 | 93968 | 223 | 83879 | 885 | 63024 | 2406 | 7687 | 783 | 29129 | 1348 | 15042 | 962 | 13336 | 1015 | 28.9 | 1.1 | 7.4 | 0.8 | 34.7 | 1.6 | 10.3 | 0.7 | 6.0 | 0.5 | 0.8246 | 0.6667 | 0.5965 | 0.3158 | 0.3684 | 2.7720 | 0.5789 | 40663 | 32 | 44865 | 0 | 37565 | 1531 | 4313 | 487 | 5615 | 637 | 18.2 | 0.1 | 20.1 | 0.0 | 17.0 | 0.7 | 5.1 | 0.6 | 2.7 | 0.3 | 0.6140 | 0.2982 | 0.8070 | 0.3509 | 0.2982 | 2.3683 | 0.4386 | 64420 | 2000 | 28.8 | 0.9 | 0.2456 | 0.2456 | 0.2456 | 7581 | 740 | 11432 | 727 | 2905 | 424 | 5564 | 594 | 6245 | 543 | 8.1 | 0.8 | 12.2 | 0.8 | 3.5 | 0.5 | 6.6 | 0.7 | 2.8 | 0.2 | 0.5789 | 0.8596 | 0.2632 | 0.7368 | 0.6491 | 3.0876 | 0.8596 | 8.4735 | 211098 | 19835 | 1877 | 3778 | 316 | 37585 | 0 | 10350 | 507 | 1725 | 323 | 487 | 138 | 10160 | 792 | 335 | 335 | 9.1 | 0.0 | 1.7 | 0.1 | 16.8 | 0.0 | 4.6 | 0.2 | 0.8 | 0.1 | 0.2 | 0.1 | 4.5 | 0.4 | 0.1 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.455943 | 4.175462 | POLYGON ((-122.06874 39.84222, -122.06694 39.8... |
4 | 06 | California | CA | 06009 | Calaveras | 06009 | Calaveras County, California | 0.0526 | 1020.018688 | 45828 | 0 | 28096 | 63 | 16958 | 557 | 9067 | 1157 | 949 | 241 | 5956 | 645 | 3641 | 530 | 2424 | 628 | 20.0 | 2.5 | 5.2 | 1.3 | 35.1 | 3.6 | 10.3 | 1.5 | 5.3 | 1.4 | 0.4386 | 0.2982 | 0.2456 | 0.3158 | 0.2456 | 1.5438 | 0.1579 | 12840 | 244 | 7618 | 170 | 9146 | 915 | 726 | 242 | 312 | 217 | 28.0 | 0.5 | 16.6 | 0.4 | 20.1 | 2.0 | 4.3 | 1.4 | 0.7 | 0.5 | 0.9298 | 0.0877 | 0.9825 | 0.2105 | 0.0351 | 2.2456 | 0.3509 | 9048 | 453 | 19.7 | 1.0 | 0.0526 | 0.0526 | 0.0526 | 429 | 188 | 2108 | 342 | 315 | 136 | 269 | 99 | 514 | 154 | 1.5 | 0.7 | 7.5 | 1.2 | 1.9 | 0.8 | 1.6 | 0.6 | 1.1 | 0.3 | 0.0175 | 0.6140 | 0.0526 | 0.0000 | 0.1053 | 0.7894 | 0.0000 | 4.6314 | 35355 | 5807 | 1258 | 450 | 159 | 5710 | 0 | 864 | 152 | 271 | 146 | 18 | 21 | 1691 | 284 | 44 | 44 | 12.8 | 0.1 | 1.0 | 0.3 | 12.5 | 0.0 | 1.9 | 0.3 | 0.6 | 0.3 | 0.0 | 0.1 | 3.7 | 0.6 | 0.1 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.276242 | 2.931103 | POLYGON ((-120.99359 38.22558, -120.99161 38.2... |
5 | 06 | California | CA | 06011 | Colusa | 06011 | Colusa County, California | 0.5439 | 1150.712427 | 21491 | 0 | 8153 | 58 | 7329 | 163 | 4958 | 748 | 425 | 149 | 2152 | 285 | 3728 | 276 | 1815 | 360 | 23.3 | 3.5 | 4.2 | 1.5 | 29.4 | 3.8 | 27.2 | 2.0 | 8.5 | 1.7 | 0.5439 | 0.0702 | 0.1228 | 0.9298 | 0.8421 | 2.5088 | 0.4912 | 3142 | 73 | 5863 | 59 | 2861 | 309 | 596 | 157 | 2821 | 379 | 14.6 | 0.3 | 27.3 | 0.3 | 13.4 | 1.4 | 8.1 | 2.1 | 14.2 | 1.9 | 0.3684 | 0.8772 | 0.5789 | 0.8421 | 0.9649 | 3.6315 | 0.9825 | 14009 | 228 | 65.2 | 1.1 | 0.7368 | 0.7368 | 0.7368 | 155 | 73 | 612 | 114 | 434 | 130 | 324 | 110 | 202 | 65 | 1.9 | 0.9 | 7.5 | 1.4 | 5.9 | 1.8 | 4.4 | 1.5 | 0.9 | 0.3 | 0.0526 | 0.6140 | 0.5614 | 0.2456 | 0.0175 | 1.4911 | 0.1053 | 8.3682 | 22483 | 2700 | 495 | 263 | 61 | 12840 | 0 | 160 | 85 | 149 | 71 | 32 | 35 | 512 | 120 | 53 | 53 | 12.7 | 0.0 | 1.2 | 0.3 | 59.7 | 0.0 | 0.7 | 0.4 | 0.7 | 0.3 | 0.1 | 0.2 | 2.4 | 0.6 | 0.2 | 0.3 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.312219 | 3.171298 | POLYGON ((-122.78509 39.38298, -122.73906 39.3... |
6 | 06 | California | CA | 06013 | Contra Costa | 06013 | Contra Costa County, California | 0.2456 | 716.929062 | 1147788 | 0 | 415067 | 303 | 398299 | 1065 | 156345 | 5795 | 32666 | 1747 | 98841 | 2767 | 80257 | 2339 | 57133 | 2864 | 13.7 | 0.5 | 5.5 | 0.3 | 24.8 | 0.7 | 10.1 | 0.3 | 5.0 | 0.3 | 0.0877 | 0.3158 | 0.8421 | 0.2807 | 0.1754 | 1.7017 | 0.2281 | 181578 | 0 | 260191 | 0 | 127957 | 2672 | 23103 | 1256 | 65454 | 2634 | 15.8 | 0.0 | 22.7 | 0.0 | 11.2 | 0.2 | 5.8 | 0.3 | 6.0 | 0.2 | 0.4912 | 0.6491 | 0.2632 | 0.5088 | 0.4912 | 2.4035 | 0.4912 | 658653 | 5096 | 57.4 | 0.4 | 0.6316 | 0.6316 | 0.6316 | 53171 | 1691 | 6533 | 606 | 19927 | 1241 | 21003 | 1402 | 9828 | 752 | 12.8 | 0.4 | 1.6 | 0.1 | 5.0 | 0.3 | 5.3 | 0.4 | 0.9 | 0.1 | 0.7719 | 0.0877 | 0.4561 | 0.4912 | 0.0175 | 1.8244 | 0.1228 | 6.5612 | 998459 | 56576 | 3642 | 94463 | 1509 | 295791 | 0 | 196904 | 2267 | 2198 | 370 | 5269 | 370 | 59875 | 3550 | 4153 | 4153 | 5.0 | 0.0 | 8.2 | 0.1 | 25.8 | 0.0 | 17.2 | 0.2 | 0.2 | 0.1 | 0.5 | 0.1 | 5.2 | 0.3 | 0.4 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.201868 | 2.710243 | POLYGON ((-122.42976 37.96541, -122.41859 37.9... |
7 | 06 | California | CA | 06015 | Del Norte | 06015 | Del Norte County, California | 0.7544 | 1006.227386 | 27692 | 0 | 11349 | 117 | 9805 | 313 | 6747 | 948 | 625 | 182 | 2990 | 410 | 4008 | 359 | 1370 | 405 | 27.4 | 3.8 | 6.4 | 1.8 | 30.5 | 4.1 | 20.3 | 1.8 | 5.5 | 1.6 | 0.7719 | 0.5088 | 0.1930 | 0.8246 | 0.2632 | 2.5615 | 0.5088 | 4924 | 103 | 6003 | 114 | 4622 | 446 | 613 | 207 | 411 | 164 | 17.8 | 0.4 | 21.7 | 0.4 | 18.5 | 1.8 | 6.3 | 2.1 | 1.6 | 0.6 | 0.5789 | 0.5088 | 0.8947 | 0.6140 | 0.2105 | 2.8069 | 0.6842 | 10764 | 1934 | 38.9 | 7.0 | 0.4035 | 0.4035 | 0.4035 | 433 | 178 | 2220 | 262 | 395 | 131 | 847 | 262 | 2790 | 289 | 3.8 | 1.6 | 19.6 | 2.3 | 4.0 | 1.3 | 8.6 | 2.6 | 10.1 | 1.0 | 0.2632 | 0.9474 | 0.3333 | 0.9474 | 0.9825 | 3.4738 | 0.9649 | 9.2457 | 27006 | 3099 | 601 | 723 | 126 | 5552 | 0 | 851 | 174 | 1867 | 228 | 50 | 36 | 1380 | 358 | 341 | 341 | 12.4 | 0.1 | 2.6 | 0.5 | 20.0 | 0.0 | 3.1 | 0.6 | 6.7 | 0.8 | 0.2 | 0.1 | 5.0 | 1.3 | 1.2 | 1.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 3 | 3 | 0.284585 | 2.946211 | MULTIPOLYGON (((-124.25599 41.78301, -124.2548... |
8 | 06 | California | CA | 06017 | El Dorado | 06017 | El Dorado County, California | 0.0175 | 1707.848728 | 190345 | 0 | 91569 | 158 | 73078 | 874 | 25790 | 2223 | 4197 | 443 | 20187 | 1110 | 8300 | 724 | 8174 | 918 | 13.7 | 1.2 | 4.7 | 0.5 | 27.6 | 1.5 | 6.0 | 0.5 | 4.3 | 0.5 | 0.0877 | 0.1930 | 0.4737 | 0.0702 | 0.1228 | 0.9474 | 0.0351 | 40418 | 98 | 37911 | 42 | 24758 | 1123 | 2508 | 389 | 2722 | 419 | 21.2 | 0.1 | 19.9 | 0.0 | 13.1 | 0.6 | 3.4 | 0.5 | 1.5 | 0.2 | 0.7368 | 0.2632 | 0.5439 | 0.0702 | 0.1579 | 1.7720 | 0.1228 | 43426 | 1198 | 22.8 | 0.6 | 0.1404 | 0.1404 | 0.1404 | 4353 | 499 | 4861 | 528 | 1864 | 331 | 3117 | 438 | 1766 | 356 | 4.8 | 0.5 | 5.3 | 0.6 | 2.6 | 0.5 | 4.3 | 0.6 | 0.9 | 0.2 | 0.3684 | 0.4211 | 0.1579 | 0.1754 | 0.0175 | 1.1403 | 0.0702 | 4.0001 | 165238 | 14889 | 1283 | 1439 | 203 | 24773 | 0 | 9023 | 470 | 864 | 294 | 439 | 100 | 6579 | 624 | 309 | 309 | 7.9 | 0.0 | 0.8 | 0.1 | 13.0 | 0.0 | 4.7 | 0.2 | 0.5 | 0.2 | 0.2 | 0.1 | 3.5 | 0.3 | 0.2 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.479630 | 3.753053 | POLYGON ((-121.14159 38.71194, -121.13451 38.7... |
9 | 06 | California | CA | 06019 | Fresno | 06019 | Fresno County, California | 0.9649 | 5958.379845 | 990204 | 0 | 333357 | 328 | 310097 | 1237 | 316814 | 7716 | 39697 | 2052 | 110585 | 2808 | 138814 | 2658 | 76302 | 3248 | 32.6 | 0.8 | 8.9 | 0.4 | 35.7 | 0.9 | 22.7 | 0.4 | 7.8 | 0.3 | 0.9298 | 0.8246 | 0.8596 | 0.8421 | 0.7368 | 4.1929 | 0.9474 | 121129 | 59 | 281391 | 0 | 127456 | 2547 | 27574 | 1225 | 99823 | 3270 | 12.2 | 0.1 | 28.4 | 0.0 | 13.0 | 0.3 | 8.9 | 0.4 | 10.9 | 0.4 | 0.0877 | 0.9298 | 0.5088 | 0.9123 | 0.8596 | 3.2982 | 0.8947 | 706035 | 5152 | 71.3 | 0.5 | 0.9123 | 0.9123 | 0.9123 | 28072 | 1469 | 12429 | 899 | 29905 | 1591 | 24446 | 1188 | 16855 | 867 | 8.4 | 0.4 | 3.7 | 0.3 | 9.6 | 0.5 | 7.9 | 0.4 | 1.7 | 0.1 | 0.5965 | 0.2456 | 0.8947 | 0.9123 | 0.3509 | 3.0000 | 0.7719 | 11.4034 | 1028337 | 134740 | 4571 | 43660 | 1101 | 528293 | 0 | 102986 | 1291 | 4459 | 483 | 1305 | 188 | 23353 | 1829 | 1979 | 1979 | 13.8 | 0.0 | 4.4 | 0.1 | 53.4 | 0.0 | 10.4 | 0.1 | 0.5 | 0.1 | 0.1 | 0.1 | 2.4 | 0.2 | 0.2 | 0.1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 5 | 1.571180 | 8.914543 | POLYGON ((-120.90942 36.74770, -120.90724 36.7... |
For each Census Tract, the CDC has generated a percenitle rank among all 16 individual variables related to social vulnerbility and has grouped these variables into four themes: Socioeconomic Status - RPL_THEME1, Household Characteristics - RPL_THEME2, Racial & Ethnic Minority Status - RPL Theme3, and Housing Type/Transportation - RPL_THEME4. The overall summary ranking of the variables is indicated in RPL_THEMES.
# Check Shape of Data (ensure there are 58 counties)
CA_svi.shape
(58, 161)
# Check the Coordinate Reference System (CRS):
CA_svi.crs
<Geographic 2D CRS: EPSG:4269> Name: NAD83 Axis Info [ellipsoidal]: - Lat[north]: Geodetic latitude (degree) - Lon[east]: Geodetic longitude (degree) Area of Use: - name: North America - onshore and offshore: Canada - Alberta; British Columbia; Manitoba; New Brunswick; Newfoundland and Labrador; Northwest Territories; Nova Scotia; Nunavut; Ontario; Prince Edward Island; Quebec; Saskatchewan; Yukon. Puerto Rico. United States (USA) - Alabama; Alaska; Arizona; Arkansas; California; Colorado; Connecticut; Delaware; Florida; Georgia; Hawaii; Idaho; Illinois; Indiana; Iowa; Kansas; Kentucky; Louisiana; Maine; Maryland; Massachusetts; Michigan; Minnesota; Mississippi; Missouri; Montana; Nebraska; Nevada; New Hampshire; New Jersey; New Mexico; New York; North Carolina; North Dakota; Ohio; Oklahoma; Oregon; Pennsylvania; Rhode Island; South Carolina; South Dakota; Tennessee; Texas; Utah; Vermont; Virginia; Washington; West Virginia; Wisconsin; Wyoming. US Virgin Islands. British Virgin Islands. - bounds: (167.65, 14.92, -40.73, 86.45) Datum: North American Datum 1983 - Ellipsoid: GRS 1980 - Prime Meridian: Greenwich
Above, CA_svi is stored in the Geographic Coordinate System (GCS). We will change this to UTM 16N (projected CRS).
# Change CRS to UTM Zone 10N - EPSG:26910
CA_svi2 = CA_svi.to_crs(26910)
CA_svi2.crs
<Derived Projected CRS: EPSG:26910> Name: NAD83 / UTM zone 10N Axis Info [cartesian]: - E[east]: Easting (metre) - N[north]: Northing (metre) Area of Use: - name: North America - between 126°W and 120°W - onshore and offshore. Canada - British Columbia; Northwest Territories; Yukon. United States (USA) - California; Oregon; Washington. - bounds: (-126.0, 30.54, -119.99, 81.8) Coordinate Operation: - name: UTM zone 10N - method: Transverse Mercator Datum: North American Datum 1983 - Ellipsoid: GRS 1980 - Prime Meridian: Greenwich
#Map California Counties by Aggregating Tracts:
ca_counties = CA_svi2.dissolve(by='STCNTY') #use STCNTY to map counties
ca_counties.plot(cmap='winter', figsize=(9,7)) #plot
plt.show() #show plot
Next, we will check summary statistics and distributions for RPL_THEME1, RPL_THEME2, RPL Theme3, RPL_THEME4, and RPL_THEMES.
# Summary Statistics for All RPL_THEMES:
CA_svi2[['RPL_THEME1', 'RPL_THEME2', 'RPL_THEME3', 'RPL_THEME4', 'RPL_THEMES']].describe()
RPL_THEME1 | RPL_THEME2 | RPL_THEME3 | RPL_THEME4 | RPL_THEMES | |
---|---|---|---|---|---|
count | 58.000000 | 58.000000 | 58.000000 | 58.000000 | 58.000000 |
mean | 0.498488 | 0.497881 | 0.497879 | 0.498488 | 0.499698 |
std | 0.297111 | 0.295977 | 0.296036 | 0.295782 | 0.296079 |
min | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
25% | 0.228100 | 0.250000 | 0.250000 | 0.250000 | 0.250000 |
50% | 0.500000 | 0.491200 | 0.500000 | 0.500000 | 0.500000 |
75% | 0.750000 | 0.750000 | 0.750000 | 0.750000 | 0.750000 |
max | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
Above, the summary statistics show that the distributions of each of the themes are fairly distributed. All five variables have similar means and standard deviations and follow a normal distribution. Next, we will plot the themes by county and see if there is variation by county.
# Show RPL_THEME1 distribution by county:
ca_counties.plot(column='RPL_THEME1', figsize=(9,7), legend=True, cmap='gist_earth')
plt.title('RPL_THEME1')
plt.show()
# Show RPL_THEME2 distribution by county:
ca_counties.plot(column='RPL_THEME2', figsize=(9,7), legend=True, cmap='gist_earth')
plt.title('RPL_THEME2')
plt.show()
# Show RPL_THEME3 distribution by county:
ca_counties.plot(column='RPL_THEME3', figsize=(9,7), legend=True, cmap='gist_earth')
plt.title('RPL_THEME3')
plt.show()
# Show RPL_THEME4 distribution by county:
ca_counties.plot(column='RPL_THEME4', figsize=(9,7), legend=True, cmap='gist_earth')
plt.title('RPL_THEME4')
plt.show()
Above, we can see that counties in the middle and southern california have greater burden to socioeconomic status as shown in light brown for RPL_THEME1. Less counties are affected by household charactertistics as shown in RPL_THEME2, where the map is more green and blues. Many counties in the Bay Area and Southern California are affected by racial and ethnic minority status as shown in RPL_THEME3. Whereas key specific counties such as Los Angeles are affected by housing and transportation as seen in RPL_THEME4.
Next, we will take a deeper look by visualizing the top 10% of values, which are given a flag of 1 to indicadate highest vulnerability and a flag of 0 if below the 90th percentile. The following varaibles represent the flagged status, F_THEME1 - flags for socioeconomic status, F_THEME2 - flags for household characteristics, F_THEME3 - flags for racial and ethnic minority status, and F_THEME4 - flags for housing type/transportation.
# Show most vulernable for F_THEME1:
ca_counties.loc[ca_counties['F_THEME1'] == 0.0, 'FS_THEME1'] = 'Not in the 90th Percentile'
ca_counties.loc[ca_counties['F_THEME1'] == 1.0, 'FS_THEME1'] = 'In the 90th Percentile'
ca_counties.plot(column='FS_THEME1', figsize=(9,7), legend=True, cmap='winter_r', missing_kwds={'color':'gainsboro'})
plt.title('Highest Vulnerability in Socioeconomic Status')
plt.show()
# Show most vulernable for F_THEME2:
ca_counties.loc[ca_counties['F_THEME2'] == 0.0, 'FS_THEME2'] = 'Not in the 90th Percentile'
ca_counties.loc[ca_counties['F_THEME2'] == 1.0, 'FS_THEME2'] = 'In the 90th Percentile'
ca_counties.plot(column='FS_THEME2', figsize=(9,7), legend=True, cmap='cool_r', missing_kwds={'color':'gainsboro'})
plt.title('Highest Vulnerability in Household Charactertistics')
plt.show()
# Show most vulernable for F_THEME3:
ca_counties.loc[ca_counties['F_THEME3'] == 0.0, 'FS_THEME3'] = 'Not in the 90th Percentile'
ca_counties.loc[ca_counties['F_THEME3'] == 1.0, 'FS_THEME3'] = 'In the 90th Percentile'
ca_counties.plot(column='FS_THEME3', figsize=(9,7), legend=True, cmap='winter_r', missing_kwds={'color':'gainsboro'})
plt.title(' Highest Vulnerability in Racial & Ethnic Minority Status')
plt.show()
# Show most vulernable for F_THEME4:
ca_counties.loc[ca_counties['F_THEME4'] == 0.0, 'FS_THEME4'] = 'Not in the 90th Percentile'
ca_counties.loc[ca_counties['F_THEME4'] == 1.0, 'FS_THEME4'] = 'In the 90th Percentile'
ca_counties.plot(column='FS_THEME4', figsize=(9,7), legend=True, cmap='cool_r', missing_kwds={'color':'gainsboro'})
plt.title(' Highest Vulnerability in Housing Type/Transportation')
plt.show()
Above, counties in Southern California are in the 90th Percentile for high vulnerbility for socioeonomic status for racial/ethnicity minority status. Whereas, counties in Central California are in the 90th Percentile for high vulnerability for Household Characteristics and for Housing and Transportation. Counties in Central California are also in the 90th Percentile for high vulnerability for racial/ethnic minority status. For this analysis, we will focus on RL_THEME1 and RL_THEME3 to see the intersection of socioeonomic status and racial/ethnic minority status with the two public health epidemics.
# Create a Geocoder from OSM Nominatim Server
geocoder = Nominatim(user_agent='myapp')
# Create a new column 'County/State' which includes 'CA' for each county:
ca_hivcovid_df2['County/State'] = ca_hivcovid_df2['County'].astype(str) + ',CA' #concats ',CA' to value
ca_hivcovid_df2.head()
County | Overall HIV Cases | PrEP Rate | PrEP Users | New Diagnoses Rate | New Diagnoses Cases | New Diagnoses Black Rate | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Cases | COVID Cases | COVID Deaths | Total COVID Tests | Positive COVID Tests | Partially Vaccinated | Fully Vaccinated | Boosted | COVID Cases_Rate | COVID Deaths_Rate | Total COVID Tests_Rate | Positive COVID Tests_Rate | Partially Vaccinated_Rate | Fully Vaccinated_Rate | Boosted_Rate | County/State | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Alameda | 6030 | 131 | 1857 | 11.1 | 157 | 34.4 | 50 | 6.0 | 27 | 18.2 | 54 | 3.9 | 18 | 0.0 | 0 | 10.0 | 5 | 26.2 | 3 | 88478.0 | 887.0 | 3625096.0 | 110982.0 | 1259509.0 | 1301754.0 | 597411 | 5.248160 | 0.052613 | 215.026164 | 6.583007 | 74.709025 | 77.214829 | 35.436026 | Alameda ,CA |
1 | Alpine | -1 | -1 | -1 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 42.0 | 0.0 | 1256.0 | 32.0 | 726.0 | 644.0 | 236 | 3.760072 | 0.000000 | 112.444047 | 2.864816 | 64.995524 | 57.654432 | 21.128021 | Alpine ,CA |
2 | Amador | 184 | 40 | 14 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 3326.0 | 46.0 | 119657.0 | 3850.0 | 21520.0 | 20173.0 | 7753 | 8.632011 | 0.119384 | 310.547351 | 9.991955 | 55.851133 | 52.355246 | 20.121461 | Amador ,CA |
3 | Butte | 249 | 29 | 55 | 5.5 | 10 | 0.0 | 0 | 6.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 15031.0 | 231.0 | 240176.0 | 17085.0 | 109381.0 | 111894.0 | 42931 | 6.902268 | 0.106076 | 110.289343 | 7.845469 | 50.227994 | 51.381969 | 19.714009 | Butte ,CA |
4 | Calaveras | 50 | 27 | 11 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 3540.0 | 64.0 | 55562.0 | 4143.0 | 25209.0 | 23549.0 | 9016 | 7.992955 | 0.144505 | 125.453273 | 9.354467 | 56.919325 | 53.171216 | 20.357199 | Calaveras ,CA |
# Apply the Geocoder to County/State and save output as new Location column:
ca_hivcovid_df2['Location'] = ca_hivcovid_df2['County/State'].apply(geocoder.geocode) #apply geocode to all
ca_hivcovid_df2['Location'] #view and check results
0 (Alameda County, CAL Fire Northern Region, Cal... 1 (Alpine County, California, United States, (38... 2 (Amador County, California, United States, (38... 3 (Butte County, California, United States, (39.... 4 (Calaveras County, California, United States, ... 5 (Colusa County, California, United States, (39... 6 (Contra Costa County, California, United State... 7 (Del Norte County, CAL Fire Northern Region, C... 8 (El Dorado County, California, United States, ... 9 (Fresno, Fresno County, CAL Fire Southern Regi... 10 (Glenn County, California, United States, (39.... 11 (Humboldt County, California, United States, (... 12 (Imperial County, California, United States, (... 13 (Inyo County, California, United States, (36.5... 14 (Kern County, CAL Fire Southern Region, Califo... 15 (Kings County, California, United States, (36.... 16 (Lake County, California, United States, (39.0... 17 (Lassen County, California, United States, (40... 18 (Los Angeles, Los Angeles County, CAL Fire Sou... 19 (Madera County, California, United States, (37... 20 (Marin County, California, United States, (38.... 21 (Mariposa County, California, United States, (... 22 (Mendocino County, CAL Fire Northern Region, C... 23 (Merced County, California, United States, (37... 24 (Modoc County, CAL Fire Northern Region, Calif... 25 (Mono County, California, United States, (37.9... 26 (Monterey County, CAL Fire Southern Region, Ca... 27 (Napa, Napa County, California, United States,... 28 (Nevada County, CAL Fire Northern Region, Cali... 29 (Orange County, California, United States, (33... 30 (Placer County, CAL Fire Northern Region, Cali... 31 (Plumas County, California, United States, (39... 32 (Riverside, Riverside County, California, Unit... 33 (Sacramento, Sacramento County, CAL Fire North... 34 (San Benito County, California, United States,... 35 (San Bernardino County, California, United Sta... 36 (San Diego, San Diego County, California, Unit... 37 (San Francisco, CAL Fire Northern Region, Cali... 38 (San Joaquin County, California, United States... 39 (San Luis Obispo County, California, United St... 40 (San Mateo County, California, United States, ... 41 (Santa Barbara, Santa Barbara County, CAL Fire... 42 (Santa Clara County, California, United States... 43 (Santa Cruz County, CAL Fire Northern Region, ... 44 (Shasta County, CAL Fire Northern Region, Cali... 45 (Sierra County, California, United States, (39... 46 (Siskiyou County, CAL Fire Northern Region, Ca... 47 (Solano County, California, United States, (38... 48 (Sonoma County, CAL Fire Northern Region, Cali... 49 (Stanislaus County, California, United States,... 50 (Sutter County, CAL Fire Northern Region, Cali... 51 (Tehama County, CAL Fire Northern Region, Cali... 52 (Trinity County, California, United States, (4... 53 (Tulare County, California, United States, (36... 54 (Tuolumne County, California, United States, (... 55 (Ventura County, California, United States, (3... 56 (Yolo County, California, United States, (38.7... 57 (Yuba County, California, United States, (39.2... Name: Location, dtype: object
Above, geocoder found all of the correct counties in the dataframe as shown above. Next, using the location data, create latitude and longitude columns.
# Apply Lambda X to Location to extract Latitude and Longitude:
ca_hivcovid_df2['Lat'] = ca_hivcovid_df2['Location'].apply(lambda x: (x.latitude)) #apply, get latitude
ca_hivcovid_df2['Long'] = ca_hivcovid_df2['Location'].apply(lambda x: (x.longitude)) #apply, get longitude
# Check head of DF:
ca_hivcovid_df2.head()
County | Overall HIV Cases | PrEP Rate | PrEP Users | New Diagnoses Rate | New Diagnoses Cases | New Diagnoses Black Rate | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Cases | COVID Cases | COVID Deaths | Total COVID Tests | Positive COVID Tests | Partially Vaccinated | Fully Vaccinated | Boosted | COVID Cases_Rate | COVID Deaths_Rate | Total COVID Tests_Rate | Positive COVID Tests_Rate | Partially Vaccinated_Rate | Fully Vaccinated_Rate | Boosted_Rate | County/State | Location | Lat | Long | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Alameda | 6030 | 131 | 1857 | 11.1 | 157 | 34.4 | 50 | 6.0 | 27 | 18.2 | 54 | 3.9 | 18 | 0.0 | 0 | 10.0 | 5 | 26.2 | 3 | 88478.0 | 887.0 | 3625096.0 | 110982.0 | 1259509.0 | 1301754.0 | 597411 | 5.248160 | 0.052613 | 215.026164 | 6.583007 | 74.709025 | 77.214829 | 35.436026 | Alameda ,CA | (Alameda County, CAL Fire Northern Region, Cal... | 37.609029 | -121.899142 |
1 | Alpine | -1 | -1 | -1 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 42.0 | 0.0 | 1256.0 | 32.0 | 726.0 | 644.0 | 236 | 3.760072 | 0.000000 | 112.444047 | 2.864816 | 64.995524 | 57.654432 | 21.128021 | Alpine ,CA | (Alpine County, California, United States, (38... | 38.589393 | -119.834501 |
2 | Amador | 184 | 40 | 14 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 3326.0 | 46.0 | 119657.0 | 3850.0 | 21520.0 | 20173.0 | 7753 | 8.632011 | 0.119384 | 310.547351 | 9.991955 | 55.851133 | 52.355246 | 20.121461 | Amador ,CA | (Amador County, California, United States, (38... | 38.449089 | -120.591102 |
3 | Butte | 249 | 29 | 55 | 5.5 | 10 | 0.0 | 0 | 6.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 15031.0 | 231.0 | 240176.0 | 17085.0 | 109381.0 | 111894.0 | 42931 | 6.902268 | 0.106076 | 110.289343 | 7.845469 | 50.227994 | 51.381969 | 19.714009 | Butte ,CA | (Butte County, California, United States, (39.... | 39.651927 | -121.585844 |
4 | Calaveras | 50 | 27 | 11 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 3540.0 | 64.0 | 55562.0 | 4143.0 | 25209.0 | 23549.0 | 9016 | 7.992955 | 0.144505 | 125.453273 | 9.354467 | 56.919325 | 53.171216 | 20.357199 | Calaveras ,CA | (Calaveras County, California, United States, ... | 38.255818 | -120.498149 |
# Create a GeoSeries from X, Y coordinates (Longitude = X, Latitude = Y)
gs = gpd.points_from_xy(ca_hivcovid_df2.Long, ca_hivcovid_df2.Lat)
# Create a GeoDataFrame using ca_hivcovid_df2 and gs from above:
ca_hivcovid_gs = gpd.GeoDataFrame(ca_hivcovid_df2, geometry=gs)
ca_hivcovid_gs.tail() #view tail
County | Overall HIV Cases | PrEP Rate | PrEP Users | New Diagnoses Rate | New Diagnoses Cases | New Diagnoses Black Rate | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Cases | COVID Cases | COVID Deaths | Total COVID Tests | Positive COVID Tests | Partially Vaccinated | Fully Vaccinated | Boosted | COVID Cases_Rate | COVID Deaths_Rate | Total COVID Tests_Rate | Positive COVID Tests_Rate | Partially Vaccinated_Rate | Fully Vaccinated_Rate | Boosted_Rate | County/State | Location | Lat | Long | geometry | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53 | Tulare | 516 | 36 | 132 | 7.9 | 29 | 0.0 | 0 | 8.2 | 9 | 8.2 | 19 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 37326.0 | 790.0 | 647145.0 | 42952.0 | 247185.0 | 234588.0 | 69631 | 7.705249 | 0.163081 | 133.590891 | 8.866631 | 51.026685 | 48.426272 | 14.374008 | Tulare ,CA | (Tulare County, California, United States, (36... | 36.251647 | -118.852583 | POINT (-118.85258 36.25165) |
54 | Tuolumne | 59 | 30 | 14 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 5321.0 | 123.0 | 109808.0 | 6254.0 | 29190.0 | 27607.0 | 11310 | 10.164085 | 0.234953 | 209.753395 | 11.946286 | 55.758247 | 52.734427 | 21.604172 | Tuolumne ,CA | (Tuolumne County, California, United States, (... | 38.056944 | -119.991935 | POINT (-119.99194 38.05694) |
55 | Ventura | 1139 | 68 | 482 | 7.7 | 55 | 7.5 | 1 | 3.0 | 10 | 14.9 | 43 | 0.0 | 0 | 0.0 | 0 | 6.6 | 1 | 0.0 | 0 | 70945.0 | 847.0 | 1671607.0 | 88960.0 | 577315.0 | 582414.0 | 228947 | 8.319584 | 0.099326 | 196.026137 | 10.432168 | 67.700619 | 68.298569 | 26.848174 | Ventura ,CA | (Ventura County, California, United States, (3... | 34.445825 | -119.077936 | POINT (-119.07794 34.44582) |
56 | Yolo | 310 | 40 | 75 | 5.9 | 11 | -1.0 | -1 | -1.0 | -1 | 12.4 | 7 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 13861.0 | 135.0 | 1005823.0 | 15058.0 | 149625.0 | 148984.0 | 64192 | 6.198683 | 0.060372 | 449.807255 | 6.733986 | 66.912777 | 66.626120 | 28.706867 | Yolo ,CA | (Yolo County, California, United States, (38.7... | 38.718454 | -121.905900 | POINT (-121.90590 38.71845) |
57 | Yuba | 101 | 30 | 19 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | -1.0 | -1 | 6984.0 | 83.0 | 90173.0 | 8325.0 | 35420.0 | 36358.0 | 10213 | 8.808173 | 0.104679 | 113.725564 | 10.499432 | 44.671459 | 45.854458 | 12.880565 | Yuba ,CA | (Yuba County, California, United States, (39.2... | 39.283975 | -121.355682 | POINT (-121.35568 39.28398) |
# Set CRS for ca_hivcovid_gs to GCS_NAD83 (horizontal datum for North America)
ca_hivcovid_gs.crs = '4269'
ca_hivcovid_gs.crs
<Geographic 2D CRS: EPSG:4269> Name: NAD83 Axis Info [ellipsoidal]: - Lat[north]: Geodetic latitude (degree) - Lon[east]: Geodetic longitude (degree) Area of Use: - name: North America - onshore and offshore: Canada - Alberta; British Columbia; Manitoba; New Brunswick; Newfoundland and Labrador; Northwest Territories; Nova Scotia; Nunavut; Ontario; Prince Edward Island; Quebec; Saskatchewan; Yukon. Puerto Rico. United States (USA) - Alabama; Alaska; Arizona; Arkansas; California; Colorado; Connecticut; Delaware; Florida; Georgia; Hawaii; Idaho; Illinois; Indiana; Iowa; Kansas; Kentucky; Louisiana; Maine; Maryland; Massachusetts; Michigan; Minnesota; Mississippi; Missouri; Montana; Nebraska; Nevada; New Hampshire; New Jersey; New Mexico; New York; North Carolina; North Dakota; Ohio; Oklahoma; Oregon; Pennsylvania; Rhode Island; South Carolina; South Dakota; Tennessee; Texas; Utah; Vermont; Virginia; Washington; West Virginia; Wisconsin; Wyoming. US Virgin Islands. British Virgin Islands. - bounds: (167.65, 14.92, -40.73, 86.45) Datum: North American Datum 1983 - Ellipsoid: GRS 1980 - Prime Meridian: Greenwich
Next, we will spatially join two layers (the HIV/COVID data with the CA SVI data) which will allow us to see the the affect of HIV and COVID on the counties in California. This will also show us any intersection between the two and whether PrEP and/or vaccinations affected certain areas or demographics differently.
# CDC Social Vulnerability Index for 2020 for California by County:
CA_svi = gpd.read_file('/Users/cl/Documents/GEO448/Project/Shapefiles/SVI2020_CALIFORNIA_county.shp')
# View tail of CA_svi:
CA_svi.tail()
ST | STATE | ST_ABBR | STCNTY | COUNTY | FIPS | LOCATION | RPL_THEMES | AREA_SQMI | E_TOTPOP | M_TOTPOP | E_HU | M_HU | E_HH | M_HH | E_POV150 | M_POV150 | E_UNEMP | M_UNEMP | E_HBURD | M_HBURD | E_NOHSDP | M_NOHSDP | E_UNINSUR | M_UNINSUR | EP_POV150 | MP_POV150 | EP_UNEMP | MP_UNEMP | EP_HBURD | MP_HBURD | EP_NOHSDP | MP_NOHSDP | EP_UNINSUR | MP_UNINSUR | EPL_POV150 | EPL_UNEMP | EPL_HBURD | EPL_NOHSDP | EPL_UNINSU | SPL_THEME1 | RPL_THEME1 | E_AGE65 | M_AGE65 | E_AGE17 | M_AGE17 | E_DISABL | M_DISABL | E_SNGPNT | M_SNGPNT | E_LIMENG | M_LIMENG | EP_AGE65 | MP_AGE65 | EP_AGE17 | MP_AGE17 | EP_DISABL | MP_DISABL | EP_SNGPNT | MP_SNGPNT | EP_LIMENG | MP_LIMENG | EPL_AGE65 | EPL_AGE17 | EPL_DISABL | EPL_SNGPNT | EPL_LIMENG | SPL_THEME2 | RPL_THEME2 | E_MINRTY | M_MINRTY | EP_MINRTY | MP_MINRTY | EPL_MINRTY | SPL_THEME3 | RPL_THEME3 | E_MUNIT | M_MUNIT | E_MOBILE | M_MOBILE | E_CROWD | M_CROWD | E_NOVEH | M_NOVEH | E_GROUPQ | M_GROUPQ | EP_MUNIT | MP_MUNIT | EP_MOBILE | MP_MOBILE | EP_CROWD | MP_CROWD | EP_NOVEH | MP_NOVEH | EP_GROUPQ | MP_GROUPQ | EPL_MUNIT | EPL_MOBILE | EPL_CROWD | EPL_NOVEH | EPL_GROUPQ | SPL_THEME4 | RPL_THEME4 | SPL_THEMES | E_DAYPOP | E_NOINT | M_NOINT | E_AFAM | M_AFAM | E_HISP | M_HISP | E_ASIAN | M_ASIAN | E_AIAN | M_AIAN | E_NHPI | M_NHPI | E_TWOMORE | M_TWOMORE | E_OTHERRAC | M_OTHERRAC | EP_NOINT | MP_NOINT | EP_AFAM | MP_AFAM | EP_HISP | MP_HISP | EP_ASIAN | MP_ASIAN | EP_AIAN | MP_AIAN | EP_NHPI | MP_NHPI | EP_TWOMORE | MP_TWOMORE | EP_OTHERRA | MP_OTHERRA | F_POV150 | F_UNEMP | F_HBURD | F_NOHSDP | F_UNINSUR | F_THEME1 | F_AGE65 | F_AGE17 | F_DISABL | F_SNGPNT | F_THEME2 | F_MINRTY | F_LIMENG | F_THEME3 | F_MUNIT | F_MOBILE | F_CROWD | F_NOVEH | F_GROUPQ | F_THEME4 | F_TOTAL | SHAPE_STAr | SHAPE_STLe | geometry | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53 | 06 | California | CA | 06107 | Tulare | 06107 | Tulare County, California | 0.9298 | 4823.896942 | 463955 | 0 | 150079 | 175 | 139044 | 793 | 164222 | 5818 | 20214 | 1385 | 49855 | 2054 | 76949 | 2070 | 35869 | 2526 | 35.9 | 1.3 | 9.9 | 0.6 | 35.9 | 1.5 | 28.1 | 0.8 | 7.8 | 0.5 | 0.9825 | 0.9298 | 0.7018 | 0.9649 | 0.7368 | 4.3158 | 1.0000 | 52826 | 45 | 142777 | 0 | 53760 | 2610 | 13115 | 1082 | 57319 | 2173 | 11.4 | 0.1 | 30.8 | 0.0 | 11.7 | 0.6 | 9.4 | 0.8 | 13.4 | 0.5 | 0.0526 | 1.0000 | 0.3509 | 0.9649 | 0.9298 | 3.2982 | 0.8947 | 335204 | 2920 | 72.2 | 0.6 | 0.9298 | 0.9298 | 0.9298 | 8159 | 882 | 9096 | 626 | 14201 | 991 | 7394 | 669 | 5595 | 452 | 5.4 | 0.6 | 6.1 | 0.4 | 10.2 | 0.7 | 5.3 | 0.5 | 1.2 | 0.1 | 0.4035 | 0.4561 | 0.9298 | 0.4912 | 0.1754 | 2.4560 | 0.4561 | 10.9998 | 466703 | 73770 | 3504 | 5923 | 395 | 301919 | 0 | 15857 | 498 | 2592 | 316 | 528 | 120 | 6913 | 804 | 1472 | 1472 | 16.1 | 0.0 | 1.3 | 0.1 | 65.1 | 0.0 | 3.4 | 0.1 | 0.6 | 0.1 | 0.1 | 0.1 | 1.5 | 0.2 | 0.3 | 0.2 | 1 | 1 | 0 | 1 | 0 | 3 | 0 | 1 | 0 | 1 | 3 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 8 | 1.256098 | 5.346579 | POLYGON ((-119.56647 36.49434, -119.56366 36.4... |
54 | 06 | California | CA | 06109 | Tuolumne | 06109 | Tuolumne County, California | 0.2281 | 2220.910147 | 54147 | 0 | 31572 | 121 | 22937 | 637 | 8819 | 899 | 1646 | 308 | 7519 | 718 | 3729 | 557 | 3137 | 462 | 17.4 | 1.8 | 7.3 | 1.3 | 32.8 | 3.0 | 9.0 | 1.3 | 6.1 | 0.9 | 0.3333 | 0.6140 | 0.2807 | 0.1930 | 0.4211 | 1.8421 | 0.3333 | 14109 | 116 | 8986 | 49 | 10250 | 750 | 931 | 280 | 262 | 130 | 26.1 | 0.2 | 16.6 | 0.1 | 20.0 | 1.5 | 4.1 | 1.2 | 0.5 | 0.3 | 0.8421 | 0.0877 | 0.9649 | 0.1930 | 0.0175 | 2.1052 | 0.2982 | 11008 | 811 | 20.3 | 1.5 | 0.0877 | 0.0877 | 0.0877 | 757 | 228 | 2789 | 377 | 561 | 167 | 1400 | 362 | 3422 | 264 | 2.4 | 0.7 | 8.8 | 1.2 | 2.4 | 0.7 | 6.1 | 1.5 | 6.3 | 0.5 | 0.1228 | 0.7018 | 0.1053 | 0.6667 | 0.9123 | 2.5089 | 0.5439 | 6.5439 | 52976 | 6807 | 1084 | 979 | 117 | 6810 | 0 | 730 | 118 | 765 | 149 | 146 | 29 | 1476 | 186 | 102 | 102 | 13.4 | 0.1 | 1.8 | 0.2 | 12.6 | 0.0 | 1.3 | 0.2 | 1.4 | 0.3 | 0.3 | 0.1 | 2.7 | 0.3 | 0.2 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 0.604459 | 5.007781 | POLYGON ((-120.65324 37.83282, -120.64865 37.8... |
55 | 06 | California | CA | 06111 | Ventura | 06111 | Ventura County, California | 0.4561 | 1840.788448 | 845599 | 0 | 289425 | 380 | 271639 | 1129 | 133661 | 4348 | 22114 | 905 | 77020 | 2169 | 82261 | 2143 | 70449 | 2941 | 16.0 | 0.5 | 5.1 | 0.2 | 28.4 | 0.8 | 14.4 | 0.4 | 8.4 | 0.4 | 0.2105 | 0.2632 | 0.7895 | 0.5965 | 0.8246 | 2.6843 | 0.5439 | 131672 | 76 | 193847 | 0 | 92514 | 2501 | 13366 | 961 | 71885 | 2424 | 15.6 | 0.1 | 22.9 | 0.0 | 11.0 | 0.3 | 4.9 | 0.4 | 9.0 | 0.3 | 0.4561 | 0.6667 | 0.2456 | 0.3158 | 0.7193 | 2.4035 | 0.4912 | 465628 | 2689 | 55.1 | 0.3 | 0.5614 | 0.5614 | 0.5614 | 31444 | 1212 | 11241 | 652 | 16793 | 1007 | 11671 | 807 | 13099 | 1007 | 10.9 | 0.4 | 3.9 | 0.2 | 6.2 | 0.4 | 4.3 | 0.3 | 1.5 | 0.1 | 0.7544 | 0.2807 | 0.5965 | 0.1754 | 0.2807 | 2.0877 | 0.2281 | 7.7369 | 800107 | 71112 | 4406 | 14321 | 611 | 361648 | 0 | 59761 | 1174 | 1847 | 311 | 1655 | 158 | 24692 | 1367 | 1704 | 1704 | 8.5 | 0.0 | 1.7 | 0.1 | 42.8 | 0.0 | 7.1 | 0.1 | 0.2 | 0.1 | 0.2 | 0.1 | 2.9 | 0.2 | 0.2 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.471564 | 3.509455 | MULTIPOLYGON (((-119.47784 34.37942, -119.4737... |
56 | 06 | California | CA | 06113 | Yolo | 06113 | Yolo County, California | 0.4737 | 1014.732376 | 218774 | 0 | 78565 | 273 | 74614 | 619 | 54468 | 2581 | 5953 | 647 | 22623 | 1179 | 16124 | 911 | 9433 | 1194 | 25.8 | 1.2 | 5.6 | 0.6 | 30.3 | 1.6 | 12.5 | 0.7 | 4.3 | 0.5 | 0.7368 | 0.3333 | 0.5088 | 0.5088 | 0.1228 | 2.2105 | 0.4211 | 27314 | 112 | 45977 | 0 | 22154 | 1172 | 4260 | 579 | 12433 | 1231 | 12.5 | 0.1 | 21.0 | 0.0 | 10.2 | 0.5 | 5.7 | 0.8 | 6.0 | 0.6 | 0.1228 | 0.4211 | 0.1930 | 0.4912 | 0.4912 | 1.7193 | 0.1053 | 118516 | 1558 | 54.2 | 0.7 | 0.5263 | 0.5263 | 0.5263 | 12667 | 839 | 2908 | 357 | 4336 | 562 | 5934 | 586 | 8103 | 731 | 16.1 | 1.1 | 3.7 | 0.5 | 5.8 | 0.8 | 8.0 | 0.8 | 3.7 | 0.3 | 0.8596 | 0.2456 | 0.5439 | 0.9298 | 0.7719 | 3.3508 | 0.9123 | 7.8069 | 234275 | 16979 | 2085 | 5137 | 386 | 69341 | 0 | 31237 | 787 | 768 | 216 | 928 | 155 | 10490 | 982 | 615 | 615 | 8.1 | 0.0 | 2.3 | 0.2 | 31.7 | 0.0 | 14.3 | 0.4 | 0.4 | 0.1 | 0.4 | 0.1 | 4.8 | 0.4 | 0.3 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0.274403 | 3.341287 | POLYGON ((-122.42149 38.90233, -122.42190 38.9... |
57 | 06 | California | CA | 06115 | Yuba | 06115 | Yuba County, California | 0.6667 | 632.005678 | 77524 | 0 | 28632 | 122 | 26434 | 401 | 18954 | 1551 | 2257 | 423 | 8883 | 725 | 8724 | 757 | 5344 | 739 | 25.0 | 2.0 | 7.1 | 1.2 | 33.6 | 2.7 | 17.8 | 1.5 | 7.1 | 1.0 | 0.6667 | 0.5789 | 0.3333 | 0.6667 | 0.5789 | 2.8245 | 0.5965 | 9588 | 150 | 21355 | 0 | 11451 | 804 | 1898 | 360 | 3228 | 484 | 12.4 | 0.2 | 27.5 | 0.0 | 15.3 | 1.1 | 7.2 | 1.4 | 4.5 | 0.7 | 0.1053 | 0.9123 | 0.6667 | 0.7368 | 0.4211 | 2.8422 | 0.7018 | 35675 | 928 | 46.0 | 1.2 | 0.4561 | 0.4561 | 0.4561 | 1932 | 347 | 2677 | 417 | 1219 | 244 | 1757 | 329 | 1471 | 349 | 6.7 | 1.2 | 9.3 | 1.5 | 4.6 | 0.9 | 6.6 | 1.2 | 1.9 | 0.5 | 0.4737 | 0.7368 | 0.4386 | 0.7368 | 0.4211 | 2.8070 | 0.6140 | 8.9298 | 74261 | 8149 | 1134 | 2533 | 311 | 22318 | 0 | 5134 | 314 | 596 | 196 | 296 | 54 | 4664 | 543 | 134 | 134 | 10.7 | 0.1 | 3.3 | 0.4 | 28.8 | 0.0 | 6.6 | 0.4 | 0.8 | 0.3 | 0.4 | 0.1 | 6.0 | 0.7 | 0.2 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.174089 | 2.803283 | POLYGON ((-121.63631 39.24941, -121.63581 39.2... |
# Check info on CA_svi GeoDataFrame:
CA_svi.info()
<class 'geopandas.geodataframe.GeoDataFrame'> RangeIndex: 58 entries, 0 to 57 Columns: 161 entries, ST to geometry dtypes: float64(77), geometry(1), int64(76), object(7) memory usage: 73.1+ KB
# Check CRS for CA_svi:
CA_svi.crs
<Geographic 2D CRS: EPSG:4269> Name: NAD83 Axis Info [ellipsoidal]: - Lat[north]: Geodetic latitude (degree) - Lon[east]: Geodetic longitude (degree) Area of Use: - name: North America - onshore and offshore: Canada - Alberta; British Columbia; Manitoba; New Brunswick; Newfoundland and Labrador; Northwest Territories; Nova Scotia; Nunavut; Ontario; Prince Edward Island; Quebec; Saskatchewan; Yukon. Puerto Rico. United States (USA) - Alabama; Alaska; Arizona; Arkansas; California; Colorado; Connecticut; Delaware; Florida; Georgia; Hawaii; Idaho; Illinois; Indiana; Iowa; Kansas; Kentucky; Louisiana; Maine; Maryland; Massachusetts; Michigan; Minnesota; Mississippi; Missouri; Montana; Nebraska; Nevada; New Hampshire; New Jersey; New Mexico; New York; North Carolina; North Dakota; Ohio; Oklahoma; Oregon; Pennsylvania; Rhode Island; South Carolina; South Dakota; Tennessee; Texas; Utah; Vermont; Virginia; Washington; West Virginia; Wisconsin; Wyoming. US Virgin Islands. British Virgin Islands. - bounds: (167.65, 14.92, -40.73, 86.45) Datum: North American Datum 1983 - Ellipsoid: GRS 1980 - Prime Meridian: Greenwich
# Check info on ca_hivcovid GeoDataFrame:
ca_hivcovid_gs.info()
<class 'geopandas.geodataframe.GeoDataFrame'> RangeIndex: 58 entries, 0 to 57 Data columns (total 39 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 County 58 non-null object 1 Overall HIV Cases 58 non-null int64 2 PrEP Rate 58 non-null int64 3 PrEP Users 58 non-null int64 4 New Diagnoses Rate 58 non-null float64 5 New Diagnoses Cases 58 non-null int64 6 New Diagnoses Black Rate 58 non-null float64 7 New Diagnoses Black Cases 58 non-null int64 8 New Diagnoses White Rate 58 non-null float64 9 New Diagnoses White Cases 58 non-null int64 10 New Diagnoses Hispanic Rate 58 non-null float64 11 New Diagnoses Hispanic Cases 58 non-null int64 12 New Diagnoses Asian Rate 58 non-null float64 13 New Diagnoses Asian Cases 58 non-null int64 14 New Diagnoses American Indian/Alaska Native Rate 58 non-null float64 15 New Diagnoses American Indian/Alaska Native Cases 58 non-null int64 16 New Diagnoses Multiracial Rate 58 non-null float64 17 New Diagnoses Multiracial Cases 58 non-null int64 18 New Diagnoses Native Hawaiian/Pacific Islander Rate 58 non-null float64 19 New Diagnoses Native Hawaiian/Pacific Islander Cases 58 non-null int64 20 COVID Cases 58 non-null float64 21 COVID Deaths 58 non-null float64 22 Total COVID Tests 58 non-null float64 23 Positive COVID Tests 58 non-null float64 24 Partially Vaccinated 58 non-null float64 25 Fully Vaccinated 58 non-null float64 26 Boosted 58 non-null int64 27 COVID Cases_Rate 58 non-null float64 28 COVID Deaths_Rate 58 non-null float64 29 Total COVID Tests_Rate 58 non-null float64 30 Positive COVID Tests_Rate 58 non-null float64 31 Partially Vaccinated_Rate 58 non-null float64 32 Fully Vaccinated_Rate 58 non-null float64 33 Boosted_Rate 58 non-null float64 34 County/State 58 non-null object 35 Location 58 non-null object 36 Lat 58 non-null float64 37 Long 58 non-null float64 38 geometry 58 non-null geometry dtypes: float64(23), geometry(1), int64(12), object(3) memory usage: 17.8+ KB
# Check CRS for ca_hivcovid:
ca_hivcovid_gs.crs
<Geographic 2D CRS: EPSG:4269> Name: NAD83 Axis Info [ellipsoidal]: - Lat[north]: Geodetic latitude (degree) - Lon[east]: Geodetic longitude (degree) Area of Use: - name: North America - onshore and offshore: Canada - Alberta; British Columbia; Manitoba; New Brunswick; Newfoundland and Labrador; Northwest Territories; Nova Scotia; Nunavut; Ontario; Prince Edward Island; Quebec; Saskatchewan; Yukon. Puerto Rico. United States (USA) - Alabama; Alaska; Arizona; Arkansas; California; Colorado; Connecticut; Delaware; Florida; Georgia; Hawaii; Idaho; Illinois; Indiana; Iowa; Kansas; Kentucky; Louisiana; Maine; Maryland; Massachusetts; Michigan; Minnesota; Mississippi; Missouri; Montana; Nebraska; Nevada; New Hampshire; New Jersey; New Mexico; New York; North Carolina; North Dakota; Ohio; Oklahoma; Oregon; Pennsylvania; Rhode Island; South Carolina; South Dakota; Tennessee; Texas; Utah; Vermont; Virginia; Washington; West Virginia; Wisconsin; Wyoming. US Virgin Islands. British Virgin Islands. - bounds: (167.65, 14.92, -40.73, 86.45) Datum: North American Datum 1983 - Ellipsoid: GRS 1980 - Prime Meridian: Greenwich
# Plot and Overlay Both GeoDataFrames:
fig, ax = plt.subplots(figsize=(6,8))
CA_svi.plot(ax=ax, edgecolor='k', facecolor='None') # plot CA Counties
ca_hivcovid_gs.plot(ax=ax, marker='o', markersize=15, color='yellowgreen') # this plots marker for each county
plt.show() # show plot
# Perform Spatial Join of CA_svi and ca_hivcovid_gs
CA_svi_hivcovid = gpd.sjoin(CA_svi, ca_hivcovid_gs)
# Checked joined GeoDataFrame:
CA_svi_hivcovid.info()
<class 'geopandas.geodataframe.GeoDataFrame'> Int64Index: 58 entries, 0 to 57 Columns: 200 entries, ST to Long dtypes: float64(100), geometry(1), int64(89), object(10) memory usage: 91.1+ KB
# Check head of joined GeoDataFrame:
CA_svi_hivcovid.head()
ST | STATE | ST_ABBR | STCNTY | COUNTY | FIPS | LOCATION | RPL_THEMES | AREA_SQMI | E_TOTPOP | M_TOTPOP | E_HU | M_HU | E_HH | M_HH | E_POV150 | M_POV150 | E_UNEMP | M_UNEMP | E_HBURD | M_HBURD | E_NOHSDP | M_NOHSDP | E_UNINSUR | M_UNINSUR | EP_POV150 | MP_POV150 | EP_UNEMP | MP_UNEMP | EP_HBURD | MP_HBURD | EP_NOHSDP | MP_NOHSDP | EP_UNINSUR | MP_UNINSUR | EPL_POV150 | EPL_UNEMP | EPL_HBURD | EPL_NOHSDP | EPL_UNINSU | SPL_THEME1 | RPL_THEME1 | E_AGE65 | M_AGE65 | E_AGE17 | M_AGE17 | E_DISABL | M_DISABL | E_SNGPNT | M_SNGPNT | E_LIMENG | M_LIMENG | EP_AGE65 | MP_AGE65 | EP_AGE17 | MP_AGE17 | EP_DISABL | MP_DISABL | EP_SNGPNT | MP_SNGPNT | EP_LIMENG | MP_LIMENG | EPL_AGE65 | EPL_AGE17 | EPL_DISABL | EPL_SNGPNT | EPL_LIMENG | SPL_THEME2 | RPL_THEME2 | E_MINRTY | M_MINRTY | EP_MINRTY | MP_MINRTY | EPL_MINRTY | SPL_THEME3 | RPL_THEME3 | E_MUNIT | M_MUNIT | E_MOBILE | M_MOBILE | E_CROWD | M_CROWD | E_NOVEH | M_NOVEH | E_GROUPQ | M_GROUPQ | EP_MUNIT | MP_MUNIT | EP_MOBILE | MP_MOBILE | EP_CROWD | MP_CROWD | EP_NOVEH | MP_NOVEH | EP_GROUPQ | MP_GROUPQ | EPL_MUNIT | EPL_MOBILE | EPL_CROWD | EPL_NOVEH | EPL_GROUPQ | SPL_THEME4 | RPL_THEME4 | SPL_THEMES | E_DAYPOP | E_NOINT | M_NOINT | E_AFAM | M_AFAM | E_HISP | M_HISP | E_ASIAN | M_ASIAN | E_AIAN | M_AIAN | E_NHPI | M_NHPI | E_TWOMORE | M_TWOMORE | E_OTHERRAC | M_OTHERRAC | EP_NOINT | MP_NOINT | EP_AFAM | MP_AFAM | EP_HISP | MP_HISP | EP_ASIAN | MP_ASIAN | EP_AIAN | MP_AIAN | EP_NHPI | MP_NHPI | EP_TWOMORE | MP_TWOMORE | EP_OTHERRA | MP_OTHERRA | F_POV150 | F_UNEMP | F_HBURD | F_NOHSDP | F_UNINSUR | F_THEME1 | F_AGE65 | F_AGE17 | F_DISABL | F_SNGPNT | F_THEME2 | F_MINRTY | F_LIMENG | F_THEME3 | F_MUNIT | F_MOBILE | F_CROWD | F_NOVEH | F_GROUPQ | F_THEME4 | F_TOTAL | SHAPE_STAr | SHAPE_STLe | geometry | index_right | County | Overall HIV Cases | PrEP Rate | PrEP Users | New Diagnoses Rate | New Diagnoses Cases | New Diagnoses Black Rate | New Diagnoses Black Cases | New Diagnoses White Rate | New Diagnoses White Cases | New Diagnoses Hispanic Rate | New Diagnoses Hispanic Cases | New Diagnoses Asian Rate | New Diagnoses Asian Cases | New Diagnoses American Indian/Alaska Native Rate | New Diagnoses American Indian/Alaska Native Cases | New Diagnoses Multiracial Rate | New Diagnoses Multiracial Cases | New Diagnoses Native Hawaiian/Pacific Islander Rate | New Diagnoses Native Hawaiian/Pacific Islander Cases | COVID Cases | COVID Deaths | Total COVID Tests | Positive COVID Tests | Partially Vaccinated | Fully Vaccinated | Boosted | COVID Cases_Rate | COVID Deaths_Rate | Total COVID Tests_Rate | Positive COVID Tests_Rate | Partially Vaccinated_Rate | Fully Vaccinated_Rate | Boosted_Rate | County/State | Location | Lat | Long | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 06 | California | CA | 06001 | Alameda | 06001 | Alameda County, California | 0.3860 | 737.461520 | 1661584 | 0 | 605767 | 422 | 573174 | 1395 | 233543 | 5366 | 43126 | 1796 | 147454 | 2797 | 132307 | 2763 | 70389 | 2810 | 14.3 | 0.3 | 4.7 | 0.2 | 25.7 | 0.5 | 11.2 | 0.2 | 4.3 | 0.2 | 0.1228 | 0.1930 | 0.8947 | 0.3684 | 0.1228 | 1.7017 | 0.2281 | 231186 | 0 | 341591 | 0 | 151635 | 3012 | 29079 | 1353 | 119494 | 3061 | 13.9 | 0.0 | 20.6 | 0.0 | 9.2 | 0.2 | 5.1 | 0.2 | 7.6 | 0.2 | 0.2632 | 0.3509 | 0.1053 | 0.3509 | 0.6140 | 1.6843 | 0.0702 | 1153001 | 6526 | 69.4 | 0.4 | 0.8596 | 0.8596 | 0.8596 | 135019 | 2273 | 7291 | 571 | 45236 | 1588 | 53539 | 1379 | 31878 | 1199 | 22.3 | 0.4 | 1.2 | 0.1 | 7.9 | 0.3 | 9.3 | 0.2 | 1.9 | 0.1 | 0.9298 | 0.0351 | 0.7544 | 0.9825 | 0.4211 | 3.1229 | 0.8772 | 7.3685 | 1715160 | 110366 | 4585 | 167316 | 1387 | 369546 | 0 | 515105 | 2453 | 4942 | 249 | 12924 | 533 | 76404 | 3004 | 6764 | 6764 | 6.8 | 0.0 | 10.1 | 0.1 | 22.2 | 0.0 | 31.0 | 0.1 | 0.3 | 0.1 | 0.8 | 0.1 | 4.6 | 0.2 | 0.4 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 2 | 2 | 0.198466 | 2.756594 | POLYGON ((-122.34225 37.80556, -122.33412 37.8... | 0 | Alameda | 6030 | 131 | 1857 | 11.1 | 157 | 34.4 | 50 | 6.0 | 27 | 18.2 | 54 | 3.9 | 18 | 0.0 | 0 | 10.0 | 5 | 26.2 | 3 | 88478.0 | 887.0 | 3625096.0 | 110982.0 | 1259509.0 | 1301754.0 | 597411 | 5.248160 | 0.052613 | 215.026164 | 6.583007 | 74.709025 | 77.214829 | 35.436026 | Alameda ,CA | (Alameda County, CAL Fire Northern Region, Cal... | 37.609029 | -121.899142 |
1 | 06 | California | CA | 06003 | Alpine | 06003 | Alpine County, California | 0.3333 | 738.340000 | 1159 | 172 | 1794 | 120 | 397 | 79 | 227 | 92 | 45 | 30 | 46 | 20 | 41 | 24 | 88 | 53 | 19.6 | 7.4 | 10.0 | 6.4 | 11.6 | 4.5 | 4.7 | 2.6 | 7.6 | 4.5 | 0.4211 | 0.9474 | 0.0000 | 0.0000 | 0.6667 | 2.0352 | 0.3684 | 337 | 62 | 252 | 64 | 182 | 65 | 8 | 8 | 17 | 47 | 29.1 | 5.2 | 21.7 | 4.5 | 15.7 | 4.9 | 2.0 | 2.0 | 1.6 | 4.3 | 1.0000 | 0.5088 | 0.7018 | 0.0000 | 0.2105 | 2.4211 | 0.5263 | 564 | 353 | 48.7 | 29.6 | 0.4912 | 0.4912 | 0.4912 | 450 | 100 | 21 | 19 | 15 | 10 | 13 | 8 | 35 | 18 | 25.1 | 5.3 | 1.2 | 1.1 | 3.8 | 2.4 | 3.3 | 2.1 | 3.0 | 1.5 | 0.9649 | 0.0351 | 0.2807 | 0.0526 | 0.7018 | 2.0351 | 0.1930 | 6.9826 | 1299 | 114 | 245 | 10 | 23 | 183 | 111 | 6 | 9 | 333 | 41 | 0 | 13 | 32 | 23 | 0 | 0 | 10.1 | 1.6 | 0.9 | 2.0 | 15.8 | 7.9 | 0.5 | 0.8 | 28.7 | 4.2 | 0.0 | 3.4 | 2.8 | 2.1 | 0.0 | 3.4 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 3 | 0.199004 | 2.156769 | POLYGON ((-120.07239 38.70277, -120.06762 38.7... | 1 | Alpine | -1 | -1 | -1 | 0.0 | 0 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 42.0 | 0.0 | 1256.0 | 32.0 | 726.0 | 644.0 | 236 | 3.760072 | 0.000000 | 112.444047 | 2.864816 | 64.995524 | 57.654432 | 21.128021 | Alpine ,CA | (Alpine County, California, United States, (38... | 38.589393 | -119.834501 |
2 | 06 | California | CA | 06005 | Amador | 06005 | Amador County, California | 0.1754 | 594.583866 | 39023 | 0 | 18246 | 170 | 14844 | 451 | 5416 | 776 | 853 | 197 | 4398 | 586 | 2711 | 314 | 1817 | 421 | 15.3 | 2.2 | 5.6 | 1.3 | 29.6 | 3.8 | 8.8 | 1.0 | 5.1 | 1.2 | 0.1754 | 0.3333 | 0.2105 | 0.1579 | 0.2105 | 1.0876 | 0.0877 | 10537 | 98 | 5962 | 67 | 6336 | 679 | 493 | 144 | 418 | 131 | 27.0 | 0.3 | 15.3 | 0.2 | 17.9 | 1.9 | 3.3 | 1.0 | 1.1 | 0.3 | 0.8596 | 0.0175 | 0.8596 | 0.0526 | 0.1053 | 1.8946 | 0.1579 | 9062 | 436 | 23.2 | 1.1 | 0.1754 | 0.1754 | 0.1754 | 908 | 374 | 1349 | 216 | 381 | 138 | 1009 | 383 | 3578 | 380 | 5.0 | 2.0 | 7.4 | 1.2 | 2.6 | 0.9 | 6.8 | 2.6 | 9.2 | 1.0 | 0.3860 | 0.5789 | 0.1579 | 0.7895 | 0.9474 | 2.8597 | 0.6667 | 6.0173 | 37659 | 4304 | 883 | 867 | 125 | 5591 | 0 | 352 | 104 | 205 | 70 | 30 | 35 | 1768 | 244 | 249 | 249 | 12.1 | 0.1 | 2.2 | 0.3 | 14.3 | 0.0 | 0.9 | 0.3 | 0.5 | 0.2 | 0.1 | 0.1 | 4.5 | 0.6 | 0.6 | 0.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0.161967 | 2.874887 | POLYGON ((-121.02741 38.50354, -121.02747 38.5... | 2 | Amador | 184 | 40 | 14 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 3326.0 | 46.0 | 119657.0 | 3850.0 | 21520.0 | 20173.0 | 7753 | 8.632011 | 0.119384 | 310.547351 | 9.991955 | 55.851133 | 52.355246 | 20.121461 | Amador ,CA | (Amador County, California, United States, (38... | 38.449089 | -120.591102 |
3 | 06 | California | CA | 06007 | Butte | 06007 | Butte County, California | 0.5965 | 1636.488963 | 223344 | 0 | 93968 | 223 | 83879 | 885 | 63024 | 2406 | 7687 | 783 | 29129 | 1348 | 15042 | 962 | 13336 | 1015 | 28.9 | 1.1 | 7.4 | 0.8 | 34.7 | 1.6 | 10.3 | 0.7 | 6.0 | 0.5 | 0.8246 | 0.6667 | 0.5965 | 0.3158 | 0.3684 | 2.7720 | 0.5789 | 40663 | 32 | 44865 | 0 | 37565 | 1531 | 4313 | 487 | 5615 | 637 | 18.2 | 0.1 | 20.1 | 0.0 | 17.0 | 0.7 | 5.1 | 0.6 | 2.7 | 0.3 | 0.6140 | 0.2982 | 0.8070 | 0.3509 | 0.2982 | 2.3683 | 0.4386 | 64420 | 2000 | 28.8 | 0.9 | 0.2456 | 0.2456 | 0.2456 | 7581 | 740 | 11432 | 727 | 2905 | 424 | 5564 | 594 | 6245 | 543 | 8.1 | 0.8 | 12.2 | 0.8 | 3.5 | 0.5 | 6.6 | 0.7 | 2.8 | 0.2 | 0.5789 | 0.8596 | 0.2632 | 0.7368 | 0.6491 | 3.0876 | 0.8596 | 8.4735 | 211098 | 19835 | 1877 | 3778 | 316 | 37585 | 0 | 10350 | 507 | 1725 | 323 | 487 | 138 | 10160 | 792 | 335 | 335 | 9.1 | 0.0 | 1.7 | 0.1 | 16.8 | 0.0 | 4.6 | 0.2 | 0.8 | 0.1 | 0.2 | 0.1 | 4.5 | 0.4 | 0.1 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.455943 | 4.175462 | POLYGON ((-122.06874 39.84222, -122.06694 39.8... | 3 | Butte | 249 | 29 | 55 | 5.5 | 10 | 0.0 | 0 | 6.1 | 8 | -1.0 | -1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | -1.0 | -1 | 15031.0 | 231.0 | 240176.0 | 17085.0 | 109381.0 | 111894.0 | 42931 | 6.902268 | 0.106076 | 110.289343 | 7.845469 | 50.227994 | 51.381969 | 19.714009 | Butte ,CA | (Butte County, California, United States, (39.... | 39.651927 | -121.585844 |
4 | 06 | California | CA | 06009 | Calaveras | 06009 | Calaveras County, California | 0.0526 | 1020.018688 | 45828 | 0 | 28096 | 63 | 16958 | 557 | 9067 | 1157 | 949 | 241 | 5956 | 645 | 3641 | 530 | 2424 | 628 | 20.0 | 2.5 | 5.2 | 1.3 | 35.1 | 3.6 | 10.3 | 1.5 | 5.3 | 1.4 | 0.4386 | 0.2982 | 0.2456 | 0.3158 | 0.2456 | 1.5438 | 0.1579 | 12840 | 244 | 7618 | 170 | 9146 | 915 | 726 | 242 | 312 | 217 | 28.0 | 0.5 | 16.6 | 0.4 | 20.1 | 2.0 | 4.3 | 1.4 | 0.7 | 0.5 | 0.9298 | 0.0877 | 0.9825 | 0.2105 | 0.0351 | 2.2456 | 0.3509 | 9048 | 453 | 19.7 | 1.0 | 0.0526 | 0.0526 | 0.0526 | 429 | 188 | 2108 | 342 | 315 | 136 | 269 | 99 | 514 | 154 | 1.5 | 0.7 | 7.5 | 1.2 | 1.9 | 0.8 | 1.6 | 0.6 | 1.1 | 0.3 | 0.0175 | 0.6140 | 0.0526 | 0.0000 | 0.1053 | 0.7894 | 0.0000 | 4.6314 | 35355 | 5807 | 1258 | 450 | 159 | 5710 | 0 | 864 | 152 | 271 | 146 | 18 | 21 | 1691 | 284 | 44 | 44 | 12.8 | 0.1 | 1.0 | 0.3 | 12.5 | 0.0 | 1.9 | 0.3 | 0.6 | 0.3 | 0.0 | 0.1 | 3.7 | 0.6 | 0.1 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.276242 | 2.931103 | POLYGON ((-120.99359 38.22558, -120.99161 38.2... | 4 | Calaveras | 50 | 27 | 11 | -1.0 | -1 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | -2.0 | -2 | 3540.0 | 64.0 | 55562.0 | 4143.0 | 25209.0 | 23549.0 | 9016 | 7.992955 | 0.144505 | 125.453273 | 9.354467 | 56.919325 | 53.171216 | 20.357199 | Calaveras ,CA | (Calaveras County, California, United States, ... | 38.255818 | -120.498149 |
With the the spatially joined GeoDataFrame, we will now visualize new HIV diagnoses and COVID-19 cases by county.
# Show HIV Infection Rate by Counties:
CA_svi_hivcovid.plot(column='New Diagnoses Rate', figsize=(9,7), legend=True, cmap='cool') #plot by Rate
plt.title('New HIV Diagnoses Rate') #set title
plt.show() #show plot
# Show HIV Infection Cases by Counties:
CA_svi_hivcovid.plot(column='New Diagnoses Cases', figsize=(9,7), legend=True, cmap='cool') #plot by case count
plt.title('New HIV Diagnoses Cases') #set title
plt.show() #show plot
# Show PrEP User Rate by Counties:
CA_svi_hivcovid.plot(column='PrEP Rate', figsize=(9,7), legend=True, cmap='spring_r') #plot by rate
plt.title('PrEP Rate') # set title
plt.show() # show plot
# Show New PrEP Users by Counties:
CA_svi_hivcovid.plot(column='PrEP Users', figsize=(9,7), legend=True, cmap='spring_r') #plot by count
plt.title('New PrEP Users') #set title
plt.show() #show plot
# Show HIV Infection Rate by Race/Ethnic Group ---
# Create a list of all race/ethnic rate feature names:
byrace = ['New Diagnoses Black Rate', 'New Diagnoses White Rate', 'New Diagnoses Hispanic Rate',
'New Diagnoses Asian Rate', 'New Diagnoses American Indian/Alaska Native Rate',
'New Diagnoses Native Hawaiian/Pacific Islander Rate']
fig, axes = plt.subplots(3,2, figsize=(10,16)) # create a figure with 3 by 2 subplots
axes = axes.flatten() #flatten 2-D array to 1-D array
for i,col in enumerate(byrace): # each i axes, by col
CA_svi_hivcovid.plot(ax=axes[i], column=col, legend=True, cmap='cool') # map col to each axes
axes[i].set_title(col,fontsize=10) # set title by col name
axes[i].axis('off') # turn off axis display
plt.tight_layout()
Above, we can see a clear distinction between the spread of HIV among race and ethnic groups. Pink and purple represents high rates of infection and blues represent lower rates of infection with baby blue representing no infection.
For American Indian/Alaska Native: HIV infection is concentrated in only one or two counties preseumly in San Fransisco. The rate of infection among this group is twice as high as hispanics, and five times higher than the rate of whites.
Native Hawaiian/Pacific Islander: HIV infection is concentrated in a few counties specifically in the Bay Area or in Southern California. The infection rate is not as high compared to American Indian/Alaska Native, which from the map, it is very clear that all of the infection happens in only one location for American Indian/Alaska Native compared to all other ethnic groups.
For Asian:, HIV is spreading in three main concentrations including Southern California, Middle California, and the Bay Area. Although the spread of infection is more varied in terms of location for this group, this group also has the lowest rates of infection and is the only group with a lower infection rate than Whites.
For Black: HIV is also spreading in three main concentrations but at a much higer rate than Asian and White, about 3 times higher than Whites and slightly higher than Hispanics.
For White: HIV is spreading in various counties with this group having more counties in purple and hot pink than other groups. Based on the map, although more counties are in purple and hot pink, the rate of infection is lower for Whites compared to all other ethnic groups (except Asian).
For Hispaanics: HIV is also spreading in various counties but most counties appear in darker blues and only one location appears in hot pink. The rate of infection for this group os 3 times higher than the rate for Whites.
# Show New HIV Cases by Race/Ethnic Group ---
# Create a list of all race/ethnic rate feature names:
byrace_cases = ['New Diagnoses Black Cases', 'New Diagnoses White Cases', 'New Diagnoses Hispanic Cases',
'New Diagnoses Asian Cases', 'New Diagnoses American Indian/Alaska Native Cases',
'New Diagnoses Native Hawaiian/Pacific Islander Cases']
fig, axes = plt.subplots(3,2, figsize=(10,16)) # create a figure with 3 by 2 subplots
axes = axes.flatten() #flatten 2-D array to 1-D array
for i,col in enumerate(byrace_cases): # each i axes, by col
CA_svi_hivcovid.plot(ax=axes[i], column=col, legend=True, cmap='spring_r') # map col to each axes
axes[i].set_title(col,fontsize=10) # set title by col name
axes[i].axis('off') # turn off axis display
plt.tight_layout()
Above, by looking at the number of cases, we can see that HIV is spreading higher among certain ethnic groups and concentrated in certain key areas. American Indian/Alaska Native and Native Hawaiian/Pacific Islanders have the lowest number of cases and have cases spread out throughout the state. Whereas, for Black, White, Asian, and Hispanic, the cases are appearing in only one area, Los Angeles. The number of new cases for Hispanics is three times higher than the number of new cases for Black and Whites. The number of cases for Asians is five times lower than the number of cases for Whites. When compared to the previous maps showing the rates of infection, it appears that the rate of infection for American Indian/Alaska Native and Native Hawaiian/Pacific Islanders is very high among their group, but in terms of case numbers, they have signiciantly less number of new cases. Since the infection rate takes into consideration the population of each ethnic group, it is still very interesting to see the dynamic difference in the spread of HIV epidemic among the different ethnic groups.
# Show COVID Tests, Cases and Deaths ---
# Create a list of all COVID Features:
covid = ['COVID Cases_Rate', 'COVID Deaths_Rate', 'Total COVID Tests_Rate', 'Positive COVID Tests_Rate']
fig, axes = plt.subplots(2,2, figsize=(10,16)) # create a figure with 3 by 2 subplots
axes = axes.flatten() #flatten 2-D array to 1-D array
for i,col in enumerate(covid): # each i axes, by col
CA_svi_hivcovid.plot(ax=axes[i], column=col, legend=True, cmap='spring_r') # map col to each axes
axes[i].set_title(col,fontsize=10) # set title by col name
axes[i].axis('off') # turn off axis display
plt.tight_layout()
Above, we can see differences among communities specifically when it comes to COVID Test_Rates. COVID_Test_Rates is the rate of individuals getting tested for COVID-19. During the pandemic, regular testing was advocated by the CDC and by California which provided free mass testing sites. Based on the map, certain counties had higher testing rates than others specifically a few counties in Northern California and Los Angeles. Although the rate of testing was concentrated to select locations, the positive test rate is spread out throughout most counties in California. In addition, we can see from the map of the COVID Case Rate that higher infection rate occured in middle and Southern California which appears in hot pink compared to Northern Califronia.
# Show Vaccinations ---
# Create a list of all Vaccine Features:
vaccines = ['Partially Vaccinated_Rate', 'Fully Vaccinated_Rate', 'Boosted_Rate']
fig, axes = plt.subplots(3,1, figsize=(10,16)) # create a figure with 3 by 2 subplots
axes = axes.flatten() #flatten 2-D array to 1-D array
for i,col in enumerate(vaccines): # each i axes, by col
CA_svi_hivcovid.plot(ax=axes[i], column=col, legend=True, cmap='cool') # map col to each axes
axes[i].set_title(col,fontsize=10) # set title by col name
axes[i].axis('off') # turn off axis display
plt.tight_layout()
Above, we can see that a high percentage of Califorians were partially vaccinated by the end of 2021 with many counties in and around the Bay Area, along the coast, and in Southern California reaching over 80% as shown in dark violet. Similarly, the fully vaccinated rate mirrors the partially vaccinated rate pretty closely. In contrast, the boosted rate as shown in the map shows more counties in blues and only the Bay Area having violets and pinks but with a much lower rate, about half as much as partially vaccinated.
Next, we will explore the spatial patterns and identify spatial clusters as well as atypical locations (spatial outliers) using the new diagnosis HIV rate, PrEP rate, COVID Case_Rate, COVID Tests_Rate, Fully Vaccinated_Rates, EP_MINRTY (percentage of minority), and EP_UNINSUR (percentage of uninsured). We are selecting percentage of uninsured as it represents a key factor for RL_THEME1 (socioeconomic status) but is directly related to healthcare which may be significant when analyzing HIV and COVID.
Queen's method will be used for constructing spatial weights which considers observations that share edges and corners as neighbors. First, a subset of the data will be created, then spatial weights will be applied and Local Moran's I will be calculated.
# Grab subset of the data with desired features
CA_hivcovid2 = CA_svi_hivcovid[['FIPS', 'COUNTY', 'New Diagnoses Rate', 'PrEP Rate', 'COVID Cases_Rate',
'Total COVID Tests_Rate', 'Fully Vaccinated_Rate', 'EP_MINRTY',
'EP_UNINSUR', 'geometry']]
CA_hivcovid2.head() #check the head of df
FIPS | COUNTY | New Diagnoses Rate | PrEP Rate | COVID Cases_Rate | Total COVID Tests_Rate | Fully Vaccinated_Rate | EP_MINRTY | EP_UNINSUR | geometry | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 06001 | Alameda | 11.1 | 131 | 5.248160 | 215.026164 | 77.214829 | 69.4 | 4.3 | POLYGON ((-122.34225 37.80556, -122.33412 37.8... |
1 | 06003 | Alpine | 0.0 | -1 | 3.760072 | 112.444047 | 57.654432 | 48.7 | 7.6 | POLYGON ((-120.07239 38.70277, -120.06762 38.7... |
2 | 06005 | Amador | -1.0 | 40 | 8.632011 | 310.547351 | 52.355246 | 23.2 | 5.1 | POLYGON ((-121.02741 38.50354, -121.02747 38.5... |
3 | 06007 | Butte | 5.5 | 29 | 6.902268 | 110.289343 | 51.381969 | 28.8 | 6.0 | POLYGON ((-122.06874 39.84222, -122.06694 39.8... |
4 | 06009 | Calaveras | -1.0 | 27 | 7.992955 | 125.453273 | 53.171216 | 19.7 | 5.3 | POLYGON ((-120.99359 38.22558, -120.99161 38.2... |
# Set index using existing 'FIPS' column
CA_hivcovid3 = CA_hivcovid2.set_index('FIPS', drop=False)
CA_hivcovid3.tail()
FIPS | COUNTY | New Diagnoses Rate | PrEP Rate | COVID Cases_Rate | Total COVID Tests_Rate | Fully Vaccinated_Rate | EP_MINRTY | EP_UNINSUR | geometry | |
---|---|---|---|---|---|---|---|---|---|---|
FIPS | ||||||||||
06107 | 06107 | Tulare | 7.9 | 36 | 7.705249 | 133.590891 | 48.426272 | 72.2 | 7.8 | POLYGON ((-119.56647 36.49434, -119.56366 36.4... |
06109 | 06109 | Tuolumne | 0.0 | 30 | 10.164085 | 209.753395 | 52.734427 | 20.3 | 6.1 | POLYGON ((-120.65324 37.83282, -120.64865 37.8... |
06111 | 06111 | Ventura | 7.7 | 68 | 8.319584 | 196.026137 | 68.298569 | 55.1 | 8.4 | MULTIPOLYGON (((-119.47784 34.37942, -119.4737... |
06113 | 06113 | Yolo | 5.9 | 40 | 6.198683 | 449.807255 | 66.626120 | 54.2 | 4.3 | POLYGON ((-122.42149 38.90233, -122.42190 38.9... |
06115 | 06115 | Yuba | -1.0 | 30 | 8.808173 | 113.725564 | 45.854458 | 46.0 | 7.1 | POLYGON ((-121.63631 39.24941, -121.63581 39.2... |
# Create spatial weight object using Queen's Method
w = weights.Queen.from_dataframe(CA_hivcovid3, idVariable='FIPS')
# Row Standardize Spatial Weights
w.transform = 'R'
# Calculate Local Moran's I
lm = esda.Moran_Local(CA_hivcovid3['New Diagnoses Rate'], w)
# write z,p-value, quandrant type of Local Moran's I to GeoDataFrame
CA_hivcovid3['LMZ_NDR'] = lm.z # z-score of Local Moran's I
CA_hivcovid3['LMP_NDR'] = lm.p_sim # p-value of Local Moran's I
CA_hivcovid3['LMQ_NDR'] = lm.q # quadrant type of Local Moran's I
CA_hivcovid3.head(3) #view head
FIPS | COUNTY | New Diagnoses Rate | PrEP Rate | COVID Cases_Rate | Total COVID Tests_Rate | Fully Vaccinated_Rate | EP_MINRTY | EP_UNINSUR | geometry | LMZ_NDR | LMP_NDR | LMQ_NDR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIPS | |||||||||||||
06001 | 06001 | Alameda | 11.1 | 131 | 5.248160 | 215.026164 | 77.214829 | 69.4 | 4.3 | POLYGON ((-122.34225 37.80556, -122.33412 37.8... | 0.929014 | 0.036 | 1 |
06003 | 06003 | Alpine | 0.0 | -1 | 3.760072 | 112.444047 | 57.654432 | 48.7 | 7.6 | POLYGON ((-120.07239 38.70277, -120.06762 38.7... | -0.919254 | 0.013 | 3 |
06005 | 06005 | Amador | -1.0 | 40 | 8.632011 | 310.547351 | 52.355246 | 23.2 | 5.1 | POLYGON ((-121.02741 38.50354, -121.02747 38.5... | -1.085764 | 0.496 | 2 |
# Calculate Local Moran's I
lm2 = esda.Moran_Local(CA_hivcovid3['PrEP Rate'], w)
# write z,p-value, quandrant type of Local Moran's I to GeoDataFrame
CA_hivcovid3['LMZ_PR'] = lm2.z # z-score of Local Moran's I
CA_hivcovid3['LMP_PR'] = lm2.p_sim # p-value of Local Moran's I
CA_hivcovid3['LMQ_PR'] = lm2.q # quadrant type of Local Moran's I
CA_hivcovid3.head(3) #view head
FIPS | COUNTY | New Diagnoses Rate | PrEP Rate | COVID Cases_Rate | Total COVID Tests_Rate | Fully Vaccinated_Rate | EP_MINRTY | EP_UNINSUR | geometry | LMZ_NDR | LMP_NDR | LMQ_NDR | LMZ_PR | LMP_PR | LMQ_PR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIPS | ||||||||||||||||
06001 | 06001 | Alameda | 11.1 | 131 | 5.248160 | 215.026164 | 77.214829 | 69.4 | 4.3 | POLYGON ((-122.34225 37.80556, -122.33412 37.8... | 0.929014 | 0.036 | 1 | 0.489133 | 0.037 | 1 |
06003 | 06003 | Alpine | 0.0 | -1 | 3.760072 | 112.444047 | 57.654432 | 48.7 | 7.6 | POLYGON ((-120.07239 38.70277, -120.06762 38.7... | -0.919254 | 0.013 | 3 | -0.643939 | 0.042 | 3 |
06005 | 06005 | Amador | -1.0 | 40 | 8.632011 | 310.547351 | 52.355246 | 23.2 | 5.1 | POLYGON ((-121.02741 38.50354, -121.02747 38.5... | -1.085764 | 0.496 | 2 | -0.292000 | 0.034 | 3 |
# Calculate Local Moran's I
lm3 = esda.Moran_Local(CA_hivcovid3['COVID Cases_Rate'], w)
# write z,p-value, quandrant type of Local Moran's I to GeoDataFrame
CA_hivcovid3['LMZ_CCR'] = lm3.z # z-score of Local Moran's I
CA_hivcovid3['LMP_CCR'] = lm3.p_sim # p-value of Local Moran's I
CA_hivcovid3['LMQ_CCR'] = lm3.q # quadrant type of Local Moran's I
CA_hivcovid3.head(3) #view head
FIPS | COUNTY | New Diagnoses Rate | PrEP Rate | COVID Cases_Rate | Total COVID Tests_Rate | Fully Vaccinated_Rate | EP_MINRTY | EP_UNINSUR | geometry | LMZ_NDR | LMP_NDR | LMQ_NDR | LMZ_PR | LMP_PR | LMQ_PR | LMZ_CCR | LMP_CCR | LMQ_CCR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIPS | |||||||||||||||||||
06001 | 06001 | Alameda | 11.1 | 131 | 5.248160 | 215.026164 | 77.214829 | 69.4 | 4.3 | POLYGON ((-122.34225 37.80556, -122.33412 37.8... | 0.929014 | 0.036 | 1 | 0.489133 | 0.037 | 1 | -1.167088 | 0.193 | 3 |
06003 | 06003 | Alpine | 0.0 | -1 | 3.760072 | 112.444047 | 57.654432 | 48.7 | 7.6 | POLYGON ((-120.07239 38.70277, -120.06762 38.7... | -0.919254 | 0.013 | 3 | -0.643939 | 0.042 | 3 | -2.004203 | 0.071 | 2 |
06005 | 06005 | Amador | -1.0 | 40 | 8.632011 | 310.547351 | 52.355246 | 23.2 | 5.1 | POLYGON ((-121.02741 38.50354, -121.02747 38.5... | -1.085764 | 0.496 | 2 | -0.292000 | 0.034 | 3 | 0.736475 | 0.186 | 4 |
# Calculate Local Moran's I
lm4 = esda.Moran_Local(CA_hivcovid3['Total COVID Tests_Rate'], w)
# write z,p-value, quandrant type of Local Moran's I to GeoDataFrame
CA_hivcovid3['LMZ_TCTR'] = lm4.z # z-score of Local Moran's I
CA_hivcovid3['LMP_TCTR'] = lm4.p_sim # p-value of Local Moran's I
CA_hivcovid3['LMQ_TCTR'] = lm4.q # quadrant type of Local Moran's I
CA_hivcovid3.head(3) #view head
FIPS | COUNTY | New Diagnoses Rate | PrEP Rate | COVID Cases_Rate | Total COVID Tests_Rate | Fully Vaccinated_Rate | EP_MINRTY | EP_UNINSUR | geometry | LMZ_NDR | LMP_NDR | LMQ_NDR | LMZ_PR | LMP_PR | LMQ_PR | LMZ_CCR | LMP_CCR | LMQ_CCR | LMZ_TCTR | LMP_TCTR | LMQ_TCTR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIPS | ||||||||||||||||||||||
06001 | 06001 | Alameda | 11.1 | 131 | 5.248160 | 215.026164 | 77.214829 | 69.4 | 4.3 | POLYGON ((-122.34225 37.80556, -122.33412 37.8... | 0.929014 | 0.036 | 1 | 0.489133 | 0.037 | 1 | -1.167088 | 0.193 | 3 | 0.478316 | 0.250 | 1 |
06003 | 06003 | Alpine | 0.0 | -1 | 3.760072 | 112.444047 | 57.654432 | 48.7 | 7.6 | POLYGON ((-120.07239 38.70277, -120.06762 38.7... | -0.919254 | 0.013 | 3 | -0.643939 | 0.042 | 3 | -2.004203 | 0.071 | 2 | -0.684694 | 0.363 | 2 |
06005 | 06005 | Amador | -1.0 | 40 | 8.632011 | 310.547351 | 52.355246 | 23.2 | 5.1 | POLYGON ((-121.02741 38.50354, -121.02747 38.5... | -1.085764 | 0.496 | 2 | -0.292000 | 0.034 | 3 | 0.736475 | 0.186 | 4 | 1.561273 | 0.163 | 4 |
# Calculate Local Moran's I
lm5 = esda.Moran_Local(CA_hivcovid3['Fully Vaccinated_Rate'], w)
# write z,p-value, quandrant type of Local Moran's I to GeoDataFrame
CA_hivcovid3['LMZ_FVR'] = lm5.z # z-score of Local Moran's I
CA_hivcovid3['LMP_FVR'] = lm5.p_sim # p-value of Local Moran's I
CA_hivcovid3['LMQ_FVR'] = lm5.q # quadrant type of Local Moran's I
CA_hivcovid3.head(3) #view head
FIPS | COUNTY | New Diagnoses Rate | PrEP Rate | COVID Cases_Rate | Total COVID Tests_Rate | Fully Vaccinated_Rate | EP_MINRTY | EP_UNINSUR | geometry | LMZ_NDR | LMP_NDR | LMQ_NDR | LMZ_PR | LMP_PR | LMQ_PR | LMZ_CCR | LMP_CCR | LMQ_CCR | LMZ_TCTR | LMP_TCTR | LMQ_TCTR | LMZ_FVR | LMP_FVR | LMQ_FVR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIPS | |||||||||||||||||||||||||
06001 | 06001 | Alameda | 11.1 | 131 | 5.248160 | 215.026164 | 77.214829 | 69.4 | 4.3 | POLYGON ((-122.34225 37.80556, -122.33412 37.8... | 0.929014 | 0.036 | 1 | 0.489133 | 0.037 | 1 | -1.167088 | 0.193 | 3 | 0.478316 | 0.250 | 1 | 1.484751 | 0.028 | 1 |
06003 | 06003 | Alpine | 0.0 | -1 | 3.760072 | 112.444047 | 57.654432 | 48.7 | 7.6 | POLYGON ((-120.07239 38.70277, -120.06762 38.7... | -0.919254 | 0.013 | 3 | -0.643939 | 0.042 | 3 | -2.004203 | 0.071 | 2 | -0.684694 | 0.363 | 2 | -0.087535 | 0.318 | 3 |
06005 | 06005 | Amador | -1.0 | 40 | 8.632011 | 310.547351 | 52.355246 | 23.2 | 5.1 | POLYGON ((-121.02741 38.50354, -121.02747 38.5... | -1.085764 | 0.496 | 2 | -0.292000 | 0.034 | 3 | 0.736475 | 0.186 | 4 | 1.561273 | 0.163 | 4 | -0.513489 | 0.440 | 3 |
# Calculate Local Moran's I
lm6 = esda.Moran_Local(CA_hivcovid3['EP_MINRTY'], w)
# write z,p-value, quandrant type of Local Moran's I to GeoDataFrame
CA_hivcovid3['LMZ_MIN'] = lm6.z # z-score of Local Moran's I
CA_hivcovid3['LMP_MIN'] = lm6.p_sim # p-value of Local Moran's I
CA_hivcovid3['LMQ_MIN'] = lm6.q # quadrant type of Local Moran's I
CA_hivcovid3.head(3) #view head
FIPS | COUNTY | New Diagnoses Rate | PrEP Rate | COVID Cases_Rate | Total COVID Tests_Rate | Fully Vaccinated_Rate | EP_MINRTY | EP_UNINSUR | geometry | LMZ_NDR | LMP_NDR | LMQ_NDR | LMZ_PR | LMP_PR | LMQ_PR | LMZ_CCR | LMP_CCR | LMQ_CCR | LMZ_TCTR | LMP_TCTR | LMQ_TCTR | LMZ_FVR | LMP_FVR | LMQ_FVR | LMZ_MIN | LMP_MIN | LMQ_MIN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIPS | ||||||||||||||||||||||||||||
06001 | 06001 | Alameda | 11.1 | 131 | 5.248160 | 215.026164 | 77.214829 | 69.4 | 4.3 | POLYGON ((-122.34225 37.80556, -122.33412 37.8... | 0.929014 | 0.036 | 1 | 0.489133 | 0.037 | 1 | -1.167088 | 0.193 | 3 | 0.478316 | 0.250 | 1 | 1.484751 | 0.028 | 1 | 1.132863 | 0.029 | 1 |
06003 | 06003 | Alpine | 0.0 | -1 | 3.760072 | 112.444047 | 57.654432 | 48.7 | 7.6 | POLYGON ((-120.07239 38.70277, -120.06762 38.7... | -0.919254 | 0.013 | 3 | -0.643939 | 0.042 | 3 | -2.004203 | 0.071 | 2 | -0.684694 | 0.363 | 2 | -0.087535 | 0.318 | 3 | 0.084524 | 0.004 | 4 |
06005 | 06005 | Amador | -1.0 | 40 | 8.632011 | 310.547351 | 52.355246 | 23.2 | 5.1 | POLYGON ((-121.02741 38.50354, -121.02747 38.5... | -1.085764 | 0.496 | 2 | -0.292000 | 0.034 | 3 | 0.736475 | 0.186 | 4 | 1.561273 | 0.163 | 4 | -0.513489 | 0.440 | 3 | -1.206908 | 0.328 | 3 |
# Calculate Local Moran's I
lm7 = esda.Moran_Local(CA_hivcovid3['EP_UNINSUR'], w)
# write z,p-value, quandrant type of Local Moran's I to GeoDataFrame
CA_hivcovid3['LMZ_UNI'] = lm7.z # z-score of Local Moran's I
CA_hivcovid3['LMP_UNI'] = lm7.p_sim # p-value of Local Moran's I
CA_hivcovid3['LMQ_UNI'] = lm7.q # quadrant type of Local Moran's I
CA_hivcovid3.head(3) #view head
FIPS | COUNTY | New Diagnoses Rate | PrEP Rate | COVID Cases_Rate | Total COVID Tests_Rate | Fully Vaccinated_Rate | EP_MINRTY | EP_UNINSUR | geometry | LMZ_NDR | LMP_NDR | LMQ_NDR | LMZ_PR | LMP_PR | LMQ_PR | LMZ_CCR | LMP_CCR | LMQ_CCR | LMZ_TCTR | LMP_TCTR | LMQ_TCTR | LMZ_FVR | LMP_FVR | LMQ_FVR | LMZ_MIN | LMP_MIN | LMQ_MIN | LMZ_UNI | LMP_UNI | LMQ_UNI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIPS | |||||||||||||||||||||||||||||||
06001 | 06001 | Alameda | 11.1 | 131 | 5.248160 | 215.026164 | 77.214829 | 69.4 | 4.3 | POLYGON ((-122.34225 37.80556, -122.33412 37.8... | 0.929014 | 0.036 | 1 | 0.489133 | 0.037 | 1 | -1.167088 | 0.193 | 3 | 0.478316 | 0.250 | 1 | 1.484751 | 0.028 | 1 | 1.132863 | 0.029 | 1 | -1.197487 | 0.015 | 3 |
06003 | 06003 | Alpine | 0.0 | -1 | 3.760072 | 112.444047 | 57.654432 | 48.7 | 7.6 | POLYGON ((-120.07239 38.70277, -120.06762 38.7... | -0.919254 | 0.013 | 3 | -0.643939 | 0.042 | 3 | -2.004203 | 0.071 | 2 | -0.684694 | 0.363 | 2 | -0.087535 | 0.318 | 3 | 0.084524 | 0.004 | 4 | 0.463375 | 0.476 | 1 |
06005 | 06005 | Amador | -1.0 | 40 | 8.632011 | 310.547351 | 52.355246 | 23.2 | 5.1 | POLYGON ((-121.02741 38.50354, -121.02747 38.5... | -1.085764 | 0.496 | 2 | -0.292000 | 0.034 | 3 | 0.736475 | 0.186 | 4 | 1.561273 | 0.163 | 4 | -0.513489 | 0.440 | 3 | -1.206908 | 0.328 | 3 | -0.794854 | 0.145 | 3 |
For the statistical significance, we will use a threshold of 0.05 and flag locations that are signicifant spatial clusters (HH, LL) and outliers (HL, LH) based on Moran's Four Quadrants.
# set color palette for LM Quadrant Type for HIV Features
lmq_h = {'HH':'darkmagenta','LL':'orchid','HL':'blue','LH':'paleturquoise'}
# set color palette for LM Quadrant Type for COVID Features
lmq_c = {'HH':'gold','LL':'yellow','HL':'olivedrab','LH':'darkgreen'}
# set color palette for LM Quadrant Type for SVI Features
lmq_s = {'HH':'deeppink','LL':'fuchsia','HL':'salmon','LH':'sandybrown'}
# Set conditions for each of Moran Plot's Quadrants
cond_hh = (CA_hivcovid3['LMQ_NDR'] == 1) & (CA_hivcovid3['LMP_NDR'] <= 0.05) #less than or equal to 0.05
cond_lh = (CA_hivcovid3['LMQ_NDR'] == 2) & (CA_hivcovid3['LMP_NDR'] <= 0.05) #less than or equal to 0.05
cond_ll = (CA_hivcovid3['LMQ_NDR'] == 3) & (CA_hivcovid3['LMP_NDR'] <= 0.05) #less than or equal to 0.05
cond_hl = (CA_hivcovid3['LMQ_NDR'] == 4) & (CA_hivcovid3['LMP_NDR'] <= 0.05) #less than or equal to 0.05
# 'LISA_Type' to 'HH' if quadrant type is 1 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_hh,'NDR_LISA'] = 'HH'
# 'LISA_Type' to 'LH' if quadrant type is 2 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_lh,'NDR_LISA'] = 'LH'
# 'LISA_Type' to 'LL' if quadrant type is 3 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_ll,'NDR_LISA'] = 'LL'
# 'LISA_Type' to 'HL' if quadrant type is 4 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_hl,'NDR_LISA'] = 'HL'
# Countplot showing the number of tracts that fall into the four quadrant types
sns.countplot(data=CA_hivcovid3, x='NDR_LISA', palette='winter')
plt.show() #show plot
# Create Lisa Series and Drop NA Values:
NDR_lisa2 = CA_hivcovid3['NDR_LISA'].dropna()
# Define Style Function for NDA
def style_NDR(feature):
# get LM Quadrant Type of GeoJson feature by FIPS code, and set it to lmq_type
# set Null to lmq_type if there is no LM Quadrant Type in lisa_series
lmq_type = NDR_lisa2.get(feature['properties']['FIPS'],None)
# gray polygon if LMQ type is None (not statistically significant)
if lmq_type is None:
return {'fillOpacity':0.5, 'weight':0.5, 'fillColor':'silver', 'color':'white'}
# use color palette for fillColor otherwise
else:
return {'fillOpacity':0.5, 'weight':0.5, 'fillColor':lmq_h[lmq_type], 'color':'white'}
# Set conditions for each of Moran Plot's Quadrants
cond_hh = (CA_hivcovid3['LMQ_PR'] == 1) & (CA_hivcovid3['LMP_PR'] <= 0.05) #less than or equal to 0.05
cond_lh = (CA_hivcovid3['LMQ_PR'] == 2) & (CA_hivcovid3['LMP_PR'] <= 0.05) #less than or equal to 0.05
cond_ll = (CA_hivcovid3['LMQ_PR'] == 3) & (CA_hivcovid3['LMP_PR'] <= 0.05) #less than or equal to 0.05
cond_hl = (CA_hivcovid3['LMQ_PR'] == 4) & (CA_hivcovid3['LMP_PR'] <= 0.05) #less than or equal to 0.05
# 'LISA_Type' to 'HH' if quadrant type is 1 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_hh,'PR_LISA'] = 'HH'
# 'LISA_Type' to 'LH' if quadrant type is 2 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_lh,'PR_LISA'] = 'LH'
# 'LISA_Type' to 'LL' if quadrant type is 3 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_ll,'PR_LISA'] = 'LL'
# 'LISA_Type' to 'HL' if quadrant type is 4 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_hl,'PR_LISA'] = 'HL'
# Countplot showing the number of tracts that fall into the four quadrant types
sns.countplot(data=CA_hivcovid3, x='PR_LISA', palette='cool')
plt.show() #show plot
# Create Lisa Series and Drop NA Values:
PR_lisa2 = CA_hivcovid3['PR_LISA'].dropna()
# Define Style Function for PR
def style_PR(feature):
# get LM Quadrant Type of GeoJson feature by FIPS code, and set it to lmq_type
# set Null to lmq_type if there is no LM Quadrant Type in lisa_series
lmq_type = PR_lisa2.get(feature['properties']['FIPS'],None)
# gray polygon if LMQ type is None (not statistically significant)
if lmq_type is None:
return {'fillOpacity':0.5, 'weight':0.5, 'fillColor':'silver', 'color':'white'}
# use color palette for fillColor otherwise
else:
return {'fillOpacity':0.5, 'weight':0.5, 'fillColor':lmq_h[lmq_type], 'color':'white'}
# Set conditions for each of Moran Plot's Quadrants
cond_hh = (CA_hivcovid3['LMQ_CCR'] == 1) & (CA_hivcovid3['LMP_CCR'] <= 0.05) #less than or equal to 0.05
cond_lh = (CA_hivcovid3['LMQ_CCR'] == 2) & (CA_hivcovid3['LMP_CCR'] <= 0.05) #less than or equal to 0.05
cond_ll = (CA_hivcovid3['LMQ_CCR'] == 3) & (CA_hivcovid3['LMP_CCR'] <= 0.05) #less than or equal to 0.05
cond_hl = (CA_hivcovid3['LMQ_CCR'] == 4) & (CA_hivcovid3['LMP_CCR'] <= 0.05) #less than or equal to 0.05
# 'LISA_Type' to 'HH' if quadrant type is 1 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_hh,'CCR_LISA'] = 'HH'
# 'LISA_Type' to 'LH' if quadrant type is 2 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_lh,'CCR_LISA'] = 'LH'
# 'LISA_Type' to 'LL' if quadrant type is 3 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_ll,'CCR_LISA'] = 'LL'
# 'LISA_Type' to 'HL' if quadrant type is 4 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_hl,'CCR_LISA'] = 'HL'
# Countplot showing the number of tracts that fall into the four quadrant types
sns.countplot(data=CA_hivcovid3, x='CCR_LISA', palette='winter')
plt.show() #show plot
# Create Lisa Series and Drop NA Values:
CCR_lisa2 = CA_hivcovid3['CCR_LISA'].dropna()
# Define Style Function for PR
def style_CCR(feature):
# get LM Quadrant Type of GeoJson feature by FIPS code, and set it to lmq_type
# set Null to lmq_type if there is no LM Quadrant Type in lisa_series
lmq_type = CCR_lisa2.get(feature['properties']['FIPS'],None)
# gray polygon if LMQ type is None (not statistically significant)
if lmq_type is None:
return {'fillOpacity':0.5, 'weight':0.5, 'fillColor':'silver', 'color':'white'}
# use color palette for fillColor otherwise
else:
return {'fillOpacity':0.5, 'weight':0.5, 'fillColor':lmq_c[lmq_type], 'color':'white'}
# Set conditions for each of Moran Plot's Quadrants
cond_hh = (CA_hivcovid3['LMQ_TCTR'] == 1) & (CA_hivcovid3['LMP_TCTR'] <= 0.05) #less than or equal to 0.05
cond_lh = (CA_hivcovid3['LMQ_TCTR'] == 2) & (CA_hivcovid3['LMP_TCTR'] <= 0.05) #less than or equal to 0.05
cond_ll = (CA_hivcovid3['LMQ_TCTR'] == 3) & (CA_hivcovid3['LMP_TCTR'] <= 0.05) #less than or equal to 0.05
cond_hl = (CA_hivcovid3['LMQ_TCTR'] == 4) & (CA_hivcovid3['LMP_TCTR'] <= 0.05) #less than or equal to 0.05
# 'LISA_Type' to 'HH' if quadrant type is 1 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_hh,'TCTR_LISA'] = 'HH'
# 'LISA_Type' to 'LH' if quadrant type is 2 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_lh,'TCTR_LISA'] = 'LH'
# 'LISA_Type' to 'LL' if quadrant type is 3 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_ll,'TCTR_LISA'] = 'LL'
# 'LISA_Type' to 'HL' if quadrant type is 4 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_hl,'TCTR_LISA'] = 'HL'
# Countplot showing the number of tracts that fall into the four quadrant types
sns.countplot(data=CA_hivcovid3, x='TCTR_LISA', palette='cool')
plt.show() #show plot
# Create Lisa Series and Drop NA Values:
TCTR_lisa2 = CA_hivcovid3['TCTR_LISA'].dropna()
# Define Style Function for PR
def style_TCTR(feature):
# get LM Quadrant Type of GeoJson feature by FIPS code, and set it to lmq_type
# set Null to lmq_type if there is no LM Quadrant Type in lisa_series
lmq_type = TCTR_lisa2.get(feature['properties']['FIPS'],None)
# gray polygon if LMQ type is None (not statistically significant)
if lmq_type is None:
return {'fillOpacity':0.5, 'weight':0.5, 'fillColor':'silver', 'color':'white'}
# use color palette for fillColor otherwise
else:
return {'fillOpacity':0.5, 'weight':0.5, 'fillColor':lmq_c[lmq_type], 'color':'white'}
# Set conditions for each of Moran Plot's Quadrants
cond_hh = (CA_hivcovid3['LMQ_FVR'] == 1) & (CA_hivcovid3['LMP_FVR'] <= 0.05) #less than or equal to 0.05
cond_lh = (CA_hivcovid3['LMQ_FVR'] == 2) & (CA_hivcovid3['LMP_FVR'] <= 0.05) #less than or equal to 0.05
cond_ll = (CA_hivcovid3['LMQ_FVR'] == 3) & (CA_hivcovid3['LMP_FVR'] <= 0.05) #less than or equal to 0.05
cond_hl = (CA_hivcovid3['LMQ_FVR'] == 4) & (CA_hivcovid3['LMP_FVR'] <= 0.05) #less than or equal to 0.05
# 'LISA_Type' to 'HH' if quadrant type is 1 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_hh,'FVR_LISA'] = 'HH'
# 'LISA_Type' to 'LH' if quadrant type is 2 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_lh,'FVR_LISA'] = 'LH'
# 'LISA_Type' to 'LL' if quadrant type is 3 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_ll,'FVR_LISA'] = 'LL'
# 'LISA_Type' to 'HL' if quadrant type is 4 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_hl,'FVR_LISA'] = 'HL'
# Countplot showing the number of tracts that fall into the four quadrant types
sns.countplot(data=CA_hivcovid3, x='FVR_LISA', palette='winter')
plt.show() #show plot
# Create Lisa Series and Drop NA Values:
FVR_lisa2 = CA_hivcovid3['FVR_LISA'].dropna()
# Define Style Function for PR
def style_FVR(feature):
# get LM Quadrant Type of GeoJson feature by FIPS code, and set it to lmq_type
# set Null to lmq_type if there is no LM Quadrant Type in lisa_series
lmq_type = FVR_lisa2.get(feature['properties']['FIPS'],None)
# gray polygon if LMQ type is None (not statistically significant)
if lmq_type is None:
return {'fillOpacity':0.5, 'weight':0.5, 'fillColor':'silver', 'color':'white'}
# use color palette for fillColor otherwise
else:
return {'fillOpacity':0.5, 'weight':0.5, 'fillColor':lmq_c[lmq_type], 'color':'white'}
# Set conditions for each of Moran Plot's Quadrants
cond_hh = (CA_hivcovid3['LMQ_MIN'] == 1) & (CA_hivcovid3['LMP_MIN'] <= 0.05) #less than or equal to 0.05
cond_lh = (CA_hivcovid3['LMQ_MIN'] == 2) & (CA_hivcovid3['LMP_MIN'] <= 0.05) #less than or equal to 0.05
cond_ll = (CA_hivcovid3['LMQ_MIN'] == 3) & (CA_hivcovid3['LMP_MIN'] <= 0.05) #less than or equal to 0.05
cond_hl = (CA_hivcovid3['LMQ_MIN'] == 4) & (CA_hivcovid3['LMP_MIN'] <= 0.05) #less than or equal to 0.05
# 'LISA_Type' to 'HH' if quadrant type is 1 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_hh,'MIN_LISA'] = 'HH'
# 'LISA_Type' to 'LH' if quadrant type is 2 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_lh,'MIN_LISA'] = 'LH'
# 'LISA_Type' to 'LL' if quadrant type is 3 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_ll,'MIN_LISA'] = 'LL'
# 'LISA_Type' to 'HL' if quadrant type is 4 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_hl,'MIN_LISA'] = 'HL'
# Countplot showing the number of tracts that fall into the four quadrant types
sns.countplot(data=CA_hivcovid3, x='MIN_LISA', palette='cool')
plt.show() #show plot
# Create Lisa Series and Drop NA Values:
MIN_lisa2 = CA_hivcovid3['MIN_LISA'].dropna()
# Define Style Function for PR
def style_MIN(feature):
# get LM Quadrant Type of GeoJson feature by FIPS code, and set it to lmq_type
# set Null to lmq_type if there is no LM Quadrant Type in lisa_series
lmq_type = MIN_lisa2.get(feature['properties']['FIPS'],None)
# gray polygon if LMQ type is None (not statistically significant)
if lmq_type is None:
return {'fillOpacity':0.5, 'weight':0.5, 'fillColor':'silver', 'color':'white'}
# use color palette for fillColor otherwise
else:
return {'fillOpacity':0.5, 'weight':0.5, 'fillColor':lmq_s[lmq_type], 'color':'white'}
# Set conditions for each of Moran Plot's Quadrants
cond_hh = (CA_hivcovid3['LMQ_UNI'] == 1) & (CA_hivcovid3['LMP_UNI'] <= 0.05) #less than or equal to 0.05
cond_lh = (CA_hivcovid3['LMQ_UNI'] == 2) & (CA_hivcovid3['LMP_UNI'] <= 0.05) #less than or equal to 0.05
cond_ll = (CA_hivcovid3['LMQ_UNI'] == 3) & (CA_hivcovid3['LMP_UNI'] <= 0.05) #less than or equal to 0.05
cond_hl = (CA_hivcovid3['LMQ_UNI'] == 4) & (CA_hivcovid3['LMP_UNI'] <= 0.05) #less than or equal to 0.05
# 'LISA_Type' to 'HH' if quadrant type is 1 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_hh,'UNI_LISA'] = 'HH'
# 'LISA_Type' to 'LH' if quadrant type is 2 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_lh,'UNI_LISA'] = 'LH'
# 'LISA_Type' to 'LL' if quadrant type is 3 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_ll,'UNI_LISA'] = 'LL'
# 'LISA_Type' to 'HL' if quadrant type is 4 and p-value of local moran's I is less than or equal to 0.05
CA_hivcovid3.loc[cond_hl,'UNI_LISA'] = 'HL'
# Countplot showing the number of tracts that fall into the four quadrant types
sns.countplot(data=CA_hivcovid3, x='UNI_LISA', palette='winter')
plt.show() #show plot
# Create Lisa Series and Drop NA Values:
UNI_lisa2 = CA_hivcovid3['UNI_LISA'].dropna()
# Define Style Function for PR
def style_UNI(feature):
# get LM Quadrant Type of GeoJson feature by FIPS code, and set it to lmq_type
# set Null to lmq_type if there is no LM Quadrant Type in lisa_series
lmq_type = UNI_lisa2.get(feature['properties']['FIPS'],None)
# gray polygon if LMQ type is None (not statistically significant)
if lmq_type is None:
return {'fillOpacity':0.5, 'weight':0.5, 'fillColor':'silver', 'color':'white'}
# use color palette for fillColor otherwise
else:
return {'fillOpacity':0.5, 'weight':0.5, 'fillColor':lmq_s[lmq_type], 'color':'white'}
# Get XY Coordinates of Mean Center
mc_x = CA_hivcovid3.geometry.centroid.x.mean()
mc_y = CA_hivcovid3.geometry.centroid.y.mean()
print(mc_x, mc_y)
-120.72791323021316 37.845340064561746
# Create map centered around mean coordinates with zoom_start 6
lisa_m = folium.Map(location=[mc_y, mc_x],zoom_start=6,tiles='cartodbpositron')
# Tool Tip for New Diagnoses Rate
tt_NDR = folium.GeoJsonTooltip(fields=['FIPS','COUNTY','New Diagnoses Rate','NDR_LISA'])
# Tool Tip for PrEP Rate
tt_PR = folium.GeoJsonTooltip(fields=['FIPS','COUNTY','PrEP Rate','PR_LISA'])
# Tool Tip for COVID Case Rate
tt_CCR = folium.GeoJsonTooltip(fields=['FIPS','COUNTY','COVID Cases_Rate','CCR_LISA'])
# Tool Tip for Total COVID Test Rate
tt_TCTR = folium.GeoJsonTooltip(fields=['FIPS','COUNTY','Total COVID Tests_Rate','TCTR_LISA'])
# Tool Tip for Fully Vaccinated Rate
tt_FVR = folium.GeoJsonTooltip(fields=['FIPS','COUNTY','Fully Vaccinated_Rate','FVR_LISA'])
# Tool Tip for EP_MINITRY Rate
tt_MIN = folium.GeoJsonTooltip(fields=['FIPS','COUNTY','EP_MINRTY','MIN_LISA'])
# Tool Tip for EP_UNINSUR Rate
tt_UNI = folium.GeoJsonTooltip(fields=['FIPS','COUNTY','EP_UNINSUR','UNI_LISA'])
# Set ToolTip objects to tooltip to be shown to map
folium.GeoJson(CA_hivcovid3, style_function=style_NDR, tooltip=tt_NDR, name='HIV Infection Rate').add_to(lisa_m) # NDR
folium.GeoJson(CA_hivcovid3, style_function=style_PR, tooltip=tt_PR, name='PrEP User Rate').add_to(lisa_m) # PR
folium.GeoJson(CA_hivcovid3, style_function=style_CCR, tooltip=tt_CCR, name='COVID Infection Rate').add_to(lisa_m) # CCR
folium.GeoJson(CA_hivcovid3, style_function=style_TCTR, tooltip=tt_TCTR, name='COVID Testing Rate').add_to(lisa_m) # TCTR
folium.GeoJson(CA_hivcovid3, style_function=style_FVR, tooltip=tt_FVR, name='Fully Vaccinated Rate').add_to(lisa_m) # FVR
folium.GeoJson(CA_hivcovid3, style_function=style_MIN, tooltip=tt_MIN, name='Percentage of Ethnic Minority').add_to(lisa_m) # MIN
folium.GeoJson(CA_hivcovid3, style_function=style_UNI, tooltip=tt_UNI, name='Percentage of Uninsured Health').add_to(lisa_m) # UNI
# Add LayerControl to turn on/off layers
folium.LayerControl().add_to(lisa_m)
lisa_m # zoom in to explore areas of your interest spatially