

Obesity Level Analysis
of Adult Population in
Latin America

Cody Le
Kokila Maddi
DePaul University
DSC 478
Fall 2021

November 20, 2021

 1

Executive Summary

 In the last three decades, a dramatic increase and rise in obesity rates has occurred in Latin America.
The region has declared obesity as a public health concern which has been exacerbated by changes in
economy, shift in workforce, and changes in diet. Two key factors have been determined as the cause in the
rise in obesity: increase in consuming saturated fats and shift to a sedentary lifestyle. This analysis explores
obesity levels among adults from three regions of Latin America to determine which specific eating habits or
daily activities most affect the classification of obesity levels. Naturally, the expectation is that eating habits
such as consuming high calorie foods and eating between meals along with decrease in daily physical activity
would be the most important factors in determining obesity levels. Other factors such as gender and age are
also compared since physical differences exist by gender and ability differences exist by age.
 The dataset contains a total of 17 attributes and 2,111 instances. The class label is obesity level which
is determined by body mass index (BMI). The index is considered a nutritional status index developed as a risk
indicator for risk with the higher the BMI the higher chance of disease including premature death. Most of the
features are categorical variables which include six eating habit attributes and five daily activities attributes.
The remaining variables are gender, age, weight, height, and family history of obesity which are considered
biological attributes. The data is transformed and normalized for the analysis and dummy variables are used
for categorical features. To explore how age groups play a role in classifying obesity levels, the age attribute is
binned by generational groups representing three age groups: Generation-Z, Millennials, and Generation-X
and Boomers. These age groups will be used for cluster analysis exploration and feature selection.
 The methodologies used for this analysis include data exploration and feature transformations which
are part of preprocessing, cluster analysis exploration, classification and model selection, and feature
selection. K-means algorithm is used for cluster analysis and performed on the original dataset as well as the
transformed dataset with age groups to determine if patterns exist in the data. Classification models are built
using a pipeline which bundles preprocessing and classifier models and returns a classification report for
various models. The best classifier model is used in feature selection which compares the top 15% of the most
important features in classifying obesity levels between the original dataset and each age group dataset. The
top features will be evaluated in determining which factors are most salient in determining obesity levels.
 The cluster analysis exploration revealed that a pattern exists between male and female gender. This
aligns with the original prediction that gender differences play a role in classifying obesity levels. The analysis
did not reveal any significant pattern in the generational age groups. Decision Tree was determined as the best
classifier model with an accuracy of around 94%. The classifier model had the best accuracy and performance
using the original dataset. The accuracy decreased steadily when the model was performed on age group
datasets. The results of the feature selection using the classifier model revealed that the most important factors
affecting the classification of obesity levels are age, gender, weight, and family history with obesity. The
original prediction stated that eating high calorie foods frequently, eating between meals, and having lower
days of physical activity would be the most salient attributes in determining obesity levels. However, the results
show that always eating vegetables with meals and frequently eating between meals are the most important
factors besides gender, weight, and family history with obesity. Physical activity attributes were not the most
important factors in classifying obesity levels. Although age is an important factor, an individual’s generational
group does not play a salient factor in classifying obesity level.
 In summary, this analysis shows that obesity level as defined here is a nutritional status index as the
classes are created using BMI. In analyzing the data set of the adult population in Mexico, Peru, and Columbia,
we found that eating habit attributes are among the most important factors in classifying obesity level,
specifically always eating vegetables with meals frequently and eating between meals frequently. Factors that
are more salient than eating habits in determining the obesity level include gender, age, weight, height, and no
family history with obesity. Daily physical activities are not among the most important factors in classifying
obesity levels.

 2

Contents and Contributions

§ Introduction by Cody Le 3
§ Objective by Cody Le 3
§ Data Schema and Preparation by Cody Le 4
§ Approach by Cody Le 5
§ Data Preprocessing by Kokila Maddi 6
§ Cluster Analysis Exploration by Cody Le 9
§ Classification and Model Selection by Kokila Maddi 13
§ Feature Selection by Cody Le 15
§ Results by Cody Le 17
§ Conclusion by Cody Le 18
§ Works Cited by Cody Le 19

§ Appendix A: Source Code in Jupytor Notebook

o Preprocessing and Classification by Kokila Maddi 20

§ Appendix B: Source Code in Jupytor Notebook
o Cluster Analysis Exploration by Cody Le 43

§ Appendix C: Source Code in Jupytor Notebook

o Feature Selection by Cody Le 85

 3

Introduction

The World Health Organization (WHO) states that obesity has tripled since 1975. The WHO states that
in 2016, more than 1.9 billion adults aged 18 and older were overweight and of these 650 million were obese.
Being overweight is defined as abnormal or excessive fat accumulation that may increase the risk for
noncommunicable diseases such as heart disease and stroke which was the leading cause of death in 2012,
diabetes, osteoarthritis, and cancer including endometrial, breast, ovarian, prostate, liver, gallbladder, kidney,
and colon cancer. Today, a simple Body Mass Index (BMI) which is a radio of weight-for-height is used to
classify overweight and obesity in adults.

In the last few decades, a dramatic increase in obesity rates has occurred in Latin America, becoming a
public health concern for the region mostly exasperated by regions undergoing industrialization resulting to
lifestyle changes (Kain et. Al 2003). Statistics from the WHO show that obesity rates have increased every
decade in both men and women of all age groups, but in the last few years the upward trend is particularity
dramatic in men. Two key factors play a role in the upward trend in Latina America, dietary changes, and
physical inactivity due to a shift in the workforce. With improved economies in the region, increases in income
results to an increase energy consumption and ultimately an increase in consuming saturated fats. Shifts in the
labor force in the more developed countries in Latin America from a labor workforce to a service-oriented
workforce has led to a sedentary lifestyle with activities that involve less physical movement such as watching
television, playing computer games, and increased use of motor vehicles (Kain et. Al 2003). Research in
dietary consumption and sedentary lifestyle in Latin America has not yet been fully studied and more data is
needed to further understand the reasons for trends in obesity.

The WHO believes that obesity is preventable. What causes obesity? One main cause of obesity is
energy imbalance between calories consumed and calories expanded. Changes in dietary and physical activity
patterns are direct results in recent years of changes in environment and societal demands. Moreover,
malnutrition is another threat that low and middle-income countries experience which exacerbates the dietary
imbalance. What specific dietary and physical activity patterns leads to obesity levels in adults? This analysis
will explore recent data of eating habits and daily physical activity among adults from Latin America to
determine which specific factors lead to an individual’s obesity level. Are there other factors that influence an
individual’s obesity level such as gender and age which past research has shown may influence the upward
trend in obesity? This analysis will examine this question and allow for a better understanding of what
aspects of an individual’s daily life can they focus on to maintain or change their obesity level.

Objective

This analysis seeks to analyze a dataset containing obesity levels among adults from Mexico,
Peru, and Colombia to determine which specific eating habit or daily activities most affect the
classification of obesity levels. It is predicted that eating high calorie foods frequently, eating between
meals, and having lower days of physical activity are the most salient attributes to determining obesity
levels. In addition, studies have shown that gender and age may play a role in rising obesity trends as
such results should show that gender and age will affect the top attributes differently. It is predicted
that eating habit attributes will be most salient among younger age groups and physical activity
attributes will be most salient among elderly age group.

 4

Data Schema and Preparation

The dataset was obtained from the University of California Irvine (UCI) Machine Learning
Repository. 23% of the data was collected directly from users through an online survey platform and
77% of the data was simulated data. The dataset contains a total of 17 attributes and 2,111
instances. The original file size is 264KB in comma separated values format. The class label is
NObeyesdad (Obesity Level) representing the obesity levels. The total number of features is 16,
which corresponds to the 16 remaining attributes. Most of the attributes are categorical variables with
only three attributes as numeric variables: Age, Height, and Weight. These three numeric variables
were used to create the class level (which was pre-calculated from the dataset using BMI index).
Some categorical attributes were already pre-processed and displayed using numeric numbers that
correspond to categories instead of actual categories. All variables that were meant to be categorical
that read as numeric were transformed back to categorical. Two variables FCVC (eating high calorie
foods frequently) and CAEC (eating food between meals) were transformed to ordinal variables due
to the nature of the response having an orderly occurrence. The table below shows the attributes,
their original data type, category description (if applicable), and the transformed data type (if
applicable) used for the analysis:

Attribute Name Original

Data Type
Categories Final Data

Type
1. Gender Categorical /

Object
Male
Female

Categorical /
Object

2. Age in Years Numeric / Float Numeric /
Integer

3. Height in Meters Numeric / Float Numeric / Float
4. Weight in Kilograms Numeric / Float Numeric / Float
5. family_history_with_overweight Categorical /

Object
 Categorical /

Object
6. FAVC

(eating high calorie foods
frequently)

Categorical /
Object

Yes
No

Categorical /
Object

7. FCVC
(eating vegetables in meals)

Numeric / Float 1 – Never
2 – Sometimes
3 – Always

Ordinal / Object

8. NCP
(number of main meals daily)

Numeric / Float 1 – ‘1’
2 – ‘2’
3 – ‘3’
4 – ‘3+’

Categorical /
Object

9. CAEC
(eating food between meals)

Categorical /
Object

No
Sometimes
Frequently
Always

Ordinal / Object

10. Smoke Categorical /
Object

Yes
No

Categorical /
Object

11. CH2O
(water intake per day in liters)

Numeric / Float 1 – ‘Less than a liter’
2 – ‘Between 1 and 2
L’

Categorical /
Object

 5
3 – ‘More than 2 L’

12. SCC
(monitor calories on a daily

basis)

Categorical /
Object

Yes
No

Categorical /
Object

13. FAF
(physical activity in number of

days)

Numeric / Float 0 – ‘I do not have’
1 – ‘1 or 2 days’
2 – ‘2 or 4 days’
3 – ‘4 or 5 days’

Categorical /
Object

14. TUE
(time spent on technology)

Numeric / Float 0 – ‘0 – 2 hours’
1 – ‘3 – 5 hours’
2 – ‘More than 5
hours’

Categorical /
Object

15. CALC
(alcohol intake)

Categorical /
Object

I do not drink
Sometimes
Frequently
Always

Categorical /
Object

16. MTRANS
(means of transportation)

Categorical /
Object

Automobile
Motor Bike
Bike
Public-Transportation
Walking

Categorical /
Object

17. NObeyesdad
(accordining to BMI)
--- Class Label ---

Categorical /
Object

Insufficient_Weight
Normal_Weight
Overweight_Level_I
Overweight_Level_II
Obesity_Type_I
Obesity_Type_II
Obesity_Type_III

Categorical /
Object

The class label NObeyesdad will be used as the target variable which consist of seven

classes: Insufficient_Weight corresponds to a Body Mass Index (BMI) of less than 18.5,
Normal_Weight corresponds to a body mass index of 18.5 to 24.9, Overweight_Level_I corresponds
to a body mass index of 25 to 26.9, Overweight_Level_II corresponds to a body mass index of 27.0 to
29.9, Obesity_Type_I corresponds to a body mass index of 30 to 34.9, Obesity_Type_II corresponds
to a body mass index of 35.0 to 39.9, and Obesity_Type_III corresponds to a body mass index of
over 40. The classes were calculated using the BMI which is weight in kilograms divided by height
squared. The WHO states that BMI ranges are based on the effect of excessive body fat and risk of
disease or death. The index is developed as a risk indicator of disease. The higher the BMI, the
higher risk of diseases including premature death, cardiovascular diseases, high blood pressure,
osteoarthritis, some cancers, and diabetes. The index and the classes associated at each level of the
index are considered nutritional statuses. The ideal BMI is normal weight, which is corresponds to
18.5 to 24.9, any range below this range or above this range are considered higher risk for disease.

The class label will be transformed to numeric for the analysis with 0 - representing
Insufficient_Weight, 1 - representing Normal_Weight, 2 - representing Overweight_Level_I, 3 -
representing Overweight_Level_II, 4 - representing Obesity_Type_I, 5 – representing
Obesity_Type_II, and 6 – representing Obesity_Type_III. All categorical and ordinal features will be
transformed to dummy variables for the analysis. The dummy variables will be used to represent the
numeric version of the feature. With the dummy variables, the total feature size for the analysis is 43.

 6
Additional datasets were created for the exploration of the data through clustering analysis.

The age attribute was transformed to categorical variable based on age group generation. Age group
generations were selected because of the common trends and traits associated with different
generational groups. The age groups were transformed by binning the ages based on the following
generations from the Beresford Research group which defined the generations based on U.S.
Census Bureau and data from Pew Research Center: Gen-Z includes ages 9 – 24, Millennials
includes ages 25 – 40, Gen-X includes ages 41 – 56, and Boomers include ages 57 to 66. For this
analysis, Gen-X and Boomer were combined into one age group due to the low instances in the data
for this category. The three age groups are separated into three separate datasets. The Gen-Z age
group contains 1,353 instances, the Millennials age group contains 717 instances, and the Gen-X and
Boomers age group contains 41 instances. In addition to analyzing the full dataset, classification will
also be performed on each age group dataset to determine most important features and compare
results for evaluation.

Approach

 The approach and methodology in this analysis first begins with data preprocessing which
includes data exploration and clustering analysis. The data exploration provides a visual of key
features being explored such as gender as well as the class label being explored which is obesity
level by BMI. The clustering analysis is performed as an exploratory analysis to determine if there are
any patterns in the full dataset and if any patterns exist when the age groups are binned to the
generational groups. The clustering analysis uses K-means clustering algorithm which is a method of
vector quantization with the goal of partitioning specified number of observations into specified
number of clusters based on the nearest mean. Next, the data analysis is performed by performing
classification and model selection on the data. Several classifier models are fit to the dataset
including K-Nearest Neighbor, Decision Tree, Stochastic Gradient Descent, and Support Vector
Machine, and models are evaluated using a classification report for best performance. The best
performing classifier is used in the next part of the analysis to perform feature selection on the full
dataset and each of the age group datasets. The top 15% of the most important features are selected
from each dataset and compared to determine which attributes are most salient in classifying obesity.
The full methodology can be simplified as:

1. Data Preprocessing:
a. Data Exploration – Visualization of Key Features
b. Feature Transformations

2. Cluster Analysis Exploration
3. Classification and Model Selection
4. Feature Selection
5. Results
6. Conclusion

Data Preprocessing

Data Exploration

 7

Gender will be explored as visualization in with height and weight. In terms of height, male and

female are similarly distributed according to the box plot in Figure A1.1 below. While males are
generally taller than females, both male and female share a similar average in weight, with females
having a much larger range of weight (as well as BMI) compared to male.

Figure A1.1 – Box Plot Comparing Male and Female Height and Weight (from Appendix A, Page 25)

Figure A1.2 below shows the Line plot between weight and height of females and males shows
that the weight and height are more linear for females than males.

Figure A1.2 – Line Plot Comparing Gender to Weight and Height (from Appendix A, Page 27)

 8

 The class label obesity levels were also be visualized. Figure A1.3 shows the general pie chart
distribution for the class label. It is almost equally distributed between all the elements of the obesity
category types.

Figure A1.3 – Pie Chart of Obesity Type Distribution (from Appendix A, Page 28)

Figure A1.4 below shows that a bigger proportion of females with a higher BMI is reflected by

the large slice of Obesity Type III in the pie chart below, while Obesity Type II is the most prevalent
type of obesity in men. Interestingly, there is also a higher proportion of Insufficient Weight in females
compared to male. These results could be explained by a heavier societal pressure on women in
terms of dietary restrictions.

Figure A1.4 – Pie Charts Comparing Distribution of Obesity Types based on Gender (from Appendix A, Page 29)

 9
Feature Transformations

In the original data set, there are numerical (both continuous and discrete) and categorical (including
ordinal, non-ordinal, and binary features. Binary features are categorical features with a yes or no category.
Imputation is used in both numerical and categorical data to fill in missing values. Feature scaling is employed
for continuous numerical values, including age, weight, and height. Ordinal and Label Encoding are used for
non-ordinal categorical data, such as means of transportation and obesity level, while One Hot Encoding is
applied to data which is ordinal in nature (e.g., never, sometimes, always).
 The above preprocessing procedures are bundled into a pipeline, which also applies multiple models
on the data set in search for the best model. Since the classifier cannot operate with label data directly, One
Hot Encoder and Label Encoding will be used to assign numeric values to each category. The class label,
NObeyesdad, will be transformed into a digit label with LabelEncoder. StandardScaler is applied to
attributes with values which ranges are not consistent with the rest, to avoid disproportionate weight
assigned to these values (i.e., Age, Height, Weight).

Features that are ordinal in nature (i.e., answers including 'never', 'sometimes', 'always') will be
preprocessed with OrdinalEncoder (this function is the same function as LabelEncoder, however
LabelEncoder will take in multiple arguments as the latter is meant for target values only). Features
that are non-ordinal in nature will be preprocessed with OneHotEncoder, so that the generated labels
will not be interpreted in a way that suggests one answer is more important than the other (e.g., 3 is
more important than 1). SimpleImputer is applied to all attributes to deal with missing values. All
preprocessing techniques will be bundled into a pipeline, which will be deployed with the classifier
models.

Cluster Analysis Exploration

 Cluster analysis using K-Means algorithm was performed on the full dataset. To perform the
cluster analysis, first, the class label, NObeyesdad is removed from the dataset. The dataset is
transformed to ensure the correct data types exist for each feature. Dummy variables are created for
the categorical features. The numeric dataset contains 2,111 rows and 43 columns. K-Means
algorithm looks at the nearest neighbor based on distance to group datapoints into clusters. The
standard Euclidean distance function is used for the K-means clustering. To ensure that the algorithm
performs optimally, the data is scaled using min-max scaling. Min-max normalization scales all values
of the data between 0 and 1. K-means requires selecting a number for K, which is the number of
clusters. For this exploration, several values of K are explored including K = 5, K = 3, and K = 2. In
addition to declaring the number for K, the algorithm also requires a stopping point, since the
algorithm is designed to continue each iteration and repeat the clustering of the datapoints over and
over. The maximum iterations used for this analysis is 500. For each value of K, the cluster centroids
were examined to determine if any pattern exists in the data. A silhouette analysis is performed for to
evaluate the separation between the resulting clusters and determine the quality of the clusters. The
silhouette plots display a measure of how close each point in one cluster is to points in the
neighboring clusters. The mean silhouette value is calculated and used as a threshold when
determining the cluster quality. Clusters with most of their coefficients above the mean silhouette
value are considered better quality which means that clusters are further away from the neighboring
clusters. Clusters with most of their coefficients below the mean silhouette value reveals that samples
are very close to the decision boundary between two neighboring clusters and negative coefficient
values indicate that samples are assigned to the wrong cluster. When the silhouette plot does not

 10
display any negative coefficients and have the thickest plots visually above the silhouette mean, the
correct number of K has been selected.
 Figure B1.1 below shows the results of the silhouette analysis for K = 5. The plot of the
silhouettes shows that cluster 0 outperformed the other clusters with all its coefficients above the
mean silhouette value. Cluster 4 also performed well with many of its coefficients above the mean
silhouette value. The remaining three clusters did not perform as well since most of their coefficients
are below the mean silhouette value. Four of the clusters display negative values with cluster 3
having the most negative coefficients, which indicates that 5 clusters are too high for the dataset.

Figure B1.1 – K-Means at K=5, Silhouette Plot (from Appendix B, Page 56)

 Next, K-means is performed again at K = 3. Figure B1.2 below shows the results of the
silhouette analysis for K=3, which reveals that the algorithm performed neither better nor worse than
at K = 5. The plot of the silhouettes shows that cluster 2 outperformed the other clusters with all its
coefficients above the mean silhouette value. Cluster 1 performed the worst and did not have any
coefficients above the mean silhouette value, but instead has negative coefficients. When evaluating
the centroids, cluster 0 has Gender_Male with a value of 1.00 and Gender_Female with a value of 0.
Cluster 0 most likely represents the male gender. Cluster 1 and 2 both contain a value of 0.99 for
Gender_Female and 0.01 for Gender_Male, which shows that most likely Cluster 1 is misclassified.
Most likely this cluster is pulling coefficients where it should not be and is too close to cluster 0 to be
its own cluster. We can conclude from the silhouette plots that likely three cluster is still too high and
that two clusters may be sufficient.

 11
Figure B1.2 – K-Means at K=3, Silhouette Plot (from Appendix B, Page 60)

Figure B1.3 – K-Means at K=2, Silhouette Plot (from Appendix B, Page 65)

Lastly, K-means is performed again at K = 2. Figure B1.3 above shows the results of the
silhouette analysis for K=2, which achieved the best silhouette plot compared to previous plots at K =
5 and K = 3. This silhouette plot shows that both cluster 0 and 1 have coefficients that are above the
mean silhouette value and none of the coefficients are negative. Both clusters are neither thick nor
full, although, cluster 0 appears thicker than cluster 1, but from the clustering results above, this result
is most successful. When looking at the centroids, the two features that stand out that most likely
represent the clusters compared to all other features is Gender_Male and Gender_Female. In cluster
0, Gender_Male has a value of 1.00 while Gender_Female has a value of -0.00 and in cluster 1,
Gender_Female has a value of 1.00 while Gender_Male has a value 0.00. Moreover, we can
conclude from the silhouette plots above that likely, cluster 0 represents males and cluster 1
represents female. This evaluation shows that a pattern exists by gender and that gender may play a
role in the dataset and in determining classification of obesity levels.
 Next, we will explore the K-means algorithm with the three generational age groups: Gen-Z,
Millennials, and Gen-X and Boomers. This exploration is being explored to see if a pattern exists
based on age range which the cluster analysis for the full dataset did not evaluate since the age
groups were not grouped into categories. The youngest age is 14 and the oldest age is 61. The age
groups are created by binning the Age attribute and then transforming the age group attribute into
dummy variables. For exploratory purposes, K-means is performed on the dataset first without min-
max normalization and second with min-max normalization at K = 3. The results of cluster analysis
without normalization shows a very healthy silhouette plot with all three clusters full, thick, and with
coefficients above the mean silhouette value. Figure B2.1 below confirms that clusters when age is
grouped by range. When looking at the centroids, cluster 2 shows Gen-Z at 0.9 while Millennials at
.10 and Gen-X and Boomers at 0.00. Most likely Gen-Z is represented in cluster 2.

 12

Figure B2.1 – K-Means at K=3 for Grouped Aged, Silhouette Plot (from Appendix B, Page 71)

The completeness and homogeneity scores were calculated for clusters since the class labels
exist for further examination of the cluster quality. The completeness score was 0.70 which shows
that members of a given class are assigned to the same cluster 70% of the time. The completeness
score is positive and confirms that the clusters captured most of one class. The homogeneity score
was much lower at 0.39 which shows that the clusters are not pure. These results may indicate that
age group may be a factor in deciding the clusters for the data, but it may not be the main factor that
affects obesity level for classification. The silhouette plots above display that a pattern exist but we
must take into consideration that the data was not scaled. As such, we will next, perform K-means
again with the data normalized to validate the results.

Figure B2.2 below shows the results silhouette analysis for K=2 with the normalized data. The
results are drastically different from the results from Figure B2.1. Cluster 0 outperformed all other
clusters with all its coefficients above the mean silhouette value. Cluster 2 performed adequately with
many of its coefficients above the mean silhouette value and only a few of its coefficients in negative.
Cluster 1 did not perform as well as many of the coefficients are in negative and none of them are
above the mean silhouette value. When looking at the centroids, the values of the age group do not
directly correspond to the silhouette plots.

Figure B2.2 – K-Means at K=3 for Grouped Aged (normalized), Silhouette Plot (from Appendix B, Page 79)

 13
These results show that with the normalized data, a pattern may not necessarily appear in the

age groups. Moreover, when examining K-means and clustering, we can see how not scaling the
data may lead to conclusions or patterns about the data when a pattern may not necessarily exist.
This is validated when evaluating the completeness and homogeneity scores, which both resulted in
low scores. The completeness score was around 0.34 and the homogeneity score is lower at 0.18.
These scores show that grouping by age is not the main determining factor for the classification of
obesity levels. Age still may play a role as a key feature, but the clustering exploration does not
necessary reveal that the age groupings have a significant pattern. By building the classification
models and performing feature selection, we will be able to obtain a better picture of age and age
groupings and their role in classifying obesity levels.

Classification and Model Selection

Classification will be performed to predict discrete and nominal values (class and category labels) by
organizing and categorizing data into different classes. For this analysis, the following classifiers are explored:
K-Nearest Neighbor, Decision Tree, Stochastic Gradient Descent, and Support Vector Machines. The first step
begins with the model construction where we construct a target function during training. The target will be the
class and points will be class labels. The second step will be model evaluation, based on the test set. We will
estimate the accuracy of the model. We will use a confusion matrix to evaluate the model accuracy. The final
step will be classification to find or predict the outcomes for the actual class label (NObeyesdad) in an
evaluation set.

To perform the classification, the classifiers are selected and stored in a list, each classifier will be
looped through, and the preprocessor will be applied each time in the pipeline. The accuracy score of every
classifier will be printed for comparison. The classification report is used to investigate the performance of each
classifier in classes (type and level of obesity). 'Precision' shows the percentage of the classifier that can
correctly predict the class (i.e., True Positive / (True Positive + False Positive). 'Recall' shows the percentage
of the actual positive cases that the classifier can identify (i.e., True Positive / (True Positive + False Negative).
'F1' is the harmonic mean between Precision and Recall. 'Support' is the number of occurrences of the given
class in the dataset. More consistent the amount of 'Support' of each class is, the more balanced the dataset.
Detailed classification reports with all values for the classifiers are shown in the figures below:

Figure A2.1 - K-Nearest Neighbor Classifier Model (from Appendix A, Page 40):

Model Accuracy Score: 0.821

precision recall f1-score support

Insufficient Weight 0.72 0.92 0.81 25
Normal Weight 0.61 0.35 0.45 31
Obesity Type I 0.84 0.95 0.89 44
Obesity Type II 0.94 1.00 0.97 31
Obesity Type III 1.00 1.00 1.00 27
Overweight Level I 0.77 0.82 0.79 28
Overweight Level II 0.77 0.65 0.71 26
Accuracy 0.82 212
macro avg 0.81 0.81 0.80 212
weighted avg 0.81 0.82 0.81 212

 14
Figure A2.2 – Decision Tree Classifier Model (from Appendix A, Page 40):

Model Accuracy Score: 0.939

 precision recall f1-score support
Insufficient Weight 0.96 0.92 0.94 25
Normal Weight 0.90 0.87 0.89 31
Obesity Type I 0.95 0.95 0.95 44
Obesity Type II 0.94 1.00 0.97 31
Obesity Type III 1.00 1.00 1.00 27
Overweight Level I 0.89 0.89 0.89 28
Overweight Level II 0.92 0.92 0.92 26
Accuracy 0.94 212
macro avg 0.94 0.94 0.94 212
weighted avg 0.94 0.94 0.94 212

Figure A2.3 – Stochastic Gradient Descent Classifier Model (from Appendix A, Page 42):

Model Accuracy Score: 0.575

precision recall f1-score support

Insufficient Weight 1.00 0.60 0.75 25
Normal Weight 0.30 0.94 0.45 31
Obesity Type I 0.92 0.25 0.39 44
Obesity Type II 0.82 1.00 0.90 31
Obesity Type III 1.00 1.00 1.00 27
Overweight Level I 0.37 0.25 0.30 28
Overweight Level II 0.50 0.08 0.13 26
Accuracy 0.58 212
macro avg 0.70 0.59 0.56 212
weighted avg 0.71 0.58 0.55 212

Figure A2.4 - C-Support Vector Classifier Model (C=0.025, probability=True) (from Appendix A, Page 40):

Model Accuracy Score: 0.505

precision recall f1-score support
Insufficient Weight 0.67 0.24 0.35 25
Normal Weight 0.35 0.19 0.25 31
Obesity Type I 0.34 1.00 0.51 44
Obesity Type II 0.83 0.77 0.80 31
Obesity Type III 1.00 1.00 1.00 27
Overweight Level I 0.00 0.00 0.00 28
Overweight Level II 0.00 0.00 0.00 26
Accuracy 0.50 212
macro avg 0.46 0.46 0.42 212
weighted avg 0.45 0.50 0.43 212

K-Nearest Neighbor (KNN) and Decision Tree Classifier models are the top two models that score the
highest in terms of accuracy. KNN score 0.821 and Decision Tree scored 0.939 model accuracy values.

 15

Feature Selection

 The best classifier model for the dataset was Decision Tree. The Decision Tree classifier
model will be used to evaluate the full dataset and each age-group dataset and perform feature
selection. Decision Trees are non-parametric supervised learning algorithms used for both
classification and regression. The models predict the value of a target variable by learning rules that
the model creates from the dataset. Decision Tree models are considered best for data with high
categorical variables and has the advantage of being able to perform feature selection. Feature
selection is a dimensionality reduction method that select key features and improves a models
accuracy score or retain the model’s accuracy score while limiting the number of features. Feature
selection uses a statistic test to test the samples and retrieve a specified number of features. In this
analysis, the chi-square test is used as the statistic measure which is a common statistical approach
for categorical features. Feature selection will be used to determine the top 15% of features for the
data. This percentage was selected as it returned seven features which is a better number of features
for interpretation.
 The feature selection process begins by splitting the data to training set, training labels, testing
set, and testing labels using an 80/20 random split with an 80% training set and a 20% testing set.
The Decision Tree classifier model is then trained on the training set. Then, the model predicts on the
test set. The classification report is generated showing the model accuracy and the confusion matrix.
Then feature selection is performed with chi-square at a percentile of 15% and the resulting features
are then transformed with the training set. Lastly, the model is retrained using the transformed
training set with top features. The testing set is also transformed using the top features. Thereafter,
the transformed training and testing sets are then evaluated with decision tree to reveal the accuracy
of the transformed model. The accuracy is compared, and conclusions can be made regarding the
top features.
 The classifier model on the full dataset performed very well with an accuracy of 94.1%. Class
4: 'Obesity_Type_III' had a 100% accurate prediction. Class 0: 'Insufficient_Weight' and 3:
'Obesity_Type_II' achieved above 95% accuracy. Class 6: 'Obesity_Type_II' had the lowest accuracy
at 91%. The accuracy for the training set is 100% and the accuracy for the test set is 94.09%. The
model is performing well and not overfitting since the accuracy for the test set is very close to the
training set and not experiencing high variance. With the feature selection, using the top 15% of
features, the classifier still performed well with an accuracy of 86.3%. Although, the accuracy reduced
from the original feature set, the reduced feature set contains only seven features and still achieved a
high level of accuracy. Class 1: 'Normal Weight' and Class 6: 'Overweight_level II' had the lowest
accuracy score at 74% and 75% respectively. Class 4: 'Obesity Type III' achieved 100% accuracy
and Class 3: 'Obesity Type II' still maintained over 95% accuracy. Moreover, for the full dataset, the
top features that are associated to obesity levels are Age, Weight, Gender_Female, Gender_Male,
family_history_with_overweight as ‘no’, FCVC as ‘Always’ and CAEC as ‘Frequently.’ These results
confirm that male and female genders are salient features for the classification of obesity levels. This
result mirrors the results of the cluster analysis exploration which split the data into two clusters
representing male and female genders. Besides gender, the results also show that individuals
indicating no history of obesity in their family as an important feature when classifying obesity levels.
This shows that hereditary, family, or environmental factors associated with families with a history of
obesity, plays a key role in an individual’s obesity levels. Lastly, two eating habit features, always
eating vegetables with meals (FCVC) and frequently eating food between meals round up the top
features. Surprisingly, daily activity features and physical activity features were not included in the top
features. instead, biological factors and eating habits were features that had more precedents in
determining obesity levels.

 16
 The classifier model on the Gen-Z dataset performed equally as well as the full dataset with
slightly lower accuracy at 91.9%. Class 0: 'Insufficient_Weight' and 2: 'Obesity_Type_I' achieved
above 95% accuracy. Class 3: 'Obesity_Type_II' had the lowest accuracy at 84%. Class 1:
'Normal_Weight' and 6: 'Overweight_Level_II' had the next lowest accuracy at 88% and 89%
respectively. Moreover, with the Gen-Z dataset, the model performed better in prediction of Class 0:
'Insufficient_Weight' and 2: 'Obesity_Type_I'. Both the full dataset and the Gen-Z dataset had lowest
accuracy with Class 6: 'Overweight_Level_II'. With feature selection using the top 15% of features,
the accuracy of the classifier decreased to 80.8%. This model with feature selection does not perform
as well as the model using the full dataset. Class 4 had the highest accuracy at 98%, which is
comparable to the full dataset which predicted class 4 at 100%. Class 6: 'Overweight_Level II' had the
lowest accuracy at 58%. This shows that for the Gen-Z age group, the model is unable to classify
'Overweight_Level II' using the top 15% of features. Likely, this means that other attributes are
required to accurately classify this obesity level. Like the model using the full dataset, this model also
does not classify Class 1: 'Normal_Weight' or Class 3: 'Obesity_Type_II' as well as the other classes.
In both models, the lowest accuracy was in classifying class 1: 'Normal_Weight'. The lack of accuracy
in predicting normal weight could be due to how the features were crafted for the data. The features
were created to help determine if an individual is overweight and not necessarily to help determine
normal weight. Likely, this means that these features are not salient to classifying an individual that is
neither underweight nor overweight. The top 15% of features includes weight, gender_male,
family_history_with_obesity as ‘no’, always eating vegetables with meals (FCVC) as ‘always’, and
frequently eating food between meals. These features are the same top features from the model
using the full dataset except, for gender only male gender is included. Two additional eating habits
features are included in the top features with the Gen-Z age group: not eating high calorie foods
frequently and number of meals consumed daily. Moreover, eating habit features are the most
important features in association with obesity level for Gen-Z age group along with biological and
hereditary features. Like the model in the full dataset, physical activity features were not included in
the top features for the classification of obesity levels.
 The classifier model on the Millennials dataset did not perform as well as the model for the
Gen-Z or full dataset. The model achieved an accuracy of 89.6%. Like the two previous models,
Class 4: 'Obesity_Type_III' had a prediction accuracy of 100%. Unlike the two previous models, Class
6: 'Overweight_Level II' and Class 3: 'Obesity_Type_II' performed better in this model with an
accuracy of 95%. Class 0: 'Insufficient Weight' had an accuracy of 67%, which is starkly lower in
accuracy compared to the previous two models. Class 1: 'Normal_Weight' also had a low accuracy at
71%. This aligns with the two previous models, which also had the lowest accuracy in predicting
Class 1: 'Normal_Weight'. With the feature selection using the top 15% of features, the model’s
accuracy dropped to 79.9%. The model performs slightly worse than the model for Gen-Z age group.
Class 4 again, had the highest accuracy at 100%, which is comparable to the full dataset which also
predicted class 4 at 100%. Class 2: 'Obesity_Type_I' and Class 5: 'Overweight_Level_I' had the
lowest accuracy at 65%. Class 6: 'Overweight_Level_II' has a significant drop in accuracy, which prior
to feature selection had a 95% prediction, and after feature selection has a 68% prediction. This
shows that the features necessarily to predict Class 6 are not included in the top 15% features. The
model also does not classify Class 1: 'Normal_Weight' as well as the other classes, which is
consistent pattern among all the models. In contrast, the model was able to predict Class 3:
'Obesity_Type_II' better than the model for the Gen-Z age group. The top 15% of features includes
weight, gender both male and female, family_history_with_ obesity as ‘no’, always eating vegetables
with meals (FCVC), and frequently eating food between meals. These features are the same top
features from the model using the full dataset. Unlike the previous two models, this model includes
one additional top feature, a physical activity feature, means of transportation as automobile. This is
interesting since previous models did not include a physical activity feature. Moreover, the model with

 17
the top 15% features for both the Millennials age group and the Gen-Z age group yielded similar
accuracy for classification. The main difference is that a physical activity feature is included in the top
features for Millennials which is not included for Gen-Z.
 The classifier model for the Gen-X and Boomers dataset performed the worse compared to all
previous models. The model achieved an accuracy of 66.7%. This model resulted in the lowest
accuracy score compared to the previous models. This dataset is significantly smaller than the
previous two dataset. As such, not all classes are represented in this model and due to the limited
number of entries, the model does not have as much data for the classifier to train on compared to
previous three models. This model was able to predict Class 1: 'Normal_Weight' at 89% accuracy,
which is higher in accuracy compared to all previous models. This model was unable to predict Class
0: 'Insufficient_Weight or Class 3: 'Obesity_Type_II'. With the feature selection using the top 15% of
features, the model maintained its accuracy at 66.7%. This model underperformed compared to all
previous models with all classes having accuracy scores of 75% or lower. Again, the model was
unable to predict Class 0: ‘Insufficient_Weight.’ Since some classes are not represented in this
dataset and with a lower amount of data for training, it is not unexpected that the model was unable to
classify obesity levels as well as the previous models. The top 15% of features includes weight and
always eating vegetables with meals (FCVC) which are two features also included as top features for
the full dataset, Gen-Z dataset, and Millennial’s dataset. Additional eating habits features are included
as top features: water intake at more than 2 liters per day and monitoring calories intake daily. In
addition, physical activity features include direct physical activity 1 to 2 days or 3 to 4 days and
means of transportation by public transit. This is interesting since previous models did not include
specific eating habit features such as water intake and direct exercise or direct physical activity. The
results are drastically different from the Gen-Z and Gen-X dataset but since the sample size is
significantly lower, more data would be needed for this population to perform a more detailed and
thorough analysis in validating these top features and determining what key features affect the
classification of obesity for the Gen-X and Boomers age group.

Results

 Two classifiers performed well for classification of obesity levels: Decision Tree and K-Nearest
Neighbor (KNN). Since the dataset contained many categorical variables, the classifier model using
Decision Tree resulted in the highest accuracy. Feature selection was performed using Decision Tree
to determine the top 15% most important features. With feature selection, the model using the full
dataset resulted in the best accuracy. The top 15% features for this model include age, weight, male
gender, no family history with obesity, always eating vegetables with meals (FCVC) and frequently
eating food between meals (CAEC). With feature selection, the model still performed well with an
accuracy of 86.3%. Biological features and family history with obesity are top features that are
associated with classifying obesity. With the full dataset, only two additional eating habit features
were top features. The models for Gen-Z age group and Millennials age group also included weight,
both male and female gender, no family history with obesity, always eating vegetables with meals
(FCVC), and frequently eating food between meals (CAEC) as top features. Gen-Z includes more
eating habit features including not eating high calorie foods frequently and number of meals
consumed daily, and Millennials includes a physical activity feature which is transportation by
automobile. The model for the Gen-X and Boomers age group performed the worst and had different
top features compared to all other models. The top features still included weight, but no longer
included gender and instead included both eating habits and physical activity features including water

 18
intake of 2 liters or more, calories intake daily, and direct physical activity. The model had significantly
lower amount of data compared to previous models which may contribute to the lower accuracy and
lower performance.
 The cluster analysis showed a pattern with gender but did not necessarily show a pattern with
age groups. Although from the feature selection, age plays a salient factor in classifying obesity level,
the generational age groupings used for this analysis may not necessarily be as significant. The
results conclude that eating habit features such as always eating vegetables with meals and
frequently eating between meals are salient factors in determining obesity levels among younger
adults. Since the data for the older adults were conclusive due to low sample size, we cannot
confidently specify which eating habit or physical activity features are salient factors in determining
obesity levels for older adults. We can conclude that biological factors such as gender, height, weight,
and no family history of obesity play an important role in classifying obesity levels. Contrary to popular
belief, physical activity features were not the most important features in classifying obesity level.
Since the class label using the body mass index, which is an index based on nutrition, the outcome
confirms that ultimately diet and nutrition is the key to classifying obesity levels.

Conclusion

 In this analysis, clustering analysis was explored on the dataset to discover patterns by groups
in the data. Although age was grouped, a pattern was only found with gender and not with age.
Classification and model selection was performed, and Decision Tree was selected as the best
classifier. Feature selection was performed using the classifier model to determine the top 15% of
features which represents the most salient factors in determining obesity levels among adults in
regions of Latin America. This analysis of the dataset containing obesity levels among adults from
Mexico, Peru, and Colombia revealed that factors that affect the classification of obesity levels the
most are age, gender, weight, and family history with obesity. The original prediction stated that
eating high calorie foods frequently, eating between meals, and having lower days of physical activity
would be the most salient attributes in determining obesity levels. However, the results show that
always eating vegetables with meals and frequently eating between meals are the most important
factors besides gender, weight, and family history with obesity. Physical activity attributes were not
the most important factors in classifying obesity levels. Although age is an important factor, an
individual’s generational group does not play a salient factor in classifying obesity level. Moreover,
obesity level as defined here is a measure of nutritional status and thus, diet and eating habit factors
are more salient for classification. Due to the low sample size of older adults, future studies could
focus on studying the older adult population in greater depth. In addition, this analysis did not focus
on analyzing male and females separately. Future analysis can separate the two groups and perform
separate analysis on the two types of gender since often gender differences may reveal latent factors
in the data.

 19

Works Cited

World Health Organization. “Obesity and Overweight.” World Health Organization, World Health Organization:
WHO, 9 June 2021, www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

“Body Mass Index - BMI.” World Health Organization, World Health Organization, 20 Nov. 2021,
https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi.

Kain J, Viol F, Albala C. Obesity trends and determinant factors in Latin America. Cad Saude Publica. 2003;19
Suppl 1: S77-86. doe: 10.1590/s0102-311x2003000700009. Epub 2003 Jul 21. PMID: 12886438.

Palechor, F. M., & de la Hoz Manotas, A. (2019). Dataset for estimation of obesity levels based on eating
habits and physical condition in individuals from Colombia, Peru, and Mexico. Data in Brief, 104344.

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 1/23

Appendix A: Preprocessing and Classification
Import all the required libraries

Reading File in to a DataFrame

Gender Age Height Weight family_history_with_overweight FAVC FCVC NC

0 Female 21.000000 1.620000 64.000000 yes no 2.0 3

1 Female 21.000000 1.520000 56.000000 yes no 3.0 3

2 Male 23.000000 1.800000 77.000000 yes no 2.0 3

3 Male 27.000000 1.800000 87.000000 no no 3.0 3

4 Male 22.000000 1.780000 89.800000 no no 2.0 1

...

2106 Female 20.976842 1.710730 131.408528 yes yes 3.0 3

2107 Female 21.982942 1.748584 133.742943 yes yes 3.0 3

2108 Female 22.524036 1.752206 133.689352 yes yes 3.0 3

In [6]: import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
import numpy as np
import collections
from collections import Counter

import sklearn
from sklearn.model_selection import train_test_split

from sklearn.preprocessing import OrdinalEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline

from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.linear_model import SGDClassifier

from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report

In [7]: df = pd.read_csv('/Users/kokilamaddi/Documents/Final Assignment/ObesityDataSet/O

In [8]: df

Out[8]:

20

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 2/23

(2111, 17)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2111 entries, 0 to 2110
Data columns (total 17 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Gender 2111 non-null object
 1 Age 2111 non-null float64
 2 Height 2111 non-null float64
 3 Weight 2111 non-null float64
 4 family_history_with_overweight 2111 non-null object
 5 FAVC 2111 non-null object
 6 FCVC 2111 non-null float64
 7 NCP 2111 non-null float64
 8 CAEC 2111 non-null object
 9 SMOKE 2111 non-null object
 10 CH2O 2111 non-null float64
 11 SCC 2111 non-null object
 12 FAF 2111 non-null float64
 13 TUE 2111 non-null float64
 14 CALC 2111 non-null object
 15 MTRANS 2111 non-null object
 16 NObeyesdad 2111 non-null object
dtypes: float64(8), object(9)
memory usage: 280.5+ KB

Gender Age Height Weight family_history_with_overweight FAVC FCVC NC

2109 Female 24.361936 1.739450 133.346641 yes yes 3.0 3

2110 Female 23.664709 1.738836 133.472641 yes yes 3.0 3

2111 rows × 17 columns

Age Height Weight FCVC NCP CH2O FAF

count 2111.000000 2111.000000 2111.000000 2111.000000 2111.000000 2111.000000 2111.000000

mean 24.312600 1.701677 86.586058 2.419043 2.685628 2.008011 1.010298

std 6.345968 0.093305 26.191172 0.533927 0.778039 0.612953 0.850592

min 14.000000 1.450000 39.000000 1.000000 1.000000 1.000000 0.000000

25% 19.947192 1.630000 65.473343 2.000000 2.658738 1.584812 0.124505

50% 22.777890 1.700499 83.000000 2.385502 3.000000 2.000000 1.000000

75% 26.000000 1.768464 107.430682 3.000000 3.000000 2.477420 1.666678

max 61.000000 1.980000 173.000000 3.000000 4.000000 3.000000 3.000000

In [9]: df.shape

Out[9]:

In [10]: df.info()

In [11]: df.describe()

Out[11]:

21

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 3/23

Index(['Gender', 'Age', 'Height', 'Weight', 'family_history_with_overweight',
'FAVC', 'FCVC', 'NCP', 'CAEC', 'SMOKE', 'CH2O', 'SCC', 'FAF', 'TUE',
'CALC', 'MTRANS', 'NObeyesdad'],

 dtype='object')

Gender Age Height Weight family_history_with_overweight FAVC FCVC NC

0 Female 21.000000 1.620000 64.000000 yes no 2.0 3

1 Female 21.000000 1.520000 56.000000 yes no 3.0 3

2 Male 23.000000 1.800000 77.000000 yes no 2.0 3

3 Male 27.000000 1.800000 87.000000 no no 3.0 3

4 Male 22.000000 1.780000 89.800000 no no 2.0 1

...

2106 Female 20.976842 1.710730 131.408528 yes yes 3.0 3

2107 Female 21.982942 1.748584 133.742943 yes yes 3.0 3

2108 Female 22.524036 1.752206 133.689352 yes yes 3.0 3

2109 Female 24.361936 1.739450 133.346641 yes yes 3.0 3

2110 Female 23.664709 1.738836 133.472641 yes yes 3.0 3

2111 rows × 17 columns

Gender Age Height Weight family_history_with_overweight FAVC FCVC NCP CAE

0 Female 21.0 162.0 64.0 yes no 2.0 3.0 Sometim

1 Female 21.0 152.0 56.0 yes no 3.0 3.0 Sometim

2 Male 23.0 180.0 77.0 yes no 2.0 3.0 Sometim

3 Male 27.0 180.0 87.0 no no 3.0 3.0 Sometim

4 Male 22.0 178.0 89.8 no no 2.0 1.0 Sometim

In [12]: df.columns

Out[12]:

In [13]: df.columns = ['Gender', 'Age', 'Height', 'Weight', 'family_history_with_overweig
'SMOKE', 'CH2O', 'SCC', 'FAF', 'TUE','CALC', 'MTRANS', 'NObeyesdad

df

Out[13]:

In [14]: df['NObeyesdad'] = df['NObeyesdad'].apply(lambda x: x.replace('_', ' '))
df['MTRANS'] = df['MTRANS'].apply(lambda x: x.replace('_', ' '))
df['Height'] = df['Height']*100
df['Height'] = df['Height'].round(1)
df['Weight'] = df['Weight'].round(1)
df['Age'] = df['Age'].round(1)
df

Out[14]:

22

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 4/23

FCVC : min: 1.0 max: 3.0
NCP : min: 1.0 max: 4.0
CH2O : min: 1.0 max: 3.0
FAF : min: 0.0 max: 3.0
TUE : min: 0.0 max: 2.0

Appendix A1

Exploratory Data Analysis

FCVC : min: 1 max: 3 int64
[2 3 1]
NCP : min: 1 max: 4 int64
[3 1 4 2]
CH2O : min: 1 max: 3 int64
[2 3 1]
FAF : min: 0 max: 3 int64
[0 3 2 1]
TUE : min: 0 max: 2 int64
[1 0 2]

Gender Age Height Weight family_history_with_overweight FAVC FCVC NCP CAE

...

2106 Female 21.0 171.1 131.4 yes yes 3.0 3.0 Sometim

2107 Female 22.0 174.9 133.7 yes yes 3.0 3.0 Sometim

2108 Female 22.5 175.2 133.7 yes yes 3.0 3.0 Sometim

2109 Female 24.4 173.9 133.3 yes yes 3.0 3.0 Sometim

2110 Female 23.7 173.9 133.5 yes yes 3.0 3.0 Sometim

2111 rows × 17 columns

In [15]: for x in ['FCVC', 'NCP', 'CH2O', 'FAF', 'TUE']:
 value = np.array(df[x])
 print(x,':', 'min:', np.min(value), 'max:', np.max(value))

In [16]: for x in ['FCVC', 'NCP', 'CH2O', 'FAF', 'TUE']:
 df[x] = df[x].apply(round)
 value = np.array(df[x])
 print(x,':', 'min:', np.min(value), 'max:', np.max(value), df[x].dtype)
 print(df[x].unique())

In [17]: df1 = df.copy()

In [18]: mapping0 = {1:'Never', 2:'Sometimes', 3:'Always'}
mapping1 = {1: '1', 2:'2' , 3: '3', 4: '3+'}
mapping2 = {1: 'Less than a liter', 2:'Between 1 and 2 L', 3:'More than 2 L'}

23

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 5/23

Age, Height and Weight

Gender Age Height Weight family_history_with_overweight FAVC FCVC NCP

0 Female 21.0 162.0 64.0 yes no Sometimes 3 Som

1 Female 21.0 152.0 56.0 yes no Always 3 Som

2 Male 23.0 180.0 77.0 yes no Sometimes 3 Som

3 Male 27.0 180.0 87.0 no no Always 3 Som

4 Male 22.0 178.0 89.8 no no Sometimes 1 Som

...

2106 Female 21.0 171.1 131.4 yes yes Always 3 Som

2107 Female 22.0 174.9 133.7 yes yes Always 3 Som

2108 Female 22.5 175.2 133.7 yes yes Always 3 Som

2109 Female 24.4 173.9 133.3 yes yes Always 3 Som

2110 Female 23.7 173.9 133.5 yes yes Always 3 Som

2111 rows × 17 columns

mapping3 = {0: 'I do not have', 1: '1 or 2 days', 2: '2 or 4 days', 3: '4 or 5 d
mapping4 = {0: '0–2 hours', 1: '3–5 hours', 2: 'More than 5 hours'}

In [19]: df['FCVC'] = df['FCVC'].replace(mapping0)
df['NCP'] = df['NCP'].replace(mapping1)
df['CH2O'] = df['CH2O'].replace(mapping2)
df['FAF'] = df['FAF'].replace(mapping3)
df['TUE'] = df['TUE'].replace(mapping4)

In [20]: df

Out[20]:

24

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 6/23

In terms of height, male and female are similarly distributed according to the box plot below.
While male are generally taller than females, both male and female share a similar average in
weight, with females having a much larger range of weight (as well as BMI) compared to male.
This is further illustrated by the steeper line plot between weight and height of females than
male.

Figure A1.1

<AxesSubplot:xlabel='Gender', ylabel='Weight'>

 Figure A1.1

/opt/anaconda3/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarn
ing: Pass the following variables as keyword args: x, y. From version 0.12, the
only valid positional argument will be `data`, and passing other arguments witho
ut an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

<seaborn.axisgrid.JointGrid at 0x7fa739b244f0>

In [21]: sns.set()
fig = plt.figure(figsize=(20,10))
plt.subplot(1, 2, 1)
sns.boxplot(x='Gender', y='Height', data=df)
plt.subplot(1, 2, 2)
sns.boxplot(x='Gender', y='Weight', data=df)

Out[21]:

In [22]: sns.set()
g = sns.jointplot("Height", "Weight", data=df,
 kind="reg", truncate=False,
 xlim=(125, 200), ylim=(35, 180),
 color="m", height=10)
g.set_axis_labels("Height (cm)", "Weight (kg)")

Out[22]:

25

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 7/23

Figure A1.2

<seaborn.axisgrid.FacetGrid at 0x7fa73d620640>

In [23]: g = sns.lmplot(x="Height", y="Weight", hue="Gender",
 height=10, data=df)
g.set_axis_labels("Height (cm)", "Weight (kg)")

Out[23]:

26

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 8/23

 Figure A1.2

Obesity

Counter({'Obesity Type I': 351, 'Obesity Type III': 324, 'Obesity Type II': 297,
'Overweight Level I': 290, 'Overweight Level II': 290, 'Normal Weight': 287, 'In
sufficient Weight': 272})

Figure A1.3

In [24]: c = Counter(df['NObeyesdad'])
print(c)

In [25]: fig = plt.figure(figsize=(8,8))
plt.pie([float(c[v]) for v in c], labels=[str(k) for k in c], autopct=None)
plt.title('Weight Category')
plt.tight_layout()

27

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 9/23

 Figure A1.3

Counter({'Obesity Type II': 295, 'Obesity Type I': 195, 'Overweight Level II': 1
87, 'Normal Weight': 146, 'Overweight Level I': 145, 'Insufficient Weight': 99,
'Obesity Type III': 1})
Counter({'Obesity Type III': 323, 'Insufficient Weight': 173, 'Obesity Type I':
156, 'Overweight Level I': 145, 'Normal Weight': 141, 'Overweight Level II': 10
3, 'Obesity Type II': 2})

A bigger proportion of female with a higher BMI is reflected by the large slice of Obesity Type
III in the pie chart below, while Obesity Type II is the most prevalent type of obesity in make.
Interestingly, there is also a higher proportion of Insufficient Weight in female compared to
male, this could be explained by a heavier societal pressure on women to go on diets.

Figure A1.4

In [27]: filt = df['Gender'] == 'Male'
c_m = Counter(df.loc[filt, 'NObeyesdad'])
print(c_m)
c_f = Counter(df.loc[~filt, 'NObeyesdad'])
print(c_f)

In [28]: fig = plt.figure(figsize=(20,8))
plt.subplot(1, 2, 1)
plt.pie([float(c_m[v]) for v in c_m], labels=[str(k) for k in c_m], autopct=None
plt.title('Weight Category of Male')

28

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 10/23

 Figure A1.4

Eating and Exercise Routine

family_history_with_overweight ['yes', 'no'] [1726, 385]
FAVC ['yes', 'no'] [1866, 245]
FCVC ['Sometimes', 'Always', 'Never'] [1013, 996, 102]
NCP ['3', '1', '2', '3+'] [1470, 316, 176, 149]
CAEC ['Sometimes', 'Frequently', 'Always', 'no'] [1765, 242, 53, 51]
SMOKE ['no', 'yes'] [2067, 44]
CH2O ['Between 1 and 2 L', 'More than 2 L', 'Less than a liter'] [1110, 516, 48
5]
SCC ['no', 'yes'] [2015, 96]
FAF ['1 or 2 days', 'I do not have', '2 or 4 days', '4 or 5 days'] [776, 720, 49
6, 119]
TUE ['0–2 hours', '3–5 hours', 'More than 5 hours'] [952, 915, 244]
CALC ['Sometimes', 'no', 'Frequently', 'Always'] [1401, 639, 70, 1]
MTRANS ['Public Transportation', 'Automobile', 'Walking', 'Motorbike', 'Bike']
[1580, 457, 56, 11, 7]

plt.tight_layout()

plt.subplot(1, 2, 2)
plt.pie([float(c_f[v]) for v in c_f], labels=[str(k) for k in c_f], autopct=None
plt.title('Weight Category of Female')
plt.tight_layout()

In [29]: for a in df.columns[4:-1]:
 data = df[a].value_counts()
 values = df[a].value_counts().index.to_list()
 counts = df[a].value_counts().to_list()

 plt.figure(figsize=(12,5))
 ax = sns.barplot(x = values, y = counts)

 plt.title(a)
 plt.xticks(rotation=45)
 print(a, values, counts)

29

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 11/23

30

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 12/23

31

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 13/23

32

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 14/23

33

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 15/23

Data Preprossing

Since classifier cannot operate with label data directly, One Hot Encoder and
Label Encoding will be used to assign numeric values to each category

Gender Age Height Weight family_history_with_overweight FAVC FCVC NCP CAEC

0 Female 21.0 162.0 64.0 yes no 2 3 Sometimes

1 Female 21.0 152.0 56.0 yes no 3 3 Sometimes

2 Male 23.0 180.0 77.0 yes no 2 3 Sometimes

3 Male 27.0 180.0 87.0 no no 3 3 Sometimes

4 Male 22.0 178.0 89.8 no no 2 1 Sometimes

In [30]: df1.head()

Out[30]:

In [31]: # identity categorical variables (data type would be 'object')
cat = df1.dtypes == object

print(cat)

When dtype == object is 'true'
print(cat[cat])
cat_labels = cat[cat].index
print('Categorical variables:', cat_labels)

When dtype == object is 'false'
false = cat[~cat]

34

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 16/23

Gender True
Age False
Height False
Weight False
family_history_with_overweight True
FAVC True
FCVC False
NCP False
CAEC True
SMOKE True
CH2O False
SCC True
FAF False
TUE False
CALC True
MTRANS True
NObeyesdad True
dtype: bool
Gender True
family_history_with_overweight True
FAVC True
CAEC True
SMOKE True
SCC True
CALC True
MTRANS True
NObeyesdad True
dtype: bool
Categorical variables: Index(['Gender', 'family_history_with_overweight', 'FAV
C', 'CAEC', 'SMOKE',
 'SCC', 'CALC', 'MTRANS', 'NObeyesdad'],
 dtype='object')
Non Categorical variables: Index(['Age', 'Height', 'Weight', 'FCVC', 'NCP', 'CH2
O', 'FAF', 'TUE'], dtype='object')

[{'Gender': 0}, {'Age': 1}, {'Height': 2}, {'Weight': 3}, {'family_history_with_

Gender Age Height Weight family_history_with_overweight FAVC FCVC NCP CAEC

0 Female 21.0 162.0 64.0 yes no 2 3 Sometimes

1 Female 21.0 152.0 56.0 yes no 3 3 Sometimes

2 Male 23.0 180.0 77.0 yes no 2 3 Sometimes

non_cat = false.index
print('Non Categorical variables:', non_cat)

In [35]: df1.head(3)

Out[35]:

In [36]: df1.columns

def col_no(x):
 d = {}
 d[df1.columns[x]] = x
 return(d)

print([col_no(x) for x in range(0, len(df1.columns))])

35

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 17/23

overweight': 4}, {'FAVC': 5}, {'FCVC': 6}, {'NCP': 7}, {'CAEC': 8}, {'SMOKE':
9}, {'CH2O': 10}, {'SCC': 11}, {'FAF': 12}, {'TUE': 13}, {'CALC': 14}, {'MTRAN
S': 15}, {'NObeyesdad': 16}]

The target value, obesity level, will be transformed into digit label with LabelEncoder.

StandardScaler is applied to attributes with values which ranges are not consistent with the
rest, to avoid disproportionate weight assigned to these values. (i.e. Age, Height, Weight).

Features that are ordinal in nature (i.e. answers including 'never', 'sometimes', 'always') will
be preprocessed with OrdinalEncoder (exactly the same function is LabelEncoder, however
this will take in multiple arguments as the latter is meant for the y-value only).

Features that are non-ordinal in nature will be preprocessed with OneHotEncoder, so that the
generated labels will not be interpreted in a way that suggests one answer is more important
than the other (e.g. 3 is more important than 1).

SimpleImputer is applied to all attributes to deal with missing values.

All of these preprocessing techniques will be bundled into a pipeline, which will be deployed
with classifiers later.

array([2, 4, 2, ..., 3, 1, 5])

In [37]: x = df1[df1.columns[:-1]]
y = df['NObeyesdad']

x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(x, y

In [39]: from sklearn.preprocessing import LabelEncoder

In [40]: le = LabelEncoder()
y_train = le.fit_transform(y_train)
y_train

Out[40]:

In [44]: Scale_features = ['Age', 'Height', 'Weight']
Scale_transformer = Pipeline(steps=[
 ('imputer', SimpleImputer(strategy='median')),
 ('Scaling', StandardScaler())
])

Ordi_features = ['CAEC', 'CALC']
Ordi_transformer = Pipeline(steps=[
 ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
 ('Ordi', OrdinalEncoder())
])

NonO_features = ['Gender', 'family_history_with_overweight', 'FAVC', 'SMOKE', 'S
NonO_transformer = Pipeline(steps=[
 ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
 ('Non-O', OneHotEncoder())
])

Preprocessor = ColumnTransformer(transformers=[
 ('Scale', Scale_transformer, Scale_features),
 ('Ordinal', Ordi_transformer, Ordi_features),
 ('Non-Ordinal', NonO_transformer, NonO_features)

36

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 18/23

Pipeline(steps=[('preprocessor',
 ColumnTransformer(remainder='passthrough',
 transformers=[('Scale',
 Pipeline(steps=[('imputer',
 SimpleImputer
(strategy='median')),
 ('Scaling',
 StandardScale
r())]),
 ['Age', 'Height', 'Weight']),
 ('Ordinal',
 Pipeline(steps=[('imputer',
 SimpleImputer
(fill_value='missing',

strategy='constant')),
 ('Ordi',
 OrdinalEncode
r())]),
 ['CAEC', 'CALC']),
 ('Non-Ordinal',
 Pipeline(steps=[('imputer',
 SimpleImputer
(fill_value='missing',

strategy='constant')),
 ('Non-O',
 OneHotEncoder
())]),
 ['Gender',
 'family_history_with_overweig
ht',
 'FAVC', 'SMOKE', 'SCC',
 'MTRANS'])]))])

(1899, 25)

['Age', 'Height', 'Weight', 'CAEC', 'CALC']

], remainder = 'passthrough')

clf = Pipeline(steps=[('preprocessor', Preprocessor)])

In [45]: clf.fit(x_train, y_train)

Out[45]:

In [46]: trans_df = clf.fit_transform(x_train)
print(trans_df.shape)

In [47]: # Column name of first two steps in pipeline

cols = [y for x in [Scale_features, Ordi_features] for y in x]
cols

Out[47]:

In [48]: # Column names of OneHotEncoder step in pipeline

ohe_cols = clf.named_steps['preprocessor'].transformers_[2][1]\
 .named_steps['Non-O'].get_feature_names(NonO_features)

37

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 19/23

/opt/anaconda3/lib/python3.8/site-packages/sklearn/utils/deprecation.py:87: Futu
reWarning: Function get_feature_names is deprecated; get_feature_names is deprec
ated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instea
d.
 warnings.warn(msg, category=FutureWarning)

['Gender_Female',
 'Gender_Male',
 'family_history_with_overweight_no',
 'family_history_with_overweight_yes',
 'FAVC_no',
 'FAVC_yes',
 'SMOKE_no',
 'SMOKE_yes',
 'SCC_no',
 'SCC_yes',
 'MTRANS_Automobile',
 'MTRANS_Bike',
 'MTRANS_Motorbike',
 'MTRANS_Public Transportation',
 'MTRANS_Walking']

Index(['Age', 'Height', 'Weight', 'FCVC', 'NCP', 'CH2O', 'FAF', 'TUE'], dtype='o
bject')

Age Height Weight CAEC CALC Gender_Female Gender_Male
Family Histo

wi
Overweight_n

0 0.265303 -0.467044 0.128819 2.0 2.0 0.0 1.0 0

ohe_cols = [x for x in ohe_cols]
ohe_cols

Out[48]:

In [49]: # Column names of remainder='Passthrough' - remaining columns that didn't get pr
non_cat

Out[49]:

In [50]: transformed_x_train = pd.DataFrame(trans_df, columns= ['Age', 'Height',
 'Weight',
 'CAEC', 'CALC','Gender_Female',
 'Gender_Male',
 'Family History with Overweight_no',
 'Family History with Overweight_yes',
 'FAVC_no',
 'FAVC_yes',
 'SMOKE_no',
 'SMOKE_yes',
 'SCC_no',
 'SCC_yes',
 'MTRANS_Automobile',
 'MTRANS_Bike',
 'MTRANS_Motorbike',
 'MTRANS_Public Transportation',
 'MTRANS_Walking',
 'FCVC', 'NCP', 'CH2O', 'FAF', 'TUE'])

In [51]: # transformed/processed features

transformed_x_train

Out[51]:

38

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 20/23

{0: 'Insufficient Weight', 1: 'Normal Weight', 2: 'Obesity Type I', 3: 'Obesity
Type II', 4: 'Obesity Type III', 5: 'Overweight Level I', 6: 'Overweight Level I
I'}

Appendix A2

Model Selection

Age Height Weight CAEC CALC Gender_Female Gender_Male
Family Histo

wi
Overweight_n

1 0.265303 -1.012489 0.697446 2.0 2.0 1.0 0.0 0

2 1.346780 0.891223 0.651956 2.0 2.0 0.0 1.0 0

3 -0.831847 0.623847 1.793002 2.0 2.0 1.0 0.0 0

4 -0.769152 -0.777199 -0.174449 2.0 2.0 1.0 0.0 0

...

1894 0.641469 0.709407 1.008296 2.0 2.0 0.0 1.0 0

1895 -0.675111 -1.076659 -1.387521 2.0 3.0 1.0 0.0 1

1896 0.986288 0.709407 1.205420 2.0 2.0 0.0 1.0 0

1897 0.108568 -1.397509 -1.197978 2.0 2.0 1.0 0.0 1

1898 0.422039 -1.611409 -0.932619 2.0 2.0 1.0 0.0 1

1899 rows × 25 columns

In [52]: le = LabelEncoder()
y_test = le.fit_transform(y_test)
le_name_mapping = dict(zip(le.transform(le.classes_), le.classes_))
print(le_name_mapping)

In [54]: classifiers = [
 KNeighborsClassifier(n_neighbors = 5),
 SVC(kernel="rbf", C=0.025, probability=True),
 DecisionTreeClassifier(),
 RandomForestClassifier(),
 AdaBoostClassifier(),
 GradientBoostingClassifier(),
 SGDClassifier()
]

top_class = []

for classifier in classifiers:
 pipe = Pipeline(steps=[('preprocessor', Preprocessor),
 ('classifier', classifier)])

 # training model
 pipe.fit(x_train, y_train)
 print(classifier)

39

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 21/23

KNeighborsClassifier()
model score: 0.821
 precision recall f1-score support

Insufficient Weight 0.72 0.92 0.81 25
 Normal Weight 0.61 0.35 0.45 31
 Obesity Type I 0.84 0.95 0.89 44
 Obesity Type II 0.94 1.00 0.97 31
 Obesity Type III 1.00 1.00 1.00 27
 Overweight Level I 0.77 0.82 0.79 28
Overweight Level II 0.77 0.65 0.71 26

 accuracy 0.82 212
 macro avg 0.81 0.81 0.80 212
 weighted avg 0.81 0.82 0.81 212

SVC(C=0.025, probability=True)
model score: 0.505
 precision recall f1-score support

Insufficient Weight 0.67 0.24 0.35 25
 Normal Weight 0.35 0.19 0.25 31
 Obesity Type I 0.34 1.00 0.51 44
 Obesity Type II 0.83 0.77 0.80 31
 Obesity Type III 1.00 1.00 1.00 27
 Overweight Level I 0.00 0.00 0.00 28
Overweight Level II 0.00 0.00 0.00 26

 accuracy 0.50 212
 macro avg 0.46 0.46 0.42 212
 weighted avg 0.45 0.50 0.43 212

DecisionTreeClassifier()
model score: 0.939
 precision recall f1-score support

Insufficient Weight 0.96 0.92 0.94 25
 Normal Weight 0.90 0.87 0.89 31
 Obesity Type I 0.95 0.95 0.95 44
 Obesity Type II 0.94 1.00 0.97 31
 Obesity Type III 1.00 1.00 1.00 27
 Overweight Level I 0.89 0.89 0.89 28
Overweight Level II 0.92 0.92 0.92 26

 accuracy 0.94 212
 macro avg 0.94 0.94 0.94 212
 weighted avg 0.94 0.94 0.94 212

/opt/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:13
08: UndefinedMetricWarning: Precision and F-score are ill-defined and being set
to 0.0 in labels with no predicted samples. Use `zero_division` parameter to con

 acc_score = pipe.score(x_test, y_test)
 print("model score: %.3f" % acc_score)

 # using the model to predict
 y_pred = pipe.predict(x_test)

 target_names = [le_name_mapping[x] for x in le_name_mapping]
 print(classification_report(y_test, y_pred, target_names=target_names))

 if acc_score > 0.8:
 top_class.append(classifier)

40

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 22/23

trol this behavior.
 _warn_prf(average, modifier, msg_start, len(result))
/opt/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:13
08: UndefinedMetricWarning: Precision and F-score are ill-defined and being set
to 0.0 in labels with no predicted samples. Use `zero_division` parameter to con
trol this behavior.
 _warn_prf(average, modifier, msg_start, len(result))
/opt/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:13
08: UndefinedMetricWarning: Precision and F-score are ill-defined and being set
to 0.0 in labels with no predicted samples. Use `zero_division` parameter to con
trol this behavior.
 _warn_prf(average, modifier, msg_start, len(result))
RandomForestClassifier()
model score: 0.934
 precision recall f1-score support

Insufficient Weight 1.00 0.88 0.94 25
 Normal Weight 0.77 0.97 0.86 31
 Obesity Type I 1.00 0.95 0.98 44
 Obesity Type II 1.00 1.00 1.00 31
 Obesity Type III 1.00 1.00 1.00 27
 Overweight Level I 0.92 0.82 0.87 28
Overweight Level II 0.88 0.88 0.88 26

 accuracy 0.93 212
 macro avg 0.94 0.93 0.93 212
 weighted avg 0.94 0.93 0.94 212

AdaBoostClassifier()
model score: 0.283
 precision recall f1-score support

Insufficient Weight 0.00 0.00 0.00 25
 Normal Weight 0.35 0.45 0.39 31
 Obesity Type I 0.25 0.43 0.31 44
 Obesity Type II 0.50 0.03 0.06 31
 Obesity Type III 0.00 0.00 0.00 27
 Overweight Level I 0.50 0.04 0.07 28
Overweight Level II 0.27 0.96 0.43 26

 accuracy 0.28 212
 macro avg 0.27 0.27 0.18 212
 weighted avg 0.28 0.28 0.19 212

/opt/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:13
08: UndefinedMetricWarning: Precision and F-score are ill-defined and being set
to 0.0 in labels with no predicted samples. Use `zero_division` parameter to con
trol this behavior.
 _warn_prf(average, modifier, msg_start, len(result))
/opt/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:13
08: UndefinedMetricWarning: Precision and F-score are ill-defined and being set
to 0.0 in labels with no predicted samples. Use `zero_division` parameter to con
trol this behavior.
 _warn_prf(average, modifier, msg_start, len(result))
/opt/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:13
08: UndefinedMetricWarning: Precision and F-score are ill-defined and being set
to 0.0 in labels with no predicted samples. Use `zero_division` parameter to con
trol this behavior.
 _warn_prf(average, modifier, msg_start, len(result))
GradientBoostingClassifier()
model score: 0.958
 precision recall f1-score support

Insufficient Weight 1.00 0.92 0.96 25
 Normal Weight 0.88 0.97 0.92 31

41

11/20/21, 10:30 AM Classification Notebook

file:///Users/cl/Desktop/AppendixA-Preprocessing&Classification(Maddi,Kokila).html 23/23

 Obesity Type I 0.96 1.00 0.98 44
 Obesity Type II 1.00 0.97 0.98 31
 Obesity Type III 1.00 1.00 1.00 27
 Overweight Level I 0.96 0.86 0.91 28
Overweight Level II 0.93 0.96 0.94 26

 accuracy 0.96 212
 macro avg 0.96 0.95 0.96 212
 weighted avg 0.96 0.96 0.96 212

SGDClassifier()
model score: 0.575
 precision recall f1-score support

Insufficient Weight 1.00 0.60 0.75 25
 Normal Weight 0.30 0.94 0.45 31
 Obesity Type I 0.92 0.25 0.39 44
 Obesity Type II 0.82 1.00 0.90 31
 Obesity Type III 1.00 1.00 1.00 27
 Overweight Level I 0.37 0.25 0.30 28
Overweight Level II 0.50 0.08 0.13 26

 accuracy 0.58 212
 macro avg 0.70 0.59 0.56 212
 weighted avg 0.71 0.58 0.55 212

Classification Report

[KNeighborsClassifier(),
 DecisionTreeClassifier(),
 RandomForestClassifier(),
 GradientBoostingClassifier()]

In [55]: top_class

Out[55]:

In []:

42

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 1/42

Appendix B: Preprocessing and Clustering Analysis Exploration

Cluster analysis using K-Means algorithm is performed on the full dataset. To perform the

cluster analysis, first, the class label, NObeyesdad is removed from the dataset. The dataset is

transformed to ensure the correct data types exist for each feature. Dummy variables are

created for the categorical features. The numeric dataset contains 2,111 rows and 43 columns.

'/Users/cl'

Gender Age Height Weight family_history_with_overweight FAVC FCVC NC

0 Female 21.000000 1.620000 64.000000 yes no 2.0 3

1 Female 21.000000 1.520000 56.000000 yes no 3.0 3

2 Male 23.000000 1.800000 77.000000 yes no 2.0 3

3 Male 27.000000 1.800000 87.000000 no no 3.0 3

4 Male 22.000000 1.780000 89.800000 no no 2.0 1

...

2106 Female 20.976842 1.710730 131.408528 yes yes 3.0 3

2107 Female 21.982942 1.748584 133.742943 yes yes 3.0 3

2108 Female 22.524036 1.752206 133.689352 yes yes 3.0 3

2109 Female 24.361936 1.739450 133.346641 yes yes 3.0 3

2110 Female 23.664709 1.738836 133.472641 yes yes 3.0 3

2111 rows × 17 columns

In [1]: import numpy as np
import pylab as pl
import pandas as pd
import importlib
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import decomposition
from sklearn import preprocessing
from sklearn import metrics
from sklearn.metrics import completeness_score, homogeneity_score
from sklearn.metrics import silhouette_samples

In [2]: %pwd

Out[2]:

In [3]: # Load dataset to Pandas dataframe:
df = pd.read_csv('/Users/cl/ObesityDataset.csv', header=0)

In [4]: # View dataframe:
df

Out[4]:

43

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 2/42

Gender Age Height Weight family_history_with_overweight FAVC FCVC NC

0 Female 21.000000 1.620000 64.000000 yes no 2.0 3

1 Female 21.000000 1.520000 56.000000 yes no 3.0 3

2 Male 23.000000 1.800000 77.000000 yes no 2.0 3

3 Male 27.000000 1.800000 87.000000 no no 3.0 3

4 Male 22.000000 1.780000 89.800000 no no 2.0 1

...

2106 Female 20.976842 1.710730 131.408528 yes yes 3.0 3

2107 Female 21.982942 1.748584 133.742943 yes yes 3.0 3

2108 Female 22.524036 1.752206 133.689352 yes yes 3.0 3

2109 Female 24.361936 1.739450 133.346641 yes yes 3.0 3

2110 Female 23.664709 1.738836 133.472641 yes yes 3.0 3

2111 rows × 16 columns

Gender Age Height Weight family_history_with_overweight FAVC FCVC NC

0 Female 21.000000 1.620000 64.000000 yes no 2.0 3

1 Female 21.000000 1.520000 56.000000 yes no 3.0 3

2 Male 23.000000 1.800000 77.000000 yes no 2.0 3

3 Male 27.000000 1.800000 87.000000 no no 3.0 3

4 Male 22.000000 1.780000 89.800000 no no 2.0 1

...

2106 Female 20.976842 1.710730 131.408528 yes yes 3.0 3

2107 Female 21.982942 1.748584 133.742943 yes yes 3.0 3

2108 Female 22.524036 1.752206 133.689352 yes yes 3.0 3

2109 Female 24.361936 1.739450 133.346641 yes yes 3.0 3

2110 Female 23.664709 1.738836 133.472641 yes yes 3.0 3

2111 rows × 16 columns

In [5]: #remove the class label column
df2 = df.iloc[:,:16]
df2

Out[5]:

In [6]: # Create a copy to clean the data:
cleaned_data = df2
cleaned_data

Out[6]:

In [7]: # Convert FCVC, NCP, CH20, FAF, and TUE into a Categorical Feature by first, con
cleaned_data['FCVC'] = cleaned_data['FCVC'].astype('int')
cleaned_data['NCP'] = cleaned_data['NCP'].astype('int')

44

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 3/42

Gender object
Age int64
Height float64
Weight float64
family_history_with_overweight object
FAVC object
FCVC int64
NCP int64
CAEC object
SMOKE object
CH2O int64
SCC object
FAF int64
TUE int64
CALC object
MTRANS object
dtype: object

Gender Age Height Weight family_history_with_overweight FAVC FCVC NCP

0 Female 21 1.620000 64.000000 yes no Sometimes 3

cleaned_data['CH2O'] = cleaned_data['CH2O'].astype('int')
cleaned_data['FAF'] = cleaned_data['FAF'].astype('int')
cleaned_data['TUE'] = cleaned_data['TUE'].astype('int')

Convert Age from Float to Integer:
cleaned_data['Age'] = cleaned_data['Age'].astype('int')
cleaned_data.dtypes

Out[7]:

In [8]: # Rename values in FCVC into Categorical Names:
cleaned_data['FCVC'] = cleaned_data['FCVC'].replace({1: 'Never'})
cleaned_data['FCVC'] = cleaned_data['FCVC'].replace({2: 'Sometimes'})
cleaned_data['FCVC'] = cleaned_data['FCVC'].replace({3: 'Always'})

Rename values in NCP into Categorical Names:
cleaned_data['NCP'] = cleaned_data['NCP'].replace({1: '1'})
cleaned_data['NCP'] = cleaned_data['NCP'].replace({2: '2'})
cleaned_data['NCP'] = cleaned_data['NCP'].replace({3: '3'})
cleaned_data['NCP'] = cleaned_data['NCP'].replace({4: '3+'})

Rename values in CH2O into Categorical Names:
cleaned_data['CH2O'] = cleaned_data['CH2O'].replace({1: 'Less than a liter'})
cleaned_data['CH2O'] = cleaned_data['CH2O'].replace({2: 'Between 1 and 2 L'})
cleaned_data['CH2O'] = cleaned_data['CH2O'].replace({3: 'More than 2 L'})

Rename values in FAF into Categorical Names:
cleaned_data['FAF'] = cleaned_data['FAF'].replace({0: 'I do not have'})
cleaned_data['FAF'] = cleaned_data['FAF'].replace({1: '1 or 2 days'})
cleaned_data['FAF'] = cleaned_data['FAF'].replace({2: '2 or 4 days'})
cleaned_data['FAF'] = cleaned_data['FAF'].replace({3: '4 or 5 days'})

Rename values in TUE into Categorical Names:
cleaned_data['TUE'] = cleaned_data['TUE'].replace({0: '0-2 Hours'})
cleaned_data['TUE'] = cleaned_data['TUE'].replace({1: '3-5 Hours'})
cleaned_data['TUE'] = cleaned_data['TUE'].replace({2: 'More than 5 Hours'})

cleaned_data

Out[8]:

45

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 4/42

Gender Age Height Weight family_history_with_overweight FAVC FCVC NCP

1 Female 21 1.520000 56.000000 yes no Always 3

2 Male 23 1.800000 77.000000 yes no Sometimes 3

3 Male 27 1.800000 87.000000 no no Always 3

4 Male 22 1.780000 89.800000 no no Sometimes

...

2106 Female 20 1.710730 131.408528 yes yes Always 3

2107 Female 21 1.748584 133.742943 yes yes Always 3

2108 Female 22 1.752206 133.689352 yes yes Always 3

2109 Female 24 1.739450 133.346641 yes yes Always 3

2110 Female 23 1.738836 133.472641 yes yes Always 3

2111 rows × 16 columns

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_n

0 21 1.620000 64.000000 1 0

1 21 1.520000 56.000000 1 0

2 23 1.800000 77.000000 0 1

3 27 1.800000 87.000000 0 1

4 22 1.780000 89.800000 0 1

...

In [9]: # create dummy variables for cleaned dataset:
data_numeric = pd.get_dummies(cleaned_data)
pd.set_option("display.max_columns", 999)
data_numeric

Out[9]:

46

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 5/42

Age Height Weight Gender_Female Gender_Male \
0 0.148936 0.320755 0.186567 1.0 0.0
1 0.148936 0.132075 0.126866 1.0 0.0
2 0.191489 0.660377 0.283582 0.0 1.0
3 0.276596 0.660377 0.358209 0.0 1.0
4 0.170213 0.622642 0.379104 0.0 1.0
...
2106 0.127660 0.491943 0.689616 1.0 0.0
2107 0.148936 0.563366 0.707037 1.0 0.0
2108 0.170213 0.570200 0.706637 1.0 0.0
2109 0.212766 0.546132 0.704079 1.0 0.0
2110 0.191489 0.544974 0.705020 1.0 0.0

 family_history_with_overweight_no family_history_with_overweight_yes \
0 0.0 1.0
1 0.0 1.0
2 0.0 1.0
3 1.0 0.0
4 1.0 0.0
...
2106 0.0 1.0
2107 0.0 1.0
2108 0.0 1.0
2109 0.0 1.0
2110 0.0 1.0

 FAVC_no FAVC_yes FCVC_Always FCVC_Never FCVC_Sometimes NCP_1 \
0 1.0 0.0 0.0 0.0 1.0 0.0
1 1.0 0.0 1.0 0.0 0.0 0.0
2 1.0 0.0 0.0 0.0 1.0 0.0
3 1.0 0.0 1.0 0.0 0.0 0.0

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_n

2106 20 1.710730 131.408528 1 0

2107 21 1.748584 133.742943 1 0

2108 22 1.752206 133.689352 1 0

2109 24 1.739450 133.346641 1 0

2110 23 1.738836 133.472641 1 0

2111 rows × 43 columns

In [10]: # Save Numeric Dataframe for future use:
data_numeric.to_csv('/Users/cl/Obesity_numeric.csv', index = False)

In [11]: # Normalize the numeric dataset with Min-Max Scaling:
df_min_max_scaled = data_numeric.copy()
for column in df_min_max_scaled.columns:
 df_min_max_scaled[column] = (df_min_max_scaled[column] - df_min_max_scaled[c

In [12]: # View normalized data:
print(df_min_max_scaled)

47

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 6/42

4 1.0 0.0 0.0 0.0 1.0 1.0
...
2106 0.0 1.0 1.0 0.0 0.0 0.0
2107 0.0 1.0 1.0 0.0 0.0 0.0
2108 0.0 1.0 1.0 0.0 0.0 0.0
2109 0.0 1.0 1.0 0.0 0.0 0.0
2110 0.0 1.0 1.0 0.0 0.0 0.0

 NCP_2 NCP_3 NCP_3+ CAEC_Always CAEC_Frequently CAEC_Sometimes \
0 0.0 1.0 0.0 0.0 0.0 1.0
1 0.0 1.0 0.0 0.0 0.0 1.0
2 0.0 1.0 0.0 0.0 0.0 1.0
3 0.0 1.0 0.0 0.0 0.0 1.0
4 0.0 0.0 0.0 0.0 0.0 1.0
...
2106 0.0 1.0 0.0 0.0 0.0 1.0
2107 0.0 1.0 0.0 0.0 0.0 1.0
2108 0.0 1.0 0.0 0.0 0.0 1.0
2109 0.0 1.0 0.0 0.0 0.0 1.0
2110 0.0 1.0 0.0 0.0 0.0 1.0

 CAEC_no SMOKE_no SMOKE_yes CH2O_Between 1 and 2 L \
0 0.0 1.0 0.0 1.0
1 0.0 0.0 1.0 0.0
2 0.0 1.0 0.0 1.0
3 0.0 1.0 0.0 1.0
4 0.0 1.0 0.0 1.0
...
2106 0.0 1.0 0.0 0.0
2107 0.0 1.0 0.0 1.0
2108 0.0 1.0 0.0 1.0
2109 0.0 1.0 0.0 1.0
2110 0.0 1.0 0.0 1.0

 CH2O_Less than a liter CH2O_More than 2 L SCC_no SCC_yes \
0 0.0 0.0 1.0 0.0
1 0.0 1.0 0.0 1.0
2 0.0 0.0 1.0 0.0
3 0.0 0.0 1.0 0.0
4 0.0 0.0 1.0 0.0
...
2106 1.0 0.0 1.0 0.0
2107 0.0 0.0 1.0 0.0
2108 0.0 0.0 1.0 0.0
2109 0.0 0.0 1.0 0.0
2110 0.0 0.0 1.0 0.0

 FAF_1 or 2 days FAF_2 or 4 days FAF_4 or 5 days FAF_I do not have \
0 0.0 0.0 0.0 1.0
1 0.0 0.0 1.0 0.0
2 0.0 1.0 0.0 0.0
3 0.0 1.0 0.0 0.0
4 0.0 0.0 0.0 1.0
...
2106 1.0 0.0 0.0 0.0
2107 1.0 0.0 0.0 0.0
2108 1.0 0.0 0.0 0.0
2109 1.0 0.0 0.0 0.0
2110 1.0 0.0 0.0 0.0

 TUE_0-2 Hours TUE_3-5 Hours TUE_More than 5 Hours CALC_Always \
0 0.0 1.0 0.0 0.0
1 1.0 0.0 0.0 0.0
2 0.0 1.0 0.0 0.0
3 1.0 0.0 0.0 0.0

48

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 7/42

4 1.0 0.0 0.0 0.0
...
2106 1.0 0.0 0.0 0.0
2107 1.0 0.0 0.0 0.0
2108 1.0 0.0 0.0 0.0
2109 1.0 0.0 0.0 0.0
2110 1.0 0.0 0.0 0.0

 CALC_Frequently CALC_Sometimes CALC_no MTRANS_Automobile \
0 0.0 0.0 1.0 0.0
1 0.0 1.0 0.0 0.0
2 1.0 0.0 0.0 0.0
3 1.0 0.0 0.0 0.0
4 0.0 1.0 0.0 0.0
...
2106 0.0 1.0 0.0 0.0
2107 0.0 1.0 0.0 0.0
2108 0.0 1.0 0.0 0.0
2109 0.0 1.0 0.0 0.0
2110 0.0 1.0 0.0 0.0

 MTRANS_Bike MTRANS_Motorbike MTRANS_Public_Transportation \
0 0.0 0.0 1.0
1 0.0 0.0 1.0
2 0.0 0.0 1.0
3 0.0 0.0 0.0
4 0.0 0.0 1.0
...
2106 0.0 0.0 1.0
2107 0.0 0.0 1.0
2108 0.0 0.0 1.0
2109 0.0 0.0 1.0
2110 0.0 0.0 1.0

 MTRANS_Walking
0 0.0
1 0.0
2 0.0
3 1.0
4 0.0
... ...
2106 0.0
2107 0.0
2108 0.0
2109 0.0
2110 0.0

[2111 rows x 43 columns]

0 Normal_Weight
1 Normal_Weight
2 Normal_Weight
3 Overweight_Level_I
4 Overweight_Level_II
 ...
2106 Obesity_Type_III
2107 Obesity_Type_III
2108 Obesity_Type_III
2109 Obesity_Type_III

In [13]: # View class labels:
labels_df = df['NObeyesdad']
labels_df

Out[13]:

49

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 8/42

2110 Obesity_Type_III
Name: NObeyesdad, Length: 2111, dtype: object

array([1, 1, 1, ..., 4, 4, 4])

{0: 'Insufficient_Weight', 1: 'Normal_Weight', 2: 'Obesity_Type_I', 3: 'Obesity_
Type_II', 4: 'Obesity_Type_III', 5: 'Overweight_Level_I', 6: 'Overweight_Level_I
I'}

Clustering Exporation with K-Means:
Below is the exploration of clustering using K-means with the normalized data. Various values of

k were tested and the centroids were evaluated to determine if a pattern appears in the clusters

based on the data. For each value of K, the cluster centroids were examined to determine if any

pattern exists in the data. A silhouette analysis is performed for to evaluate the separation

between the resulting clusters and determine the quality of the clusters. The silhouette plots

display a measure of how close each point in one cluster is to points in the neighboring clusters.

The mean silhouette value is calculated and used as a threshold when determining the cluster

quality. Clusters with most of their coefficients above the mean silhouette value are considered

better quality which means that clusters are further away from the neighboring clusters.

Clusters with most of their coefficients below the mean silhouette value reveals that samples

are very close to the decision boundary between two neighboring clusters and negative

coefficient values indicate that samples are assigned to the wrong cluster. When the silhouette

plot does not display any negative coefficients and have the thickest plots visually above the

silhouette mean, the correct number of K has been selected.

Initialization complete
Iteration 0, inertia 11787.00508682668
Iteration 1, inertia 8566.056202078382
Iteration 2, inertia 8338.71778464269
Iteration 3, inertia 8237.82330971913
Iteration 4, inertia 8176.41527470928
Iteration 5, inertia 8099.540960517189
Iteration 6, inertia 8076.56013777138
Iteration 7, inertia 8068.9930112547
Iteration 8, inertia 8068.221972230656
Iteration 9, inertia 8068.076896983779
Iteration 10, inertia 8067.991083649056
Iteration 11, inertia 8067.917526159745

In [14]: # Transform class label into numeric:
le = preprocessing.LabelEncoder()
labels_num = le.fit_transform(labels_df)
labels_num

Out[14]:

In [15]: # View class label names and numeric association:
label_names = dict(zip(le.transform(le.classes_), le.classes_))
print(label_names)

In [16]: kmeans = KMeans(n_clusters=5, max_iter=500, verbose=1) #initialize k-means with

In [17]: kmeans.fit(df_min_max_scaled)

50

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 9/42

Iteration 12, inertia 8067.434112719851
Iteration 13, inertia 8067.300618383514
Iteration 14, inertia 8066.690183145394
Iteration 15, inertia 8065.724907535046
Iteration 16, inertia 8065.1555932972105
Iteration 17, inertia 8064.406578178977
Iteration 18, inertia 8055.777491215358
Iteration 19, inertia 8050.3019028424
Iteration 20, inertia 8042.536097506457
Iteration 21, inertia 8026.138983270792
Iteration 22, inertia 7994.538660965364
Iteration 23, inertia 7981.791935092773
Iteration 24, inertia 7972.431678248945
Iteration 25, inertia 7970.020550287187
Iteration 26, inertia 7968.48651338652
Iteration 27, inertia 7966.955938122063
Iteration 28, inertia 7964.781849553093
Iteration 29, inertia 7958.222148843893
Iteration 30, inertia 7956.01524580361
Iteration 31, inertia 7955.555539283562
Iteration 32, inertia 7955.527509697825
Iteration 33, inertia 7955.494519204406
Converged at iteration 33: strict convergence.
Initialization complete
Iteration 0, inertia 11825.274489539268
Iteration 1, inertia 8581.769457282187
Iteration 2, inertia 8468.439310863918
Iteration 3, inertia 8354.00074441653
Iteration 4, inertia 8210.581719370295
Iteration 5, inertia 8130.050202902669
Iteration 6, inertia 8093.4953218710225
Iteration 7, inertia 8076.467461725121
Iteration 8, inertia 8059.590914960909
Iteration 9, inertia 8051.452820847045
Iteration 10, inertia 8044.333927734175
Iteration 11, inertia 8039.893289001246
Iteration 12, inertia 8036.123631679592
Iteration 13, inertia 8032.046237708075
Iteration 14, inertia 8029.674990266088
Iteration 15, inertia 8026.254886825644
Iteration 16, inertia 8023.089343537067
Iteration 17, inertia 8019.880934083217
Iteration 18, inertia 8008.990523342801
Iteration 19, inertia 7969.300639772133
Iteration 20, inertia 7919.97712322982
Iteration 21, inertia 7910.686198322982
Iteration 22, inertia 7906.238208315535
Iteration 23, inertia 7899.756117486131
Iteration 24, inertia 7892.545244873981
Iteration 25, inertia 7890.019624999294
Iteration 26, inertia 7889.072892812861
Iteration 27, inertia 7888.575279501931
Iteration 28, inertia 7888.2990556955165
Iteration 29, inertia 7887.869135061676
Iteration 30, inertia 7887.622886266341
Iteration 31, inertia 7887.258246367743
Iteration 32, inertia 7886.838669332199
Iteration 33, inertia 7886.583695027855
Iteration 34, inertia 7886.48352229928
Converged at iteration 34: strict convergence.
Initialization complete
Iteration 0, inertia 12174.525656749454
Iteration 1, inertia 8507.8234001361
Iteration 2, inertia 8262.156761189228
Iteration 3, inertia 8135.565056552313

51

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 10/42

Iteration 4, inertia 8072.3981424163885
Iteration 5, inertia 8047.041186769761
Iteration 6, inertia 8036.157681658016
Iteration 7, inertia 8032.793289742063
Iteration 8, inertia 8030.945913788686
Iteration 9, inertia 8030.700347934296
Iteration 10, inertia 8030.595081706321
Iteration 11, inertia 8030.463150369052
Iteration 12, inertia 8030.425825530467
Converged at iteration 12: strict convergence.
Initialization complete
Iteration 0, inertia 12478.757883097682
Iteration 1, inertia 8699.700914801515
Iteration 2, inertia 8423.74786273518
Iteration 3, inertia 8246.866008200308
Iteration 4, inertia 8137.329970995708
Iteration 5, inertia 8103.804191725505
Iteration 6, inertia 8092.207693677892
Iteration 7, inertia 8089.336054818334
Iteration 8, inertia 8087.034378963835
Iteration 9, inertia 8086.246069705694
Iteration 10, inertia 8084.619362324052
Iteration 11, inertia 8082.67643373668
Iteration 12, inertia 8082.188515787069
Converged at iteration 12: strict convergence.
Initialization complete
Iteration 0, inertia 11832.53539722714
Iteration 1, inertia 8466.1801078797
Iteration 2, inertia 8226.758916757437
Iteration 3, inertia 8115.239236717611
Iteration 4, inertia 8062.949256711981
Iteration 5, inertia 8047.895976309511
Iteration 6, inertia 8035.457973021038
Iteration 7, inertia 8028.199810257129
Iteration 8, inertia 8007.65676812841
Iteration 9, inertia 7963.399143602098
Iteration 10, inertia 7936.853393483585
Iteration 11, inertia 7924.273139615089
Iteration 12, inertia 7918.766371499822
Iteration 13, inertia 7916.290733124256
Iteration 14, inertia 7915.13212820532
Iteration 15, inertia 7913.658090371352
Iteration 16, inertia 7912.216196347794
Iteration 17, inertia 7911.340690474468
Iteration 18, inertia 7911.151814669988
Iteration 19, inertia 7911.113667420209
Converged at iteration 19: strict convergence.
Initialization complete
Iteration 0, inertia 11823.752663657368
Iteration 1, inertia 8276.46780690895
Iteration 2, inertia 8098.68081942101
Iteration 3, inertia 8037.29250680346
Iteration 4, inertia 7997.19138403611
Iteration 5, inertia 7925.487303831875
Iteration 6, inertia 7872.633962217118
Iteration 7, inertia 7853.57013270058
Iteration 8, inertia 7849.995965259756
Iteration 9, inertia 7843.743550028235
Iteration 10, inertia 7837.019905347132
Iteration 11, inertia 7834.827151309026
Iteration 12, inertia 7833.546296354347
Iteration 13, inertia 7833.009378377764
Iteration 14, inertia 7832.554446255171
Iteration 15, inertia 7832.210277934463
Iteration 16, inertia 7831.1753466434475

52

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 11/42

Iteration 17, inertia 7831.074055893812
Iteration 18, inertia 7831.027292617523
Iteration 19, inertia 7830.977013027618
Converged at iteration 19: strict convergence.
Initialization complete
Iteration 0, inertia 11596.309798286276
Iteration 1, inertia 8646.1997670067
Iteration 2, inertia 8394.42223224813
Iteration 3, inertia 8250.441907007784
Iteration 4, inertia 8175.292252415538
Iteration 5, inertia 8131.1038719677545
Iteration 6, inertia 8088.55452146436
Iteration 7, inertia 8032.992455465169
Iteration 8, inertia 7978.52526813498
Iteration 9, inertia 7956.801794915094
Iteration 10, inertia 7947.744891687089
Iteration 11, inertia 7941.340182646654
Iteration 12, inertia 7937.882158960003
Iteration 13, inertia 7936.406248808135
Iteration 14, inertia 7934.818469379045
Iteration 15, inertia 7934.023804051918
Iteration 16, inertia 7932.807323423373
Iteration 17, inertia 7931.7472552303025
Iteration 18, inertia 7931.066262593041
Iteration 19, inertia 7930.419081526247
Iteration 20, inertia 7915.339857061065
Iteration 21, inertia 7886.689696466735
Iteration 22, inertia 7859.242618003011
Iteration 23, inertia 7850.823479552829
Iteration 24, inertia 7847.789675688788
Iteration 25, inertia 7846.48853874517
Iteration 26, inertia 7842.455320611688
Iteration 27, inertia 7839.4277804122285
Iteration 28, inertia 7836.555716423136
Iteration 29, inertia 7835.294209939629
Iteration 30, inertia 7834.188876497395
Iteration 31, inertia 7833.097135623066
Iteration 32, inertia 7832.671449816852
Iteration 33, inertia 7832.380999582051
Iteration 34, inertia 7832.259089755594
Iteration 35, inertia 7832.232553830457
Converged at iteration 35: strict convergence.
Initialization complete
Iteration 0, inertia 12864.885199156606
Iteration 1, inertia 8534.055041539128
Iteration 2, inertia 8208.402584930189
Iteration 3, inertia 8134.677983160359
Iteration 4, inertia 8061.954032765476
Iteration 5, inertia 8012.741078486168
Iteration 6, inertia 7973.675852821764
Iteration 7, inertia 7960.156905577035
Iteration 8, inertia 7955.948758245115
Iteration 9, inertia 7937.8692456423405
Iteration 10, inertia 7929.672981125681
Iteration 11, inertia 7912.395873582756
Iteration 12, inertia 7884.993609624193
Iteration 13, inertia 7867.601997438204
Iteration 14, inertia 7864.718177831521
Iteration 15, inertia 7863.772078183434
Iteration 16, inertia 7863.723388842099
Converged at iteration 16: strict convergence.
Initialization complete
Iteration 0, inertia 11871.688456665612
Iteration 1, inertia 8444.666140084128
Iteration 2, inertia 8172.684939816708

53

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 12/42

Iteration 3, inertia 8022.5123919112075
Iteration 4, inertia 7989.103278787667
Iteration 5, inertia 7979.526024439475
Iteration 6, inertia 7972.321268249555
Iteration 7, inertia 7965.892255679502
Iteration 8, inertia 7959.862725195303
Iteration 9, inertia 7948.061310377594
Iteration 10, inertia 7926.876581312946
Iteration 11, inertia 7922.760473428007
Iteration 12, inertia 7920.461356227191
Iteration 13, inertia 7918.936152811791
Iteration 14, inertia 7918.355463902865
Iteration 15, inertia 7918.230916735995
Converged at iteration 15: strict convergence.
Initialization complete
Iteration 0, inertia 12258.81732786365
Iteration 1, inertia 8490.528120624003
Iteration 2, inertia 8287.639034367927
Iteration 3, inertia 8199.024276953247
Iteration 4, inertia 8142.15513015745
Iteration 5, inertia 8082.207427076215
Iteration 6, inertia 8037.963976518285
Iteration 7, inertia 8007.417500726093
Iteration 8, inertia 7978.869398652809
Iteration 9, inertia 7937.0245485312225
Iteration 10, inertia 7903.678870109956
Iteration 11, inertia 7866.78478195413
Iteration 12, inertia 7853.215930528641
Iteration 13, inertia 7847.326673615622
Iteration 14, inertia 7845.271749303697
Iteration 15, inertia 7844.525551419671
Iteration 16, inertia 7844.433188252878
Iteration 17, inertia 7844.348811651154
Converged at iteration 17: strict convergence.

KMeans(max_iter=500, n_clusters=5, verbose=1)

Cluster

0 2

1 0

2 2

3 3

4 3

... ...

2106 0

2107 0

2108 0

2109 0

2110 0

Out[17]:

In [18]: clusters5 = kmeans.predict(df_min_max_scaled)

In [19]: pd.DataFrame(clusters5, columns=["Cluster"])

Out[19]:

54

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 13/42

2111 rows × 1 columns

Size of Cluster 0 = 420
Size of Cluster 1 = 423
Size of Cluster 2 = 455
Size of Cluster 3 = 355
Size of Cluster 4 = 458

Mean Silhouette Value : 0.12696817428675627

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no family_

0 0.19 0.43 0.52 1.00 0.00 0.00

1 0.37 0.51 0.36 0.33 0.67 0.06

2 0.16 0.41 0.30 0.55 0.45 0.00

3 0.15 0.37 0.14 0.65 0.35 0.98

4 0.18 0.63 0.42 0.00 1.00 0.02

In [20]: def cluster_sizes(clusters):
 #clusters is an array of cluster labels for each instance in the data

 size = {}
 cluster_labels = np.unique(clusters)
 n_clusters = cluster_labels.shape[0]

 for c in cluster_labels:
 size[c] = len(df[clusters == c])
 return size

In [21]: size5 = cluster_sizes(clusters5)

for c5 in size5.keys():
 print("Size of Cluster", c5, "= ", size5[c5])

In [22]: # The centroids provide an aggregate representation and a characterization of ea
pd.options.display.float_format='{:,.2f}'.format

centroids5 = pd.DataFrame(kmeans.cluster_centers_, columns=df_min_max_scaled.col
centroids5

Out[22]:

In [23]: # Silhouette Analysis at n = 5:
c5_silhouette = metrics.silhouette_samples(df_min_max_scaled, clusters5)
print('Mean Silhouette Value :', c5_silhouette.mean())

In [24]: def plot_silhouettes(data, clusters, metric='euclidean'):

 from matplotlib import cm
 from sklearn.metrics import silhouette_samples

55

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 14/42

Above, the plot of the silhouettes shows that cluster 0 outperformed the other clusters with all

its coefficients above the mean silhouette value. Cluster 4 also performed well with many of its

coefficients above the mean silhouette value. The remaining three clusters did not perform as

well since most of their coefficients are below the mean silhouette value. Four of the clusters

display negative values with cluster 3 having the most negative coefficients, which indicates

that 5 clusters are too high for the dataset.

 cluster_labels = np.unique(clusters)
 n_clusters = cluster_labels.shape[0]
 silhouette_vals = metrics.silhouette_samples(data, clusters, metric='euclide
 c_ax_lower, c_ax_upper = 0, 0
 cticks = []
 for i, k in enumerate(cluster_labels):
 c_silhouette_vals = silhouette_vals[clusters == k]
 c_silhouette_vals.sort()
 c_ax_upper += len(c_silhouette_vals)
 color = cm.jet(float(i) / n_clusters)
 pl.barh(range(c_ax_lower, c_ax_upper), c_silhouette_vals, height=1.0,
 edgecolor='none', color=color)

 cticks.append((c_ax_lower + c_ax_upper) / 2)
 c_ax_lower += len(c_silhouette_vals)

 silhouette_avg = np.mean(silhouette_vals)
 pl.axvline(silhouette_avg, color="red", linestyle="--")

 pl.yticks(cticks, cluster_labels)
 pl.ylabel('Cluster')
 pl.xlabel('Silhouette coefficient')

 pl.tight_layout()
 #pl.savefig('images/11_04.png', dpi=300)
 pl.show()

 return

In [25]: # Plot and Evaluate the Silhouettes:
plot_silhouettes(df_min_max_scaled, clusters5)

56

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 15/42

Initialization complete
Iteration 0, inertia 12879.623786128155
Iteration 1, inertia 9001.37311540421
Iteration 2, inertia 8858.998139520381
Iteration 3, inertia 8809.939108030303
Iteration 4, inertia 8791.272204868248
Iteration 5, inertia 8786.47670789417
Iteration 6, inertia 8785.4661617069
Iteration 7, inertia 8783.363746212328
Iteration 8, inertia 8772.54056168085
Iteration 9, inertia 8769.557983795672
Iteration 10, inertia 8768.483498001466
Iteration 11, inertia 8767.764124919666
Iteration 12, inertia 8766.35120571748
Iteration 13, inertia 8765.43867230093
Iteration 14, inertia 8765.398780834916
Converged at iteration 14: strict convergence.
Initialization complete
Iteration 0, inertia 14534.508672109176
Iteration 1, inertia 9309.441488842096
Iteration 2, inertia 9037.604181226367
Iteration 3, inertia 8938.658231693586
Iteration 4, inertia 8916.402643453937
Iteration 5, inertia 8888.331390013225
Iteration 6, inertia 8870.074074790271
Iteration 7, inertia 8861.211103290092
Iteration 8, inertia 8853.162119584285
Iteration 9, inertia 8846.868576454352
Iteration 10, inertia 8827.84407699484
Iteration 11, inertia 8799.1609794804
Iteration 12, inertia 8785.909269034124
Iteration 13, inertia 8774.601325517255
Iteration 14, inertia 8769.592571719972
Iteration 15, inertia 8767.63492356255
Iteration 16, inertia 8766.444849568958
Iteration 17, inertia 8765.971992499608
Iteration 18, inertia 8765.867441373892
Iteration 19, inertia 8765.66116613612
Iteration 20, inertia 8765.486144212005
Iteration 21, inertia 8765.461045034992
Converged at iteration 21: strict convergence.
Initialization complete
Iteration 0, inertia 13336.164818796795
Iteration 1, inertia 9567.269152448953
Iteration 2, inertia 9445.553561777502
Iteration 3, inertia 9356.780028542624
Iteration 4, inertia 9157.130002021417
Iteration 5, inertia 9032.754433029859
Iteration 6, inertia 8966.21740202369
Iteration 7, inertia 8938.469471906204
Iteration 8, inertia 8923.340927558393
Iteration 9, inertia 8916.997734419223
Iteration 10, inertia 8915.764064629098
Iteration 11, inertia 8915.37813313638
Iteration 12, inertia 8915.127678549246
Iteration 13, inertia 8914.954033413907
Iteration 14, inertia 8914.93152766286
Iteration 15, inertia 8914.917473861125
Converged at iteration 15: strict convergence.

In [26]: kmeans3 = KMeans(n_clusters=3, max_iter=500, verbose=1) # k-means with n = 3

In [27]: kmeans3.fit(df_min_max_scaled)

57

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 16/42

Initialization complete
Iteration 0, inertia 12235.950953731766
Iteration 1, inertia 9177.059040690088
Iteration 2, inertia 8997.9480370336
Iteration 3, inertia 8886.478645540206
Iteration 4, inertia 8833.780310727954
Iteration 5, inertia 8820.17237743324
Iteration 6, inertia 8819.429241417094
Iteration 7, inertia 8819.16005670056
Iteration 8, inertia 8818.804519317317
Iteration 9, inertia 8818.682843171513
Iteration 10, inertia 8818.311487274063
Iteration 11, inertia 8818.159940170133
Iteration 12, inertia 8817.98907376872
Iteration 13, inertia 8817.865936421687
Iteration 14, inertia 8817.806917535885
Iteration 15, inertia 8817.776092265041
Iteration 16, inertia 8817.693711678381
Iteration 17, inertia 8817.668602183467
Converged at iteration 17: strict convergence.
Initialization complete
Iteration 0, inertia 14283.23672461032
Iteration 1, inertia 9655.242214042786
Iteration 2, inertia 9501.150166979987
Iteration 3, inertia 9385.8241565813
Iteration 4, inertia 9306.25122999164
Iteration 5, inertia 9258.611440798086
Iteration 6, inertia 9220.655830148746
Iteration 7, inertia 9205.884675342035
Iteration 8, inertia 9201.291862951928
Iteration 9, inertia 9200.842008469204
Iteration 10, inertia 9200.67414699048
Iteration 11, inertia 9200.629965113641
Converged at iteration 11: strict convergence.
Initialization complete
Iteration 0, inertia 12423.535126370873
Iteration 1, inertia 9135.382864146819
Iteration 2, inertia 9028.876396630194
Iteration 3, inertia 8968.812555470771
Iteration 4, inertia 8910.48089075226
Iteration 5, inertia 8856.621151522155
Iteration 6, inertia 8821.480910675746
Iteration 7, inertia 8818.661138265279
Iteration 8, inertia 8818.274441804033
Iteration 9, inertia 8818.095197547456
Iteration 10, inertia 8817.924137895994
Iteration 11, inertia 8817.828887772916
Iteration 12, inertia 8817.806917535885
Iteration 13, inertia 8817.776092265041
Iteration 14, inertia 8817.693711678381
Iteration 15, inertia 8817.668602183467
Converged at iteration 15: strict convergence.
Initialization complete
Iteration 0, inertia 15560.349375046955
Iteration 1, inertia 9451.504598782774
Iteration 2, inertia 9142.603376735178
Iteration 3, inertia 8984.738489060503
Iteration 4, inertia 8903.206814994957
Iteration 5, inertia 8849.255938606113
Iteration 6, inertia 8805.887151861752
Iteration 7, inertia 8787.427510335308
Iteration 8, inertia 8777.334874885435
Iteration 9, inertia 8773.33734831006
Iteration 10, inertia 8770.052840575934
Iteration 11, inertia 8768.924265588485

58

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 17/42

Iteration 12, inertia 8768.062375098845
Iteration 13, inertia 8766.037804380696
Iteration 14, inertia 8765.5613568244
Iteration 15, inertia 8765.461045034992
Converged at iteration 15: strict convergence.
Initialization complete
Iteration 0, inertia 14256.23978990368
Iteration 1, inertia 9202.001056480733
Iteration 2, inertia 8958.453465999479
Iteration 3, inertia 8866.570788484862
Iteration 4, inertia 8824.832909813438
Iteration 5, inertia 8819.837479151136
Iteration 6, inertia 8819.10078183813
Iteration 7, inertia 8819.035876469317
Iteration 8, inertia 8818.817563005117
Iteration 9, inertia 8818.646974003661
Iteration 10, inertia 8818.289586515795
Iteration 11, inertia 8818.159940170133
Iteration 12, inertia 8817.98907376872
Iteration 13, inertia 8817.865936421687
Iteration 14, inertia 8817.806917535887
Iteration 15, inertia 8817.776092265041
Iteration 16, inertia 8817.693711678381
Iteration 17, inertia 8817.668602183467
Converged at iteration 17: strict convergence.
Initialization complete
Iteration 0, inertia 14045.247730533238
Iteration 1, inertia 9577.932151433946
Iteration 2, inertia 9503.316242864512
Iteration 3, inertia 9481.915359950877
Iteration 4, inertia 9463.72742189162
Iteration 5, inertia 9441.526557119001
Iteration 6, inertia 9420.35228646382
Iteration 7, inertia 9406.373961589723
Iteration 8, inertia 9402.970170630471
Iteration 9, inertia 9400.047385253652
Iteration 10, inertia 9399.555304602607
Iteration 11, inertia 9399.498839497075
Iteration 12, inertia 9399.41018122203
Iteration 13, inertia 9399.298956532946
Iteration 14, inertia 9399.274680230332
Iteration 15, inertia 9399.252245628535
Converged at iteration 15: strict convergence.
Initialization complete
Iteration 0, inertia 13317.99475078725
Iteration 1, inertia 8977.851327856566
Iteration 2, inertia 8895.604119959466
Iteration 3, inertia 8873.687473142223
Iteration 4, inertia 8849.570415401187
Iteration 5, inertia 8805.858315057407
Iteration 6, inertia 8780.421553985545
Iteration 7, inertia 8775.53080855752
Iteration 8, inertia 8772.61887038512
Iteration 9, inertia 8769.175262861294
Iteration 10, inertia 8768.382144887562
Iteration 11, inertia 8767.704981473666
Iteration 12, inertia 8766.274753740365
Iteration 13, inertia 8765.417169729853
Iteration 14, inertia 8765.398780834916
Converged at iteration 14: strict convergence.

KMeans(max_iter=500, n_clusters=3, verbose=1)Out[27]:

In [28]: clusters3 = kmeans3.predict(df_min_max_scaled)

59

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 18/42

Size of Cluster 0 = 1058
Size of Cluster 1 = 636
Size of Cluster 2 = 417

Mean Silhouette Value : 0.11634874352766442

Above, shows the results of the silhouette analysis for K=3, which reveals that the algorithm

performed neither better nor worse than at K = 5. The plot of the silhouettes shows that cluster

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no family_

0 0.22 0.58 0.39 -0.00 1.00 0.14

1 0.21 0.33 0.19 0.99 0.01 0.34

2 0.19 0.43 0.52 0.99 0.01 0.04

In [29]: size3 = cluster_sizes(clusters3)

for c in size3.keys():
 print("Size of Cluster", c, "= ", size3[c])

In [30]: # View centroids for an aggregate representation and a characterization of each
pd.options.display.float_format='{:,.2f}'.format

centroids3 = pd.DataFrame(kmeans3.cluster_centers_, columns=df_min_max_scaled.co
centroids3

Out[30]:

In [31]: # Silhouette Analysis at n = 3:
c3_silhouette = metrics.silhouette_samples(df_min_max_scaled, clusters3)
print('Mean Silhouette Value :', c3_silhouette.mean())

In [32]: # Plot and Evaluate the Silhouettes:
plot_silhouettes(df_min_max_scaled, clusters3)

60

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 19/42

2 outperformed the other clusters with all its coefficients above the mean silhouette value.

Cluster 1 performed the worst and did not have any coefficients above the mean silhouette

value, but instead has negative coefficients. When evaluating the centroids, cluster 0 has

Gender_Male with a value of 1.00 and Gender_Female with a value of 0. Cluster 0 most likely

represents the male gender. Cluster 1 and 2 both contain a value of 0.99 for Gender_Female and

0.01 for Gender_Male, which shows that most likely Cluster 1 is misclassified. Most likely this

cluster is pulling coefficients where it should not be and is too close to cluster 0 to be its own

cluster. We can conclude from the silhouette plots that likely three cluster is still too high and

that two clusters may be sufficient.

Initialization complete
Iteration 0, inertia 21141.470043487447
Iteration 1, inertia 10146.649638459037
Iteration 2, inertia 10052.393229584075
Iteration 3, inertia 9978.55949142651
Iteration 4, inertia 9931.576115637514
Iteration 5, inertia 9882.008890876072
Iteration 6, inertia 9833.033569152649
Iteration 7, inertia 9820.76522415991
Iteration 8, inertia 9810.381012107375
Iteration 9, inertia 9806.43745895125
Iteration 10, inertia 9802.52445906197
Iteration 11, inertia 9788.188974953495
Iteration 12, inertia 9784.590860736775
Iteration 13, inertia 9781.587461096071
Iteration 14, inertia 9764.62868015089
Iteration 15, inertia 9703.250240710777
Iteration 16, inertia 9654.064419604409
Iteration 17, inertia 9640.924590400316
Iteration 18, inertia 9633.269288654592
Iteration 19, inertia 9627.22637779535
Iteration 20, inertia 9626.211067157712
Iteration 21, inertia 9625.966275262466
Iteration 22, inertia 9625.900707169734
Iteration 23, inertia 9625.880356300455
Converged at iteration 23: strict convergence.
Initialization complete
Iteration 0, inertia 16459.557174738147
Iteration 1, inertia 9900.362639271163
Iteration 2, inertia 9489.377342057842
Iteration 3, inertia 9440.231621454297
Iteration 4, inertia 9439.746651906471
Iteration 5, inertia 9439.70314554615
Converged at iteration 5: strict convergence.
Initialization complete
Iteration 0, inertia 16654.425161503892
Iteration 1, inertia 9928.457371508537
Iteration 2, inertia 9838.23752341025
Iteration 3, inertia 9788.863247705292
Iteration 4, inertia 9548.861615101538
Iteration 5, inertia 9442.673615150014
Iteration 6, inertia 9439.835639639505
Iteration 7, inertia 9439.703145546147
Converged at iteration 7: strict convergence.

In [33]: kmeans2 = KMeans(n_clusters=2, max_iter=500, verbose=1) # k-means with n = 2

In [34]: kmeans2.fit(df_min_max_scaled)

61

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 20/42

Initialization complete
Iteration 0, inertia 18427.311216298647
Iteration 1, inertia 10184.320163749075
Iteration 2, inertia 10006.009344174558
Iteration 3, inertia 9946.739537737863
Iteration 4, inertia 9924.402102243388
Iteration 5, inertia 9910.780896241331
Iteration 6, inertia 9905.110900156222
Iteration 7, inertia 9902.264415823509
Iteration 8, inertia 9897.72566174957
Iteration 9, inertia 9895.57672400781
Iteration 10, inertia 9894.774416642193
Iteration 11, inertia 9892.907792732634
Iteration 12, inertia 9889.535477719926
Iteration 13, inertia 9885.189090329697
Iteration 14, inertia 9882.336535503198
Iteration 15, inertia 9878.48056558997
Iteration 16, inertia 9874.201130739495
Iteration 17, inertia 9869.024206385815
Iteration 18, inertia 9859.9664768237
Iteration 19, inertia 9851.6930077618
Iteration 20, inertia 9844.315605926562
Iteration 21, inertia 9838.560305605188
Iteration 22, inertia 9828.42281943376
Iteration 23, inertia 9813.08654486762
Iteration 24, inertia 9801.820301212163
Iteration 25, inertia 9796.444293037726
Iteration 26, inertia 9794.424054751174
Iteration 27, inertia 9794.231982639427
Iteration 28, inertia 9794.184865647467
Converged at iteration 28: center shift 1.1769791973055172e-05 within tolerance
1.1825910645989139e-05.
Initialization complete
Iteration 0, inertia 16402.36648533896
Iteration 1, inertia 9994.565703554776
Iteration 2, inertia 9934.77322692749
Iteration 3, inertia 9909.912786027671
Iteration 4, inertia 9883.607078127476
Iteration 5, inertia 9850.433915715637
Iteration 6, inertia 9791.58073461284
Iteration 7, inertia 9734.449876536686
Iteration 8, inertia 9646.394815196176
Iteration 9, inertia 9627.336127098832
Iteration 10, inertia 9625.954342511643
Iteration 11, inertia 9625.884133923937
Iteration 12, inertia 9625.86108434419
Iteration 13, inertia 9625.840681351561
Converged at iteration 13: strict convergence.
Initialization complete
Iteration 0, inertia 14969.584620698479
Iteration 1, inertia 9901.195321252426
Iteration 2, inertia 9853.041301002952
Iteration 3, inertia 9828.346078346132
Iteration 4, inertia 9821.497722659567
Iteration 5, inertia 9816.797972478129
Iteration 6, inertia 9815.160587833674
Iteration 7, inertia 9813.203694536212
Iteration 8, inertia 9812.379447087993
Iteration 9, inertia 9811.952753836797
Iteration 10, inertia 9811.747610338476
Iteration 11, inertia 9811.640620134325
Iteration 12, inertia 9811.132844140293
Iteration 13, inertia 9810.651492658839
Iteration 14, inertia 9810.461157499503
Iteration 15, inertia 9809.569339539601

62

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 21/42

Iteration 16, inertia 9808.659582332328
Iteration 17, inertia 9808.2561123607
Iteration 18, inertia 9807.986336248636
Iteration 19, inertia 9807.906534765058
Iteration 20, inertia 9807.487360220597
Iteration 21, inertia 9806.667738269354
Iteration 22, inertia 9805.834740565373
Iteration 23, inertia 9800.048920420628
Iteration 24, inertia 9788.128577786762
Iteration 25, inertia 9779.417579204792
Iteration 26, inertia 9775.38432414417
Iteration 27, inertia 9761.684802413005
Iteration 28, inertia 9709.236797762258
Iteration 29, inertia 9653.799784178347
Iteration 30, inertia 9642.172114603334
Iteration 31, inertia 9636.202113008087
Iteration 32, inertia 9620.09415505929
Iteration 33, inertia 9617.977388582693
Iteration 34, inertia 9615.658558431482
Iteration 35, inertia 9610.65542615645
Iteration 36, inertia 9607.248540288658
Iteration 37, inertia 9603.493341174244
Iteration 38, inertia 9599.523654632054
Iteration 39, inertia 9597.642822643924
Iteration 40, inertia 9596.209483776676
Iteration 41, inertia 9595.35635092364
Iteration 42, inertia 9594.882428291552
Iteration 43, inertia 9594.678998923426
Iteration 44, inertia 9594.37636625157
Iteration 45, inertia 9594.115982262558
Iteration 46, inertia 9594.001524563828
Iteration 47, inertia 9592.870319464864
Iteration 48, inertia 9587.715138968875
Iteration 49, inertia 9578.793233518765
Iteration 50, inertia 9556.18315100723
Iteration 51, inertia 9517.365630351003
Iteration 52, inertia 9457.17665798308
Iteration 53, inertia 9440.017782540526
Iteration 54, inertia 9439.746651906471
Iteration 55, inertia 9439.703145546147
Converged at iteration 55: strict convergence.
Initialization complete
Iteration 0, inertia 16595.25826599754
Iteration 1, inertia 10109.37538869094
Iteration 2, inertia 9915.261803411886
Iteration 3, inertia 9789.099147804835
Iteration 4, inertia 9778.126542918279
Iteration 5, inertia 9777.915684703536
Converged at iteration 5: strict convergence.
Initialization complete
Iteration 0, inertia 15375.183674102089
Iteration 1, inertia 9952.678493621155
Iteration 2, inertia 9884.256882726944
Iteration 3, inertia 9864.875145644339
Iteration 4, inertia 9859.869224463644
Iteration 5, inertia 9858.379095829157
Iteration 6, inertia 9854.219459620635
Iteration 7, inertia 9841.672028071058
Iteration 8, inertia 9832.676859254072
Iteration 9, inertia 9818.161920484818
Iteration 10, inertia 9805.876930142955
Iteration 11, inertia 9798.29221813926
Iteration 12, inertia 9794.467009896513
Iteration 13, inertia 9794.22218892144
Iteration 14, inertia 9794.184865647467

63

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 22/42

Converged at iteration 14: center shift 1.1769791973055237e-05 within tolerance
1.1825910645989139e-05.
Initialization complete
Iteration 0, inertia 18359.985955431566
Iteration 1, inertia 10101.593413896659
Iteration 2, inertia 9982.754190681128
Iteration 3, inertia 9917.840303560613
Iteration 4, inertia 9890.496715960406
Iteration 5, inertia 9876.352494100358
Iteration 6, inertia 9865.682282638423
Iteration 7, inertia 9853.175178022406
Iteration 8, inertia 9841.405257717575
Iteration 9, inertia 9828.743052973643
Iteration 10, inertia 9812.10020465191
Iteration 11, inertia 9800.966469728079
Iteration 12, inertia 9795.474672343822
Iteration 13, inertia 9794.39208071576
Iteration 14, inertia 9794.247097906948
Iteration 15, inertia 9794.203342487108
Converged at iteration 15: center shift 1.1189193902305637e-05 within tolerance
1.1825910645989139e-05.
Initialization complete
Iteration 0, inertia 14840.19634222251
Iteration 1, inertia 10012.892987021458
Iteration 2, inertia 9937.527748973907
Iteration 3, inertia 9874.816695079277
Iteration 4, inertia 9840.194716250331
Iteration 5, inertia 9814.311264293689
Iteration 6, inertia 9800.700957677194
Iteration 7, inertia 9771.602530465227
Iteration 8, inertia 9541.236198237983
Iteration 9, inertia 9441.157699191357
Iteration 10, inertia 9439.835639639505
Iteration 11, inertia 9439.70314554615
Converged at iteration 11: strict convergence.

KMeans(max_iter=500, n_clusters=2, verbose=1)

Size of Cluster 0 = 1067
Size of Cluster 1 = 1044

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no family_

0 0.22 0.58 0.39 -0.00 1.00 0.14

Out[34]:

In [35]: clusters2 = kmeans2.predict(df_min_max_scaled)

In [36]: size2 = cluster_sizes(clusters2)

for c in size2.keys():
 print("Size of Cluster", c, "= ", size2[c])

In [37]: # View centroids for an aggregate representation and a characterization of each
pd.options.display.float_format='{:,.2f}'.format

centroids2 = pd.DataFrame(kmeans2.cluster_centers_, columns=df_min_max_scaled.co
centroids2

Out[37]:

64

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 23/42

Mean Silhouette Value : 0.13093478332005926

above shows the results of the silhouette analysis for K=2, which achieved the best silhouette

plot compared to previous plots at K = 5 and K = 3. This silhouette plot shows that both cluster

0 and 1 have coefficients that are above the mean silhouette value and none of the coefficients

are negative. Both clusters are neither thick nor full, although, cluster 0 appears thicker than

cluster 1, but from the clustering results above, this result is most successful. When looking at

the centroids, the two features that stand out that most likely represent the clusters compared

to all other features is Gender_Male and Gender_Female. In cluster 0, Gender_Male has a value

of 1.00 while Gender_Female has a value of -0.00 and in cluster 1, Gender_Female has a value of

1.00 while Gender_Male has a value 0.00. Moreover, we can conclude from the silhouette plots

above that likely, cluster 0 represents males and cluster 1 represents female. This evaluation

shows that a pattern exists by gender and that gender may play a role in the dataset and in

determining classification of obesity levels.

Next, we will create age groups and seperate the age of each individual based
on generation. Exploring age groups will allow us to re-evaluate the clusters and
determine if a pattern exists also within age group for classification.

Discretize the Age attribute into 4 seperate age groups and re-run K-Means
Clustering:

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no family_

1 0.21 0.36 0.32 1.00 0.00 0.22

In [38]: # Silhouette Analysis at n = 2:
c2_silhouette = metrics.silhouette_samples(df_min_max_scaled, clusters2)
print('Mean Silhouette Value :', c2_silhouette.mean())

In [39]: # Plot and Evaluate the Silhouettes:
plot_silhouettes(df_min_max_scaled, clusters2)

65

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 24/42

Gen-Z (1997 – 2012), Age: 9 – 24

Millennials (1981 – 1996), Age: 25 – 40

Gen-X (1965 – 1980), Age: 41 – 56

Boomers (1955 - 1964), Age: 57 - 66

14

61

0 (13.999, 24.0]
1 (13.999, 24.0]
2 (13.999, 24.0]
3 (24.0, 40.0]
4 (13.999, 24.0]
Name: Age, dtype: category
Categories (3, interval[float64]): [(13.999, 24.0] < (24.0, 40.0] < (40.0, 61.
0]]

Age Group Age

0 Gen-Z 21

1 Gen-Z 21

2 Gen-Z 23

3 Millenials 27

4 Gen-Z 22

5 Millenials 29

6 Gen-Z 23

7 Gen-Z 22

8 Gen-Z 24

9 Gen-Z 22

In [40]: data_numeric.Age.min() #youngest age in the dataset

Out[40]:

In [41]: data_numeric.Age.max() #oldest age in the dataset

Out[41]:

In [42]: age_bins = pd.qcut(data_numeric.Age, [0, .61, .972, 1])
age_bins.head(5)

Out[42]:

In [43]: age_bins = pd.qcut(data_numeric.Age, [0, .61, .972, 1], labels = ['Gen-Z', 'Mill
age_df = pd.concat([age_bins, df2['Age']], axis=1)
age_df.columns = ['Age Group', 'Age']
age_df.head(10)

Out[43]:

In [44]: data_age_groups = data_numeric
data_age_groups["Age"] = age_df['Age Group']

66

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 25/42

K-means algorithm with the three generational age groups: Gen-Z, Millennials, and Gen-X and

Boomers. This exploration is being explored to see if a pattern exists based on age range which

the cluster analysis for the full dataset did not evaluate since the age groups were not grouped

into categories. The youngest age is 14 and the oldest age is 61. The age groups are created by

binning the Age attribute and then transforming the age group attribute into dummy variables.

For exploratory purposes, K-means is performed on the dataset first without min-max

normalization and second with min-max normalization at K = 3.

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no fa

0 Gen-Z 1.62 64.00 1 0 0

1 Gen-Z 1.52 56.00 1 0 0

2 Gen-Z 1.80 77.00 0 1 0

3 Millenials 1.80 87.00 0 1 1

4 Gen-Z 1.78 89.80 0 1 1

5 Millenials 1.62 53.00 0 1 1

6 Gen-Z 1.50 55.00 1 0 0

7 Gen-Z 1.64 53.00 0 1 1

8 Gen-Z 1.78 64.00 0 1 0

9 Gen-Z 1.72 68.00 0 1 0

Height Weight Gender_Female Gender_Male family_history_with_overweight_no family_histo

0 1.62 64.00 1 0 0

1 1.52 56.00 1 0 0

2 1.80 77.00 0 1 0

3 1.80 87.00 0 1 1

4 1.78 89.80 0 1 1

In [45]: data_age_groups.head(10)

Out[45]:

In [46]: # Create Dummy Variables for Binned Dataset:
df_age_groups = pd.get_dummies(data_age_groups)
df_age_groups.head(5)

Out[46]:

In [47]: # Perform K-Means Clustering with N = 3:
kmeans = KMeans(n_clusters=3, max_iter=500, verbose=1) #initialize k-means with

67

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 26/42

Initialization complete
Iteration 0, inertia 266216.09575717594
Iteration 1, inertia 215521.27371160412
Iteration 2, inertia 210755.68046562248
Iteration 3, inertia 209722.10499704749
Iteration 4, inertia 209418.75170585237
Iteration 5, inertia 209024.46758980726
Iteration 6, inertia 208957.87320545508
Iteration 7, inertia 208952.94787903182
Converged at iteration 7: center shift 0.0008306717121226465 within tolerance 0.
0015358503717230955.
Initialization complete
Iteration 0, inertia 502841.1735953951
Iteration 1, inertia 327560.09540897014
Iteration 2, inertia 315527.1447145528
Iteration 3, inertia 309720.53549766104
Iteration 4, inertia 300890.08942123153
Iteration 5, inertia 292303.3695465401
Iteration 6, inertia 287217.5099774456
Iteration 7, inertia 283800.36697429675
Iteration 8, inertia 278425.3310745159
Iteration 9, inertia 270545.8711724134
Iteration 10, inertia 246805.06029650217
Iteration 11, inertia 232750.70198980303
Iteration 12, inertia 226653.87489398956
Iteration 13, inertia 216920.98018306002
Iteration 14, inertia 212292.1259899532
Iteration 15, inertia 209925.16585043436
Iteration 16, inertia 209641.8566251863
Iteration 17, inertia 209612.29209838895
Iteration 18, inertia 209601.88285883892
Iteration 19, inertia 209598.80247956378
Converged at iteration 19: strict convergence.
Initialization complete
Iteration 0, inertia 326936.9440904384
Iteration 1, inertia 226724.44726938492
Iteration 2, inertia 213994.4657317486
Iteration 3, inertia 210480.97315506768
Iteration 4, inertia 209660.8099794086
Iteration 5, inertia 209614.6304476699
Iteration 6, inertia 209601.88285883892
Iteration 7, inertia 209598.80247956383
Converged at iteration 7: strict convergence.
Initialization complete
Iteration 0, inertia 244660.38351519656
Iteration 1, inertia 211950.75265903442
Iteration 2, inertia 209849.7543072008
Iteration 3, inertia 209518.7500452044
Iteration 4, inertia 209060.11326694212
Iteration 5, inertia 208957.87320545508
Iteration 6, inertia 208952.94787903182
Converged at iteration 6: center shift 0.0008306717121226465 within tolerance 0.
0015358503717230955.
Initialization complete
Iteration 0, inertia 293038.3352946884
Iteration 1, inertia 213135.03302011758
Iteration 2, inertia 210104.25819821077
Iteration 3, inertia 209618.1187074107
Iteration 4, inertia 209113.16767690537
Iteration 5, inertia 208962.37801962328
Iteration 6, inertia 208952.94787903185

In [48]: kmeans.fit(df_age_groups)

68

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 27/42

Converged at iteration 6: center shift 0.0008306717121226769 within tolerance 0.
0015358503717230955.
Initialization complete
Iteration 0, inertia 275553.3335700919
Iteration 1, inertia 222295.79489500792
Iteration 2, inertia 212492.7176855583
Iteration 3, inertia 209869.48135591563
Iteration 4, inertia 209628.24667814613
Iteration 5, inertia 209612.29209838895
Iteration 6, inertia 209601.88285883892
Iteration 7, inertia 209598.80247956383
Converged at iteration 7: strict convergence.
Initialization complete
Iteration 0, inertia 286761.1414317467
Iteration 1, inertia 210695.01280865865
Iteration 2, inertia 209668.3036758006
Iteration 3, inertia 209614.6304476699
Iteration 4, inertia 209601.88285883892
Iteration 5, inertia 209598.80247956383
Converged at iteration 5: strict convergence.
Initialization complete
Iteration 0, inertia 383050.70537416794
Iteration 1, inertia 268032.44644019724
Iteration 2, inertia 222407.19095729562
Iteration 3, inertia 213626.56770579072
Iteration 4, inertia 210456.74923156487
Iteration 5, inertia 209703.02658441686
Iteration 6, inertia 209362.03202101542
Iteration 7, inertia 209013.56709803338
Iteration 8, inertia 208954.93374886544
Iteration 9, inertia 208952.94787903185
Converged at iteration 9: center shift 0.0008306717121226467 within tolerance 0.
0015358503717230955.
Initialization complete
Iteration 0, inertia 374254.3643704856
Iteration 1, inertia 227441.0113142989
Iteration 2, inertia 210113.7182635559
Iteration 3, inertia 209144.6971247129
Iteration 4, inertia 209037.23080006722
Iteration 5, inertia 208970.75843448716
Iteration 6, inertia 208958.73649992305
Converged at iteration 6: center shift 0.0010520324381042456 within tolerance 0.
0015358503717230955.
Initialization complete
Iteration 0, inertia 306059.6127144407
Iteration 1, inertia 230381.17640096927
Iteration 2, inertia 216298.96923962721
Iteration 3, inertia 211115.72555699918
Iteration 4, inertia 209886.61690318544
Iteration 5, inertia 209525.64261090878
Iteration 6, inertia 209040.15129423398
Iteration 7, inertia 208957.87320545508
Iteration 8, inertia 208952.94787903182
Converged at iteration 8: center shift 0.0008306717121226166 within tolerance 0.
0015358503717230955.

KMeans(max_iter=500, n_clusters=3, verbose=1)Out[48]:

In [49]: age_clusters = kmeans.predict(df_age_groups)

In [50]: size = cluster_sizes(age_clusters)

69

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 28/42

Size of Cluster 0 = 789
Size of Cluster 1 = 731
Size of Cluster 2 = 591

0 0.64
1 0.43
2 0.90
Name: Age_Gen-Z, dtype: float64

0 0.31
1 0.56
2 0.10
Name: Age_Millenials, dtype: float64

0 0.04
1 0.01
2 0.00
Name: Age_Gen-X & Boomers, dtype: float64

Mean Silhouette Value : 0.5691256560102319

Height Weight Gender_Female Gender_Male family_history_with_overweight_no family_histo

0 1.70 82.18 0.39 0.61 0.13

1 1.74 116.59 0.44 0.56 0.00

2 1.65 55.37 0.69 0.31 0.48

for c in size.keys():
 print("Size of Cluster", c, "= ", size[c])

In [51]: # View centroids for an aggregate representation and a characterization of each
pd.options.display.float_format='{:,.2f}'.format

centroids = pd.DataFrame(kmeans.cluster_centers_, columns=df_age_groups.columns.
centroids

Out[51]:

In [52]: centroids['Age_Gen-Z'] #clusters containing Gen-Z

Out[52]:

In [53]: centroids['Age_Millenials'] #clusters containing Millenials

Out[53]:

In [54]: centroids['Age_Gen-X & Boomers'] #clusters containing Gen-X and Boomers

Out[54]:

In [55]: # Silhouette Analysis at n = 3:
age_silhouette = metrics.silhouette_samples(df_age_groups, age_clusters)
print('Mean Silhouette Value :', age_silhouette.mean())

In [56]: # Plot and Evaluate the Silhouettes:
plot_silhouettes(df_age_groups, age_clusters)

70

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 29/42

The results of cluster analysis without normalization shows a very healthy silhouette plot with all

three clusters full, thick, and with coefficients above the mean silhouette value. Figure 2.1 below

confirms that clusters when age is grouped by range. When looking at the centroids, cluster 2

shows Gen-Z at 0.9 while Millennials at .10 and Gen-X and Boomers at 0.00. Most likely Gen-Z is

represented in cluster 2.

Completeness Score for Clusters: 0.7020884578966542
Homogeneity Score for Clusters: 0.39448267211636195

The completeness and homogeneity scores were calculated for clusters since the class labels

exist for further examination of the cluster quality. The completeness score was 0.70 which

shows that members of a given class are assigned to the same cluster 70% of the time. The

completeness score is positive and confirms that the clusters captured most of one class. The

homogeneity score was much lower at 0.39 which shows that the clusters are not pure. These

results may indicate that age group may be a factor in deciding the clusters for the data, but it

may not be the main factor that affects obesity level for classification. The silhouette plots

above display that a pattern exist but we must take into consideration that the data was not

scaled. As such, we will next, perform K-means again with the data normalized to validate the

results.

Perform K-Means with Normalized Data on Age Groups for Comparsion:

In [57]: # Calculate Completeness and Homogeneity for the clusters:
complete = completeness_score(labels_num, age_clusters)
print(f"Completeness Score for Clusters: {complete}")
homogene = homogeneity_score(labels_num, age_clusters)
print(f"Homogeneity Score for Clusters: {homogene}")

In [58]: # Normalize the dataset with Min-Max Scaling:
df_age_groups_norm = df_age_groups.copy()
for column in df_age_groups_norm.columns:
 df_age_groups_norm[column] = (df_age_groups_norm[column] - df_age_groups_nor

In [59]: # View normalized data:

71

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 30/42

 Height Weight Gender_Female Gender_Male \
0 0.32 0.19 1.00 0.00
1 0.13 0.13 1.00 0.00
2 0.66 0.28 0.00 1.00
3 0.66 0.36 0.00 1.00
4 0.62 0.38 0.00 1.00
...
2106 0.49 0.69 1.00 0.00
2107 0.56 0.71 1.00 0.00
2108 0.57 0.71 1.00 0.00
2109 0.55 0.70 1.00 0.00
2110 0.54 0.71 1.00 0.00

 family_history_with_overweight_no family_history_with_overweight_yes \
0 0.00 1.00
1 0.00 1.00
2 0.00 1.00
3 1.00 0.00
4 1.00 0.00
...
2106 0.00 1.00
2107 0.00 1.00
2108 0.00 1.00
2109 0.00 1.00
2110 0.00 1.00

 FAVC_no FAVC_yes FCVC_Always FCVC_Never FCVC_Sometimes NCP_1 \
0 1.00 0.00 0.00 0.00 1.00 0.00
1 1.00 0.00 1.00 0.00 0.00 0.00
2 1.00 0.00 0.00 0.00 1.00 0.00
3 1.00 0.00 1.00 0.00 0.00 0.00
4 1.00 0.00 0.00 0.00 1.00 1.00
...
2106 0.00 1.00 1.00 0.00 0.00 0.00
2107 0.00 1.00 1.00 0.00 0.00 0.00
2108 0.00 1.00 1.00 0.00 0.00 0.00
2109 0.00 1.00 1.00 0.00 0.00 0.00
2110 0.00 1.00 1.00 0.00 0.00 0.00

 NCP_2 NCP_3 NCP_3+ CAEC_Always CAEC_Frequently CAEC_Sometimes \
0 0.00 1.00 0.00 0.00 0.00 1.00
1 0.00 1.00 0.00 0.00 0.00 1.00
2 0.00 1.00 0.00 0.00 0.00 1.00
3 0.00 1.00 0.00 0.00 0.00 1.00
4 0.00 0.00 0.00 0.00 0.00 1.00
...
2106 0.00 1.00 0.00 0.00 0.00 1.00
2107 0.00 1.00 0.00 0.00 0.00 1.00
2108 0.00 1.00 0.00 0.00 0.00 1.00
2109 0.00 1.00 0.00 0.00 0.00 1.00
2110 0.00 1.00 0.00 0.00 0.00 1.00

 CAEC_no SMOKE_no SMOKE_yes CH2O_Between 1 and 2 L \
0 0.00 1.00 0.00 1.00
1 0.00 0.00 1.00 0.00
2 0.00 1.00 0.00 1.00
3 0.00 1.00 0.00 1.00
4 0.00 1.00 0.00 1.00
...
2106 0.00 1.00 0.00 0.00
2107 0.00 1.00 0.00 1.00
2108 0.00 1.00 0.00 1.00
2109 0.00 1.00 0.00 1.00

print(df_age_groups_norm) 72

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 31/42

2110 0.00 1.00 0.00 1.00

 CH2O_Less than a liter CH2O_More than 2 L SCC_no SCC_yes \
0 0.00 0.00 1.00 0.00
1 0.00 1.00 0.00 1.00
2 0.00 0.00 1.00 0.00
3 0.00 0.00 1.00 0.00
4 0.00 0.00 1.00 0.00
...
2106 1.00 0.00 1.00 0.00
2107 0.00 0.00 1.00 0.00
2108 0.00 0.00 1.00 0.00
2109 0.00 0.00 1.00 0.00
2110 0.00 0.00 1.00 0.00

 FAF_1 or 2 days FAF_2 or 4 days FAF_4 or 5 days FAF_I do not have \
0 0.00 0.00 0.00 1.00
1 0.00 0.00 1.00 0.00
2 0.00 1.00 0.00 0.00
3 0.00 1.00 0.00 0.00
4 0.00 0.00 0.00 1.00
...
2106 1.00 0.00 0.00 0.00
2107 1.00 0.00 0.00 0.00
2108 1.00 0.00 0.00 0.00
2109 1.00 0.00 0.00 0.00
2110 1.00 0.00 0.00 0.00

 TUE_0-2 Hours TUE_3-5 Hours TUE_More than 5 Hours CALC_Always \
0 0.00 1.00 0.00 0.00
1 1.00 0.00 0.00 0.00
2 0.00 1.00 0.00 0.00
3 1.00 0.00 0.00 0.00
4 1.00 0.00 0.00 0.00
...
2106 1.00 0.00 0.00 0.00
2107 1.00 0.00 0.00 0.00
2108 1.00 0.00 0.00 0.00
2109 1.00 0.00 0.00 0.00
2110 1.00 0.00 0.00 0.00

 CALC_Frequently CALC_Sometimes CALC_no MTRANS_Automobile \
0 0.00 0.00 1.00 0.00
1 0.00 1.00 0.00 0.00
2 1.00 0.00 0.00 0.00
3 1.00 0.00 0.00 0.00
4 0.00 1.00 0.00 0.00
...
2106 0.00 1.00 0.00 0.00
2107 0.00 1.00 0.00 0.00
2108 0.00 1.00 0.00 0.00
2109 0.00 1.00 0.00 0.00
2110 0.00 1.00 0.00 0.00

 MTRANS_Bike MTRANS_Motorbike MTRANS_Public_Transportation \
0 0.00 0.00 1.00
1 0.00 0.00 1.00
2 0.00 0.00 1.00
3 0.00 0.00 0.00
4 0.00 0.00 1.00
...
2106 0.00 0.00 1.00
2107 0.00 0.00 1.00
2108 0.00 0.00 1.00
2109 0.00 0.00 1.00

73

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 32/42

2110 0.00 0.00 1.00

 MTRANS_Walking Age_Gen-Z Age_Millenials Age_Gen-X & Boomers
0 0.00 1.00 0.00 0.00
1 0.00 1.00 0.00 0.00
2 0.00 1.00 0.00 0.00
3 1.00 0.00 1.00 0.00
4 0.00 1.00 0.00 0.00
...
2106 0.00 1.00 0.00 0.00
2107 0.00 1.00 0.00 0.00
2108 0.00 1.00 0.00 0.00
2109 0.00 1.00 0.00 0.00
2110 0.00 1.00 0.00 0.00

[2111 rows x 45 columns]

Initialization complete
Iteration 0, inertia 15293.30577388341
Iteration 1, inertia 9968.066331837832
Iteration 2, inertia 9920.180131785271
Iteration 3, inertia 9903.77236856074
Iteration 4, inertia 9896.176445738252
Iteration 5, inertia 9891.495588792406
Iteration 6, inertia 9889.624965572522
Iteration 7, inertia 9888.823257389276
Iteration 8, inertia 9888.487377405678
Iteration 9, inertia 9888.340285312179
Iteration 10, inertia 9888.20252958357
Iteration 11, inertia 9887.532993038576
Iteration 12, inertia 9887.504196402364
Converged at iteration 12: strict convergence.
Initialization complete
Iteration 0, inertia 15755.748152264905
Iteration 1, inertia 10291.16329342617
Iteration 2, inertia 10228.905860318164
Iteration 3, inertia 10188.107451127948
Iteration 4, inertia 10144.37857128053
Iteration 5, inertia 10107.001253617971
Iteration 6, inertia 10086.05688167689
Iteration 7, inertia 10077.969028399091
Iteration 8, inertia 10068.115905357135
Iteration 9, inertia 10054.640327576219
Iteration 10, inertia 10036.68992669457
Iteration 11, inertia 10012.308155223136
Iteration 12, inertia 9995.089501496252
Iteration 13, inertia 9979.257157992513
Iteration 14, inertia 9938.759373638944
Iteration 15, inertia 9911.724132573296
Iteration 16, inertia 9891.1788188847
Iteration 17, inertia 9754.311626803314
Iteration 18, inertia 9678.154213662237
Iteration 19, inertia 9667.068511677915
Iteration 20, inertia 9660.214612839805
Iteration 21, inertia 9654.574790207527
Iteration 22, inertia 9645.63794782316
Iteration 23, inertia 9644.899891129677

In [60]: # Perform K-Means Clustering with N = 3:
kmeans3 = KMeans(n_clusters=3, max_iter=500, verbose=1)

In [61]: kmeans3.fit(df_age_groups_norm)

74

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 33/42

Iteration 24, inertia 9644.748605586845
Iteration 25, inertia 9644.595919167177
Iteration 26, inertia 9644.549083693555
Iteration 27, inertia 9641.042116346523
Iteration 28, inertia 9638.110099852393
Iteration 29, inertia 9634.979187430297
Iteration 30, inertia 9632.762887140108
Iteration 31, inertia 9632.086194242833
Iteration 32, inertia 9631.65577226331
Iteration 33, inertia 9631.569838198466
Iteration 34, inertia 9631.539746213291
Converged at iteration 34: strict convergence.
Initialization complete
Iteration 0, inertia 14748.903594063975
Iteration 1, inertia 9965.186003070134
Iteration 2, inertia 9825.169923880945
Iteration 3, inertia 9744.272576918649
Iteration 4, inertia 9667.587922972407
Iteration 5, inertia 9644.10573691932
Iteration 6, inertia 9635.267693732794
Iteration 7, inertia 9633.29914147962
Iteration 8, inertia 9632.952141350772
Iteration 9, inertia 9632.87014898023
Converged at iteration 9: strict convergence.
Initialization complete
Iteration 0, inertia 14484.898807356742
Iteration 1, inertia 9955.81303074818
Iteration 2, inertia 9713.282859132194
Iteration 3, inertia 9671.355873128363
Iteration 4, inertia 9650.513068725491
Iteration 5, inertia 9645.317685969698
Iteration 6, inertia 9642.530506536332
Iteration 7, inertia 9641.485885635826
Iteration 8, inertia 9640.28240915911
Iteration 9, inertia 9639.857937703955
Iteration 10, inertia 9639.774644478792
Iteration 11, inertia 9639.697843285941
Iteration 12, inertia 9639.504960365535
Iteration 13, inertia 9638.95769401947
Iteration 14, inertia 9638.573356540428
Iteration 15, inertia 9636.940111858781
Iteration 16, inertia 9635.980505559797
Iteration 17, inertia 9635.293549236569
Iteration 18, inertia 9633.992196284771
Iteration 19, inertia 9631.294896772604
Iteration 20, inertia 9629.157517862288
Iteration 21, inertia 9629.034229492028
Iteration 22, inertia 9628.960271079659
Iteration 23, inertia 9628.812549454027
Iteration 24, inertia 9628.623882692866
Iteration 25, inertia 9628.59305637934
Iteration 26, inertia 9628.524787673914
Iteration 27, inertia 9628.459530177464
Converged at iteration 27: strict convergence.
Initialization complete
Iteration 0, inertia 16152.65491388627
Iteration 1, inertia 10375.533418947318
Iteration 2, inertia 10144.857929200623
Iteration 3, inertia 10053.027516666378
Iteration 4, inertia 10011.007658000435
Iteration 5, inertia 9990.350407887636
Iteration 6, inertia 9980.01909365632
Iteration 7, inertia 9973.147134155095
Iteration 8, inertia 9962.93227967642
Iteration 9, inertia 9950.804233790155

75

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 34/42

Iteration 10, inertia 9929.106524971192
Iteration 11, inertia 9893.61445739094
Iteration 12, inertia 9871.997645307263
Iteration 13, inertia 9853.145440604721
Iteration 14, inertia 9818.078861860033
Iteration 15, inertia 9757.278886917615
Iteration 16, inertia 9713.510022024357
Iteration 17, inertia 9680.926171314575
Iteration 18, inertia 9674.777601266724
Iteration 19, inertia 9673.122071852886
Iteration 20, inertia 9672.685183118592
Iteration 21, inertia 9672.518137679992
Iteration 22, inertia 9672.500575556094
Converged at iteration 22: strict convergence.
Initialization complete
Iteration 0, inertia 16505.93842126068
Iteration 1, inertia 10174.540781006854
Iteration 2, inertia 9896.176365470483
Iteration 3, inertia 9755.217403382474
Iteration 4, inertia 9710.856879173405
Iteration 5, inertia 9695.291352573073
Iteration 6, inertia 9683.148926900818
Iteration 7, inertia 9667.5491075782
Iteration 8, inertia 9655.586520230188
Iteration 9, inertia 9649.747659712908
Iteration 10, inertia 9645.46312963105
Iteration 11, inertia 9644.40630542299
Iteration 12, inertia 9644.101013829977
Iteration 13, inertia 9643.642758888995
Iteration 14, inertia 9643.008226227485
Iteration 15, inertia 9642.844684153424
Iteration 16, inertia 9642.701135334233
Iteration 17, inertia 9642.57061072763
Iteration 18, inertia 9642.519519077938
Iteration 19, inertia 9642.504477800321
Converged at iteration 19: strict convergence.
Initialization complete
Iteration 0, inertia 17172.960091144152
Iteration 1, inertia 10194.671271050402
Iteration 2, inertia 10127.428286254335
Iteration 3, inertia 10110.648670434139
Iteration 4, inertia 10088.305356307605
Iteration 5, inertia 10056.98392140109
Iteration 6, inertia 10014.54147542604
Iteration 7, inertia 9984.782947200316
Iteration 8, inertia 9948.035333426422
Iteration 9, inertia 9907.185271483926
Iteration 10, inertia 9884.78043245219
Iteration 11, inertia 9863.689071376455
Iteration 12, inertia 9845.824302775172
Iteration 13, inertia 9831.477466918255
Iteration 14, inertia 9805.29705603225
Iteration 15, inertia 9788.493454238513
Iteration 16, inertia 9782.947379376854
Iteration 17, inertia 9781.810910498489
Iteration 18, inertia 9781.446129264701
Iteration 19, inertia 9781.063080143778
Iteration 20, inertia 9780.165908514351
Iteration 21, inertia 9779.376078944326
Iteration 22, inertia 9778.781046860006
Iteration 23, inertia 9777.25564144428
Iteration 24, inertia 9771.593080768085
Iteration 25, inertia 9759.993073682037
Iteration 26, inertia 9741.127172080985
Iteration 27, inertia 9725.59447725809

76

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 35/42

Iteration 28, inertia 9693.057299937595
Iteration 29, inertia 9674.633488354748
Iteration 30, inertia 9668.883857942214
Iteration 31, inertia 9668.062939210902
Iteration 32, inertia 9667.795522508974
Converged at iteration 32: strict convergence.
Initialization complete
Iteration 0, inertia 16121.151887575434
Iteration 1, inertia 10180.975017955254
Iteration 2, inertia 10012.790506392183
Iteration 3, inertia 9945.149592230093
Iteration 4, inertia 9902.19445401729
Iteration 5, inertia 9854.551471824738
Iteration 6, inertia 9796.629809393482
Iteration 7, inertia 9733.824033247713
Iteration 8, inertia 9709.60496866079
Iteration 9, inertia 9701.710992691354
Iteration 10, inertia 9698.331774194536
Iteration 11, inertia 9696.490391355273
Iteration 12, inertia 9695.20652681061
Iteration 13, inertia 9695.015903631236
Iteration 14, inertia 9694.98725574485
Converged at iteration 14: strict convergence.
Initialization complete
Iteration 0, inertia 15719.84699885392
Iteration 1, inertia 10093.886021577151
Iteration 2, inertia 9883.872126085509
Iteration 3, inertia 9824.269228240664
Iteration 4, inertia 9779.058685068434
Iteration 5, inertia 9725.75686585067
Iteration 6, inertia 9686.098533273536
Iteration 7, inertia 9677.796926090543
Iteration 8, inertia 9674.731965248277
Iteration 9, inertia 9673.142492501147
Iteration 10, inertia 9672.65337922592
Iteration 11, inertia 9672.51584737018
Iteration 12, inertia 9672.498249204844
Converged at iteration 12: strict convergence.
Initialization complete
Iteration 0, inertia 15272.42924127074
Iteration 1, inertia 10146.7544705174
Iteration 2, inertia 10060.416621065493
Iteration 3, inertia 10009.051773331206
Iteration 4, inertia 9916.53892424252
Iteration 5, inertia 9817.043864074043
Iteration 6, inertia 9800.317052776645
Iteration 7, inertia 9790.614521302858
Iteration 8, inertia 9786.58080875628
Iteration 9, inertia 9785.526700118644
Iteration 10, inertia 9783.706006793813
Iteration 11, inertia 9782.330522508842
Iteration 12, inertia 9781.663433153548
Iteration 13, inertia 9781.595470810445
Iteration 14, inertia 9781.360992187556
Iteration 15, inertia 9781.307176755947
Converged at iteration 15: strict convergence.

KMeans(max_iter=500, n_clusters=3, verbose=1)Out[61]:

In [62]: clusters_norm3 = kmeans3.predict(df_age_groups_norm)

In [63]: size3 = cluster_sizes(clusters_norm3)

77

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 36/42

Size of Cluster 0 = 541
Size of Cluster 1 = 1018
Size of Cluster 2 = 552

0 0.62
1 0.99
2 0.01
Name: Age_Gen-Z, dtype: float64

0 0.37
1 0.01
2 0.92
Name: Age_Millenials, dtype: float64

0 0.01
1 0.00
2 0.07
Name: Age_Gen-X & Boomers, dtype: float64

Mean Silhouette Value : 0.11905854619225616

Height Weight Gender_Female Gender_Male family_history_with_overweight_no family_histo

0 0.43 0.45 0.90 0.10 0.15

1 0.48 0.27 0.39 0.61 0.26

2 0.51 0.42 0.30 0.70 0.07

for c in size3.keys():
 print("Size of Cluster", c, "= ", size3[c])

In [64]: # View centroids for an aggregate representation and a characterization of each
pd.options.display.float_format='{:,.2f}'.format

centroids3 = pd.DataFrame(kmeans3.cluster_centers_, columns=df_age_groups_norm.c
centroids3

Out[64]:

In [65]: centroids3['Age_Gen-Z'] #clusters containing Gen-Z Normalized

Out[65]:

In [66]: centroids3['Age_Millenials'] #clusters containing Millenials Normalized

Out[66]:

In [67]: centroids3['Age_Gen-X & Boomers'] #clusters containing Gen-X and Boomers Normali

Out[67]:

In [68]: # Silhouette Analysis at n = 3:
age_norm_silhouette = metrics.silhouette_samples(df_age_groups_norm, clusters_no
print('Mean Silhouette Value :', age_norm_silhouette.mean())

In [69]: # Plot and Evaluate the Silhouettes:
plot_silhouettes(df_age_groups_norm, clusters_norm3)

78

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 37/42

Above, the results are drastically different from the results from the non-normalized data.

Cluster 0 outperformed all other clusters with all its coefficients above the mean silhouette

value. Cluster 2 performed adequately with many of its coefficients above the mean silhouette

value and only a few of its coefficients in negative. Cluster 1 did not perform as well as many of

the coefficients are in negative and none of them are above the mean silhouette value. When

looking at the centroids, the values of the age group do not directly correspond to the silhouette

plots.

Completeness Score for Clusters: 0.3552093808452009
Homogeneity Score for Clusters: 0.19224754943375816

These results show that with the normalized data, a pattern may not necessarily appear in the

age groups. Moreover, when examining K-means and clustering, we can see how not scaling the

data may lead to conclusions or patterns about the data when a pattern may not necessarily

exist. This is validated when evaluating the completeness and homogeneity scores, which both

resulted in low scores. The completeness score was around 0.34 and the homogeneity score is

lower at 0.18. These scores show that grouping by age is not the main determining factor for the

classification of obesity levels. Age still may play a role as a key feature, but the clustering

exploration does not necessary reveal that the age groupings have a significant pattern. By

building the classification models and performing feature selection, we will be able to obtain a

better picture of age and age groupings and their role in classifying obesity levels.

Save Output of Data-Set (non-normalized) based on Age-Groups for Classifier Use:

In [70]: # Calculate Completeness and Homogeneity for the clusters:
complete_norm = completeness_score(labels_num, clusters_norm3)
print(f"Completeness Score for Clusters: {complete_norm}")
homogene_norm = homogeneity_score(labels_num, clusters_norm3)
print(f"Homogeneity Score for Clusters: {homogene_norm}")

In [71]: # Create a copy of the data with the Age Groups:
data_age_groups = data_numeric
data_age_groups["Age"] = age_df['Age Group']

79

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 38/42

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no

0 Gen-Z 1.62 64.00 1 0 0

1 Gen-Z 1.52 56.00 1 0 0

2 Gen-Z 1.80 77.00 0 1 0

3 Millenials 1.80 87.00 0 1 1

4 Gen-Z 1.78 89.80 0 1 1

...

2106 Gen-Z 1.71 131.41 1 0 0

2107 Gen-Z 1.75 133.74 1 0 0

2108 Gen-Z 1.75 133.69 1 0 0

2109 Gen-Z 1.74 133.35 1 0 0

2110 Gen-Z 1.74 133.47 1 0 0

2111 rows × 43 columns

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no

0 Gen-Z 1.62 64.00 1 0 0

1 Gen-Z 1.52 56.00 1 0 0

2 Gen-Z 1.80 77.00 0 1 0

3 Millenials 1.80 87.00 0 1 1

4 Gen-Z 1.78 89.80 0 1 1

...

2106 Gen-Z 1.71 131.41 1 0 0

2107 Gen-Z 1.75 133.74 1 0 0

2108 Gen-Z 1.75 133.69 1 0 0

2109 Gen-Z 1.74 133.35 1 0 0

2110 Gen-Z 1.74 133.47 1 0 0

2111 rows × 44 columns

In [72]: data_age_groups

Out[72]:

In [73]: # Add the class labels as a column to the dataset:
data_age_groups['NObeyesdad'] = labels_df
data_age_groups

Out[73]:

80

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 39/42

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no fa

0 Gen-
Z

1.62 64.00 1 0 0

1 Gen-
Z

1.52 56.00 1 0 0

2 Gen-
Z

1.80 77.00 0 1 0

4 Gen-
Z

1.78 89.80 0 1 1

6 Gen-
Z

1.50 55.00 1 0 0

...

2106 Gen-
Z

1.71 131.41 1 0 0

2107 Gen-
Z

1.75 133.74 1 0 0

2108 Gen-
Z

1.75 133.69 1 0 0

2109 Gen-
Z

1.74 133.35 1 0 0

2110 Gen-
Z

1.74 133.47 1 0 0

1353 rows × 44 columns

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no

3 Millenials 1.80 87.00 0 1 1

5 Millenials 1.62 53.00 0 1 1

10 Millenials 1.85 105.00 0 1 0

16 Millenials 1.93 102.00 0 1 0

In [74]: genz_df = data_age_groups[data_age_groups["Age"] == 'Gen-Z']
genz_df

Out[74]:

In [75]: #Save Gen-Z dataframe to CSV:
genz_df.to_csv('/Users/cl/genz_dataframe.csv', index = False)

In [76]: millen_df = data_age_groups[data_age_groups["Age"] == 'Millenials']
millen_df

Out[76]:

81

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 40/42

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no

17 Millenials 1.53 78.00 1 0 1

...

2098 Millenials 1.61 104.95 1 0 0

2099 Millenials 1.63 108.09 1 0 0

2100 Millenials 1.63 107.38 1 0 0

2101 Millenials 1.63 107.22 1 0 0

2102 Millenials 1.63 108.11 1 0 0

717 rows × 44 columns

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no

13 Gen-X &
Boomers

1.80 99.00 0 1 1

21 Gen-X &
Boomers

1.69 87.00 1 0 0

92 Gen-X &
Boomers

1.78 84.00 0 1 0

133 Gen-X &
Boomers

1.65 66.00 1 0 1

137 Gen-X &
Boomers

1.60 80.00 0 1 0

161 Gen-X &
Boomers

1.65 80.00 0 1 1

169 Gen-X &
Boomers

1.63 77.00 1 0 0

197 Gen-X &
Boomers

1.75 118.00 0 1 0

201 Gen-X &
Boomers

1.54 80.00 1 0 0

232 Gen-X &
Boomers

1.59 50.00 1 0 0

In [77]: # Save Millenials dataframe to CSV:
millen_df.to_csv('/Users/cl/millenials_dataframe.csv', index = False)

In [78]: genxboomers_df = data_age_groups[data_age_groups["Age"] == 'Gen-X & Boomers']
genxboomers_df

Out[78]:

82

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 41/42

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no

252 Gen-X &
Boomers

1.79 90.00 0 1 0

358 Gen-X &
Boomers

1.75 110.00 0 1 0

375 Gen-X &
Boomers

1.80 92.00 0 1 0

492 Gen-X &
Boomers

1.70 86.00 0 1 1

751 Gen-X &
Boomers

1.72 82.92 1 0 1

813 Gen-X &
Boomers

1.77 75.63 1 0 0

1013 Gen-X &
Boomers

1.77 80.49 0 1 1

1017 Gen-X &
Boomers

1.65 79.17 1 0 0

1034 Gen-X &
Boomers

1.75 82.13 0 1 0

1062 Gen-X &
Boomers

1.73 86.95 1 0 0

1063 Gen-X &
Boomers

1.68 79.67 1 0 0

1088 Gen-X &
Boomers

1.66 80.99 0 1 0

1101 Gen-X &
Boomers

1.72 88.60 0 1 0

1158 Gen-X &
Boomers

1.67 80.40 0 1 0

1162 Gen-X &
Boomers

1.68 79.85 1 0 0

1179 Gen-X &
Boomers

1.74 84.73 0 1 0

1208 Gen-X &
Boomers

1.69 80.41 1 0 0

1215 Gen-X &
Boomers

1.57 81.83 1 0 0

1216 Gen-X &
Boomers

1.58 81.94 1 0 0

1267 Gen-X &
Boomers

1.59 76.13 1 0 0

1285 Gen-X &
Boomers

1.65 86.64 1 0 0

83

11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 42/42

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no

1286 Gen-X &
Boomers

1.64 81.98 1 0 0

1305 Gen-X &
Boomers

1.60 77.35 1 0 0

1325 Gen-X &
Boomers

1.57 81.06 1 0 0

1385 Gen-X &
Boomers

1.57 81.92 1 0 0

1386 Gen-X &
Boomers

1.58 80.99 1 0 0

1387 Gen-X &
Boomers

1.58 81.92 1 0 0

1489 Gen-X &
Boomers

1.54 77.05 1 0 0

1490 Gen-X &
Boomers

1.59 77.00 1 0 0

1529 Gen-X &
Boomers

1.75 116.59 0 1 0

1618 Gen-X &
Boomers

1.75 115.81 0 1 0

In [79]: # Save Gen-X and Boomers dataframe to CSV:
genxboomers_df.to_csv('/Users/cl/genxboomers_dataframe.csv', index = False)

In []:

84

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 1/27

Appendix C: Feature Selection with Decision Tree

Since the best classifer for the dataset was Decision Tree, we will use the Decision Tree

classifier and evaluate it with the full dataset and each age-group dataset. Feature selection will

be performed to obtain the best features from the classification. The top features will determine

which features ultimately affect obesity levels the most. In addition, performing the

classification on the different age groups will allow us to compare and contrast to see if a

certain obesity level based on certain attributes effects a certain age group over another.

'/Users/cl'

Decision Tree and Feature Selection with Full Dataset:

0 Normal_Weight
1 Normal_Weight
2 Normal_Weight
3 Overweight_Level_I
4 Overweight_Level_II

...
2106 Obesity_Type_III
2107 Obesity_Type_III
2108 Obesity_Type_III
2109 Obesity_Type_III

In [1]: import numpy as np
import pylab as pl
import pandas as pd
import importlib
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn import model_selection
from sklearn import tree
from sklearn import feature_selection
from sklearn import preprocessing
from sklearn import metrics

In [2]: %pwd

Out[2]:

In [3]: # Load original dataset to Pandas dataframe:
df = pd.read_csv('/Users/cl/ObesityDataset.csv', header=0)
Load transformed dataset with numeric values only:
data_numeric = pd.read_csv('/Users/cl/Obesity_numeric.csv', header=0)
Load Gen-Z Dataframe:
genz_df = pd.read_csv('/Users/cl/genz_dataframe.csv', header=0)
Load Millenials Dataframe:
millen_df = pd.read_csv('/Users/cl/millenials_dataframe.csv', header=0)
Load Gen-X and Boomers Dataframe:
genxboomers_df = pd.read_csv('/Users/cl/genxboomers_dataframe.csv', header=0)

In [4]: # Obtain the class label from original dataset:
labels_df = df['NObeyesdad']
labels_df

Out[4]:

85

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 2/27

2110 Obesity_Type_III
Name: NObeyesdad, Length: 2111, dtype: object

array([1, 1, 1, ..., 4, 4, 4])

{0: 'Insufficient_Weight', 1: 'Normal_Weight', 2: 'Obesity_Type_I', 3: 'Obesity_
Type_II', 4: 'Obesity_Type_III', 5: 'Overweight_Level_I', 6: 'Overweight_Level_I
I'}

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_n

0 21 1.620000 64.000000 1 0

1 21 1.520000 56.000000 1 0

2 23 1.800000 77.000000 0 1

3 27 1.800000 87.000000 0 1

4 22 1.780000 89.800000 0 1

...

2106 20 1.710730 131.408528 1 0

2107 21 1.748584 133.742943 1 0

2108 22 1.752206 133.689352 1 0

2109 24 1.739450 133.346641 1 0

2110 23 1.738836 133.472641 1 0

2111 rows × 43 columns

In [5]: # Transform class label into numeric:
le = preprocessing.LabelEncoder()
labels_num = le.fit_transform(labels_df)
labels_num

Out[5]:

In [6]: # View class label names and numeric association:
label_names = dict(zip(le.transform(le.classes_), le.classes_))
print(label_names)

In [7]: # View Transformed Numeric Data:
data_numeric

Out[7]:

In [8]: # Build training and test sets:
x_train, x_test, label_train, label_test = train_test_split(data_numeric, labels

In [9]: # View Training Set:
x_train

Out[9]:

86

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 3/27

array([1, 6, 4, ..., 6, 1, 6])

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_nAge Height Weight Gender_Female Gender_Male family_history_with_overweight_n

53 23 1.630000 55.000000 1 0

267 38 1.700000 78.000000 0 1

1825 18 1.821566 142.102468 1 0

386 18 1.590000 53.000000 1 0

1413 40 1.559005 77.601483 1 0

...

960 17 1.618683 67.193585 1 0

905 20 1.849425 85.228116 0 1

1096 39 1.688354 79.278896 1 0

235 19 1.690000 70.000000 1 0

1061 23 1.725587 82.480214 0 1

1688 rows × 43 columns

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no

553 16 1.752755 50.000000 0 1

331 17 1.740000 56.000000 0 1 0

241 22 1.600000 66.000000 0 1

1957 26 1.641209 111.856492 1 0 0

1691 30 1.779325 120.751656 0 1 0

...

1201 24 1.789193 89.393589 0 1 0

363 19 1.800000 80.000000 0 1

11 21 1.720000 80.000000 1 0 0

510 22 1.675446 51.154201 1 0 0

1711 28 1.758618 113.501549 0 1 0

423 rows × 43 columns

In [10]: # View Testing Set:
x_test

Out[10]:

In [11]: # View Labels for Training Set:
label_train

87

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 4/27

array([0, 1, 5, 4, 3, 4, 2, 4, 2, 2, 1, 3, 2, 2, 5, 2, 5, 3, 0, 6, 2, 2,
 6, 2, 2, 2, 2, 5, 6, 3, 2, 4, 6, 5, 0, 2, 0, 0, 6, 6, 1, 2, 5, 1,
 0, 4, 0, 0, 5, 2, 4, 2, 0, 5, 4, 2, 0, 2, 0, 1, 0, 3, 4, 6, 1, 5,
 4, 2, 6, 3, 2, 0, 4, 4, 3, 3, 0, 6, 3, 4, 5, 5, 4, 2, 0, 6, 1, 4,
 1, 4, 6, 6, 4, 5, 0, 3, 0, 5, 4, 4, 0, 2, 5, 1, 4, 6, 1, 3, 2, 6,
 2, 1, 0, 0, 6, 6, 4, 6, 0, 0, 2, 2, 2, 2, 4, 4, 5, 3, 4, 5, 1, 5,
 2, 2, 6, 2, 1, 4, 6, 3, 3, 0, 6, 6, 0, 6, 6, 5, 4, 4, 2, 2, 0, 6,
 5, 2, 4, 0, 6, 3, 2, 4, 1, 3, 4, 1, 5, 0, 6, 0, 5, 4, 5, 5, 4, 3,
 6, 3, 2, 2, 5, 5, 6, 1, 6, 3, 3, 2, 4, 3, 1, 2, 3, 1, 2, 2, 4, 2,
 0, 2, 6, 2, 5, 5, 1, 2, 0, 0, 2, 3, 6, 5, 5, 3, 4, 1, 2, 0, 1, 5,
 1, 5, 2, 5, 3, 6, 4, 4, 5, 0, 3, 5, 4, 6, 5, 1, 1, 2, 4, 3, 2, 0,
 6, 6, 3, 0, 4, 0, 5, 0, 2, 5, 6, 5, 2, 5, 6, 3, 3, 0, 3, 5, 2, 4,
 2, 4, 5, 4, 4, 4, 0, 0, 2, 3, 1, 0, 0, 1, 1, 2, 3, 5, 6, 2, 2, 1,
 6, 5, 6, 1, 0, 3, 2, 3, 3, 2, 6, 0, 0, 0, 2, 6, 6, 5, 3, 5, 1, 0,
 6, 4, 4, 5, 5, 2, 4, 5, 3, 5, 5, 3, 1, 0, 6, 6, 3, 3, 2, 1, 1, 3,
 5, 0, 5, 1, 3, 5, 4, 0, 5, 1, 1, 4, 3, 6, 6, 4, 5, 4, 6, 3, 5, 1,
 2, 6, 0, 4, 2, 6, 2, 4, 6, 0, 5, 2, 6, 5, 5, 0, 4, 4, 5, 6, 5, 3,
 0, 0, 4, 4, 1, 0, 3, 6, 4, 0, 1, 2, 3, 4, 2, 3, 2, 0, 6, 2, 2, 3,
 3, 2, 2, 2, 4, 6, 1, 0, 4, 0, 4, 6, 1, 3, 1, 1, 2, 1, 4, 2, 3, 2,
 6, 1, 6, 0, 3])

Accuracy:0.941

Classification report
 precision recall f1-score support

 0 0.97 0.98 0.98 61
 1 0.91 0.89 0.90 45
 2 0.89 0.95 0.92 79
 3 0.95 0.96 0.95 54
 4 1.00 1.00 1.00 63
 5 0.95 0.90 0.92 61

Out[11]:

In [12]: # View Labels for Test Set:
label_test

Out[12]:

In [13]: # Train Decision tree Classifier on the Training Data:
d_tree = tree.DecisionTreeClassifier()
dt_all = d_tree.fit(x_train, label_train)

In [14]: # Function for Measure Performance:
def measure_performance(X, y, clf, show_accuracy=True, show_classification_repor
 y_pred = clf.predict(X)
 if show_accuracy:
 print ("Accuracy:{0:.3f}".format(metrics.accuracy_score(y, y_pred)),"\n

 if show_classification_report:
 print ("Classification report")
 print (metrics.classification_report(y, y_pred, zero_division=0),"\n")

 if show_confussion_matrix:
 print ("Confussion matrix")
 print (metrics.confusion_matrix(y, y_pred),"\n")

In [15]: # Predict on Test Set, View Performance, and Accuracy of Decision Tree Model:
measure_performance(x_test, label_test, dt_all, show_confussion_matrix=True, sho

88

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 5/27

 6 0.93 0.88 0.91 60

 accuracy 0.94 423
 macro avg 0.94 0.94 0.94 423
weighted avg 0.94 0.94 0.94 423

Confussion matrix
[[60 1 0 0 0 0 0]
 [2 40 0 0 0 3 0]
 [0 0 75 3 0 0 1]
 [0 0 2 52 0 0 0]
 [0 0 0 0 63 0 0]
 [0 3 0 0 0 55 3]
 [0 0 7 0 0 0 53]]

Above, the Decision Tree classifer performed well on the full dataset, accurately classifying the

classes at around 94.1% acurracy. Class 4: 'Obesity_Type_III' had a 100% accurate prediction.

Class 0: 'Insufficient_Weight' and 3: 'Obesity_Type_II' achieved above 95% accuracy. Class 6:

'Obesity_Type_II' had the lowest accuracy at 91%. Below we calculate the accuracy for both the

test and the training sets. The accuracy for the training set is 100% and the accuracy for the

test set is 94.09%. The model is performing well and not overfitting since the accuracy for the

test set is very close to the training set and not experiencing high variance.

Average Test Accuracy: 0.9408983451536643
Average Train Accuracy: 1.0

['Age' 'Weight' 'Gender_Female' 'Gender_Male'
 'family_history_with_overweight_no' 'FCVC_Always' 'CAEC_Frequently']

Age 470.510134679508
Weight 11390.601482312912
Gender_Female 274.57777589368993
Gender_Male 262.4874450895646
family_history_with_overweight_no 405.00183379903
723
FCVC_Always 542.9949158091111
CAEC_Frequently 348.88961093191773

In [16]: # View the Accuracy of the Test and Training Sets:
print('Average Test Accuracy: ', d_tree.score(x_test, label_test))
print('Average Train Accuracy: ', d_tree.score(x_train, label_train))

In [17]: # Perform feature selection for top 15%
fs = feature_selection.SelectPercentile(feature_selection.chi2, percentile=15)
x_train_fs = fs.fit_transform(x_train, label_train)

In [18]: # View the top 15% of the most important features:
print(data_numeric.columns[fs.get_support()].values)

In [19]: # View scores for each top feature:
for i in range(len(data_numeric.columns.values)):
 if fs.get_support()[i]:
 print(data_numeric.columns.values[i], '\t\t\t\t', fs.scores_[i])

In [20]:

89

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 6/27

Accuracy:0.863

Classification report
 precision recall f1-score support

 0 0.95 0.93 0.94 61
 1 0.71 0.78 0.74 45
 2 0.84 0.84 0.84 79
 3 0.91 0.98 0.95 54
 4 1.00 1.00 1.00 63
 5 0.81 0.79 0.80 61
 6 0.78 0.72 0.75 60

 accuracy 0.86 423
 macro avg 0.86 0.86 0.86 423
weighted avg 0.86 0.86 0.86 423

Confussion matrix
[[57 4 0 0 0 0 0]
 [3 35 0 0 0 6 1]
 [0 0 66 5 0 1 7]
 [0 0 1 53 0 0 0]
 [0 0 0 0 63 0 0]
 [0 9 0 0 0 48 4]
 [0 1 12 0 0 4 43]]

Above with the feature selection, using the top 15% of features, resulted in the classifier still

being able to predict at an accuracy of 86.3%. Although, the accuracy reduced from the original

feature set, the reduced feature set contains only seven features and still achieved a high level

of accuracy. Class 1: 'Normal Weight' and Class 6: 'Overweight_level II' had the lowest accuracy

score at 74% and 75% respectively. Class 4: 'Obesity Type III' achieved 100% accuracy and

Class 3: 'Obesity Type II' still maintained over 95% accuracy. Moreover, for the full dataset, the

top features that are associated to obesity levels is age, weight, gender, family history, FCVC

and CAEC. Male and female gender as attributes are features that are salient to classifying

obesity levels. This was seen during the cluster exploration which split the data into two clusters

representing male and female genders. In addition to age and weight, family history, specifically

with individuals indicating no history of obesity in their family is also an important feature when

classifying obesity levels. This shows that hereditary, family, or environmental factors associated

with families with a history of obesity, plays a role in an individuals obesity levels. Lastly, two

eating habit features, always eating vegetables with meals (FCVC) and frequently eating food

between meals round up the top features. Moreover, with the full dataset, physical activity

features did were not included in the top 15% of features and instead, biological factors and

eating habits were features that had more precedents in determining obesity levels.

Decision Tree and Feature Selection with Gen-Z Dataset:

Evaluate the Classifier with the top 15% feature set:
d_tree.fit(x_train_fs, label_train)
x_test_fs = fs.transform(x_test)
measure_performance(x_test_fs, label_test, d_tree, show_confussion_matrix=True,

In [21]: # View Gen-Z Dataset:
genz_df

90

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 7/27

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_

0 Gen-
Z
1.620000 64.000000 1 0

1 Gen-
Z
1.520000 56.000000 1 0

2 Gen-
Z
1.800000 77.000000 0 1

3 Gen-
Z
1.780000 89.800000 0 1

4 Gen-
Z
1.500000 55.000000 1 0

...

1348 Gen-
Z

1.710730 131.408528 1 0

1349 Gen-
Z
1.748584 133.742943 1 0

1350 Gen-
Z
1.752206 133.689352 1 0

1351 Gen-
Z
1.739450 133.346641 1 0

1352 Gen-
Z
1.738836 133.472641 1 0

1353 rows × 44 columns

Height Weight Gender_Female Gender_Male family_history_with_overweight_no fam

0 1.620000 64.000000 1 0 0

1 1.520000 56.000000 1 0 0

2 1.800000 77.000000 0 1 0

3 1.780000 89.800000 0 1 1

4 1.500000 55.000000 1 0 0

...

1348 1.710730 131.408528 1 0 0

1349 1.748584 133.742943 1 0 0

1350 1.752206 133.689352 1 0 0

1351 1.739450 133.346641 1 0 0

1352 1.738836 133.472641 1 0 0

Out[21]:

In [22]: #Remove the age and class label column for Gen-Z DF:
data_genz = genz_df.iloc[:,1:43]
data_genz

Out[22]:

91

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 8/27

0 Normal_Weight
1 Normal_Weight
2 Normal_Weight
3 Overweight_Level_II
4 Normal_Weight
 ...
1348 Obesity_Type_III
1349 Obesity_Type_III
1350 Obesity_Type_III
1351 Obesity_Type_III
1352 Obesity_Type_III
Name: NObeyesdad, Length: 1353, dtype: object

array([1, 1, 1, ..., 4, 4, 4])

1353 rows × 42 columns

Height Weight Gender_Female Gender_Male family_history_with_overweight_no fa

382 1.770612 133.963349 1 0 0

584 1.524926 42.000000 1 0 1

6 1.780000 64.000000 0 1 0

699 1.712061 75.000000 0 1 0

705 1.456346 55.523481 1 0 1

...

715 1.624831 69.975607 1 0 0

905 1.589100 72.713611 1 0 0

1096 1.769328 105.000576 0 1 0

235 1.600000 57.000000 1 0 1

1061 1.607182 82.368441 1 0 0

In [23]: # View Class Labels for Gen-Z DF:
labels_genz = genz_df['NObeyesdad']
labels_genz

Out[23]:

In [24]: # Transform class label into numeric:
le_z = preprocessing.LabelEncoder()
genz_labels = le_z.fit_transform(labels_genz)
genz_labels

Out[24]:

In [25]: # Build training and test sets for Gen-Z:
genz_train, genz_test, genz_label_train, genz_label_test = train_test_split(data

In [26]: # View Gen-Z Training Set:
genz_train

Out[26]:

92

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 9/27

array([4, 0, 1, ..., 2, 1, 2])

array([1, 0, 2, 5, 6, 1, 6, 5, 6, 0, 5, 5, 2, 1, 2, 0, 0, 2, 1, 1, 4, 3,
 5, 0, 1, 0, 1, 1, 6, 5, 4, 5, 5, 5, 2, 1, 2, 5, 5, 2, 5, 6, 1, 2,
 1, 3, 2, 6, 2, 2, 1, 3, 0, 0, 2, 6, 6, 4, 0, 5, 5, 1, 2, 2, 5, 6,
 2, 4, 0, 6, 5, 5, 4, 2, 2, 4, 4, 0, 3, 1, 0, 5, 6, 2, 1, 6, 2, 0,
 5, 0, 1, 0, 4, 5, 3, 3, 0, 5, 3, 4, 1, 0, 6, 1, 6, 3, 4, 2, 2, 2,
 1, 1, 3, 2, 0, 2, 1, 2, 4, 1, 2, 2, 5, 0, 5, 6, 5, 4, 0, 5, 0, 0,
 5, 0, 3, 2, 3, 0, 2, 5, 6, 0, 1, 6, 6, 1, 2, 4, 6, 6, 0, 2, 5, 1,
 4, 1, 0, 2, 1, 2, 3, 5, 3, 0, 1, 2, 1, 4, 2, 4, 0, 0, 2, 2, 5, 5,
 5, 1, 5, 3, 2, 0, 1, 0, 1, 2, 5, 2, 1, 6, 5, 6, 5, 1, 5, 4, 0, 2,
 1, 0, 5, 5, 5, 5, 6, 0, 2, 6, 5, 2, 5, 2, 0, 3, 5, 1, 0, 6, 0, 2,
 0, 2, 2, 5, 2, 5, 3, 0, 6, 4, 5, 5, 5, 1, 5, 4, 1, 6, 5, 4, 1, 1,
 2, 0, 3, 2, 1, 0, 5, 1, 1, 0, 6, 3, 5, 0, 5, 1, 2, 1, 0, 5, 6, 1,
 0, 0, 1, 0, 0, 1, 4])

1082 rows × 42 columns

Height Weight Gender_Female Gender_Male family_history_with_overweight_no fam

91 1.560000 51.000000 1 0 0

442 1.759358 55.010450 1 0 0

1078 1.738397 93.890682 1 0 0

686 1.800000 85.000000 0 1 0

857 1.717722 81.929910 0 1 0

...

78 1.660000 60.000000 1 0 0

561 1.757958 52.094320 0 1 1

292 1.700000 50.000000 1 0 1

35 1.820000 72.000000 0 1 0

1316 1.682594 127.427458 1 0 0

271 rows × 42 columns

In [27]: # View Gen-Z Testing Set:
genz_test

Out[27]:

In [28]: # View Gen-Z Labels for Training Set:
genz_label_train

Out[28]:

In [29]: # View Gen-Z Labels for Testing Set:
genz_label_test

Out[29]:

In [30]: # Train Decision tree Classifier on the Training Data:
dt_genz = d_tree.fit(genz_train, genz_label_train)

93

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 10/27

Accuracy:0.919

Classification report
 precision recall f1-score support

 0 0.96 1.00 0.98 49
 1 0.93 0.83 0.88 48
 2 0.91 1.00 0.95 51
 3 1.00 0.72 0.84 18
 4 0.87 0.95 0.91 21
 5 0.92 0.89 0.91 55
 6 0.84 0.93 0.89 29

 accuracy 0.92 271
 macro avg 0.92 0.90 0.91 271
weighted avg 0.92 0.92 0.92 271

Confussion matrix
[[49 0 0 0 0 0 0]
 [2 40 0 0 0 3 3]
 [0 0 51 0 0 0 0]
 [0 0 2 13 3 0 0]
 [0 0 1 0 20 0 0]
 [0 3 1 0 0 49 2]
 [0 0 1 0 0 1 27]]

Above, the Decision Tree classifer for the Gen-Z dataset performed well with accuracy slightly

lower than the full dataset at 91.9%. Class 0: 'Insufficient_Weight' and 2: 'Obesity_Type_I'

achieved above 95% accuracy. Class 0: 'Insufficient_Weight' and 2: 'Obesity_Type_I' achieved

above 95% accuracy. Class 3: 'Obesity_Type_II' had the lowest accuracy at 84%. Class 1:

'Normal_Weight' and 6: 'Overweight_Level_II' had the next lowest accuracy at 88% and 89%

respectively. Moreover, for Gen-Z dataset, the model performed better in prediction with Class

0: 'Insufficient_Weight' and 2: 'Obesity_Type_I'. Both the full dataset and the Gen-Z dataset had

lowest accuracy with Class 6: 'Overweight_Level_II'.

['Weight' 'Gender_Male' 'family_history_with_overweight_no' 'FAVC_no'
 'FCVC_Always' 'NCP_2' 'CAEC_Frequently']

In [31]: # Predict on Gen-Z Test Set, View Performance, and Accuracy of Decision Tree Mod
measure_performance(genz_test, genz_label_test, dt_genz, show_confussion_matrix=

In []: # View the Accuracy of the Test and Training Sets:
print('Average Test Accuracy: ', d_tree.score(genz_test, genz_label_test))
print('Average Train Accuracy: ', d_tree.score(genz_train, genz_label_train))

In [32]: # Perform feature selection for top 15% of Gen-Z DF:
fs_genz = feature_selection.SelectPercentile(feature_selection.chi2, percentile=
genz_train_fs = fs_genz.fit_transform(genz_train, genz_label_train)

In [33]: # View the top 15% of the most important features for Gen-Z:
print(data_genz.columns[fs_genz.get_support()].values)

In [34]: # View scores for each top feature:
for i in range(len(data_genz.columns.values)):

94

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 11/27

Weight 9715.93028639861
Gender_Male 119.37576369900033
family_history_with_overweight_no 230.20882848759
723
FAVC_no 135.28900924705363
FCVC_Always 292.28229522019336
NCP_2 167.46598969723757
CAEC_Frequently 202.1009043591279

Accuracy:0.808

Classification report
 precision recall f1-score support

 0 0.91 0.88 0.90 49
 1 0.76 0.77 0.76 48
 2 0.86 0.86 0.86 51
 3 0.80 0.67 0.73 18
 4 0.95 1.00 0.98 21
 5 0.79 0.82 0.80 55
 6 0.57 0.59 0.58 29

 accuracy 0.81 271
 macro avg 0.81 0.80 0.80 271
weighted avg 0.81 0.81 0.81 271

Confussion matrix
[[43 6 0 0 0 0 0]
 [4 37 0 0 0 3 4]
 [0 0 44 3 0 1 3]
 [0 0 5 12 1 0 0]
 [0 0 0 0 21 0 0]
 [0 4 0 0 0 45 6]
 [0 2 2 0 0 8 17]]

With the feature selection above, using the top 15% of features, resulted in the classifier

dropping in accuracy to 80.8%. The model does not perform as well as the model using the full

dataset. Class 4 had the highest accuracy at 98%, which is comparable to the full dataset which

predicted class 4 at 100%. Class 6: 'Overweight_Level II' had the lowest accuracy at 58%. This

shows that for the Gen-Z age group, the model is unable to classify 'Overweight_Level II' using

the top 15% of features. Likely, this means that other attributes are required to accurately

classify this obesity level. The model also does not classify Class 1: 'Normal_Weight' or Class 3:

'Obesity_Type_II' as well as the other classes. This is similar to the model using the full dataset

which also had a lower accuracy level for Class 1: 'Normal_Weight' compared to other classes.

The top 15% of features includes weight, gender, family history with obesity, always eating

vegetables with meals (FCVC), and frequently eating food between meals. These features are

the same top features from the model using the full dataset except, for gender only male gender

 if fs_genz.get_support()[i]:
 print(data_genz.columns.values[i], '\t\t\t\t', fs_genz.scores_[i])

In [35]: # Evaluate the Classifier with the top 15% feature set for Gen-Z DF:
d_tree.fit(genz_train_fs, genz_label_train)
genz_test_fs = fs_genz.transform(genz_test)
measure_performance(genz_test_fs, genz_label_test, d_tree, show_confussion_matri

95

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 12/27

is included. Only male gender is a top feature for the Gen-Z dataset which is interesting since

both genders were included in the full dataset. Two additional eating habits features are

included in the top features with the Gen-Z age group: not eating high calorie foods frequently

and number of meals consumed daily. Moreover, eating habit features are the most important

features in association with obesity level for Gen-Z age group along with biological and

hereditary features. Similar to the model in the full dataset, physical activity features were not

included in the top features for the classification of obesity levels.

Decision Tree and Feature Selection with Millenials Dataset:

Age Height Weight Gender_Female Gender_Male family_history_with_overweigh

0 Millenials 1.800000 87.000000 0 1

1 Millenials 1.620000 53.000000 0 1

2 Millenials 1.850000 105.000000 0 1

3 Millenials 1.930000 102.000000 0 1

4 Millenials 1.530000 78.000000 1 0

...

712 Millenials 1.606474 104.954291 1 0

713 Millenials 1.628855 108.090006 1 0

714 Millenials 1.628205 107.378702 1 0

715 Millenials 1.628470 107.218949 1 0

716 Millenials 1.627839 108.107360 1 0

717 rows × 44 columns

Height Weight Gender_Female Gender_Male family_history_with_overweight_no fam

0 1.800000 87.000000 0 1 1

1 1.620000 53.000000 0 1 1

2 1.850000 105.000000 0 1 0

3 1.930000 102.000000 0 1 0

4 1.530000 78.000000 1 0 1

...

712 1.606474 104.954291 1 0 0

In [36]: # View Millenials Dataset:
millen_df

Out[36]:

In [37]: #Remove the age and class label column for Millenials DF:
data_millen = millen_df.iloc[:,1:43]
data_millen

Out[37]:

96

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 13/27

0 Overweight_Level_I
1 Normal_Weight
2 Obesity_Type_I
3 Overweight_Level_II
4 Obesity_Type_I
 ...
712 Obesity_Type_III
713 Obesity_Type_III
714 Obesity_Type_III
715 Obesity_Type_III
716 Obesity_Type_III
Name: NObeyesdad, Length: 717, dtype: object

array([5, 1, 2, 6, 2, 6, 5, 6, 6, 3, 6, 6, 6, 3, 1, 2, 1, 1, 6, 2, 1, 1,
 1, 1, 5, 2, 1, 2, 1, 1, 5, 6, 1, 1, 5, 6, 1, 6, 3, 1, 1, 1, 5, 2,
 2, 2, 1, 5, 4, 2, 1, 1, 3, 6, 3, 6, 6, 1, 5, 0, 6, 1, 1, 1, 5, 1,
 1, 1, 1, 1, 5, 1, 5, 1, 1, 5, 1, 2, 5, 6, 5, 6, 1, 6, 1, 2, 1, 1,
 6, 4, 1, 1, 1, 1, 6, 2, 5, 2, 6, 5, 1, 1, 1, 6, 6, 1, 4, 4, 4, 4,
 0, 0, 0, 0, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
 5,
 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6,
 6,
 6,
 6,
 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 2, 2, 2, 2,
 2,
 2,
 2,
 2,
 3,
 3,
 3,
 3,
 3,
 3,
 3,
 3,
 3,

Height Weight Gender_Female Gender_Male family_history_with_overweight_no fam

713 1.628855 108.090006 1 0 0

714 1.628205 107.378702 1 0 0

715 1.628470 107.218949 1 0 0

716 1.627839 108.107360 1 0 0

717 rows × 42 columns

In [38]: # View Class Labels for Millenials DF:
labels_millen = millen_df['NObeyesdad']
labels_millen

Out[38]:

In [39]: # Transform class label into numeric:
le_m = preprocessing.LabelEncoder()
millen_labels = le_m.fit_transform(labels_millen)
millen_labels

Out[39]:

97

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 14/27

 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
 4,
 4,
 4,
 4,
 4,
 4,
 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4])

Height Weight Gender_Female Gender_Male family_history_with_overweight_no fam

654 1.624950 111.004920 1 0 0

544 1.836592 118.377601 0 1 0

711 1.626580 105.037203 1 0 0

666 1.611452 102.363149 1 0 0

516 1.805445 119.484614 0 1 0

...

144 1.550000 62.877347 1 0 1

645 1.607734 102.305767 1 0 0

72 1.650000 71.000000 1 0 0

235 1.837399 95.952027 0 1 0

37 1.770000 85.000000 0 1 0

573 rows × 42 columns

Height Weight Gender_Female Gender_Male family_history_with_overweight_no fam

59 1.650000 50.000000 1 0 1

60 1.700000 78.000000 0 1 1

383 1.765258 114.330023 0 1 0

159 1.680858 71.813380 1 0 0

8 1.790000 90.000000 0 1 1

...

In [40]: # Build training and test sets for Millenials:
mi_train, mi_test, mi_label_train, mi_label_test = train_test_split(data_millen,

In [41]: # View Millenials Training Set:
mi_train

Out[41]:

In [42]: # View Millenials Testing Set:
mi_test

Out[42]:

98

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 15/27

array([4, 3, 4, 4, 3, 5, 1, 3, 2, 4, 4, 1, 4, 4, 6, 6, 3, 2, 3, 6, 3, 6,
 6, 3, 3, 5, 3, 3, 2, 4, 2, 6, 5, 2, 6, 2, 6, 4, 3, 6, 4, 3, 5, 2,
 4, 2, 4, 3, 3, 2, 6, 4, 1, 3, 4, 4, 3, 5, 3, 3, 2, 3, 3, 3, 2, 1,
 4, 4, 1, 3, 2, 3, 3, 3, 4, 4, 3, 4, 5, 3, 4, 4, 4, 6, 3, 5, 4, 6,
 4, 5, 4, 5, 3, 4, 4, 3, 6, 6, 2, 3, 3, 4, 2, 4, 6, 3, 3, 3, 3, 3,
 3, 2, 6, 6, 4, 3, 3, 3, 3, 3, 4, 3, 2, 5, 1, 5, 1, 2, 1, 4, 5, 3,
 6, 2, 3, 4, 2, 4, 3, 6, 4, 4, 2, 2, 4, 3, 6, 4, 5, 3, 5, 5, 4, 4,
 6, 3, 3, 2, 6, 4, 3, 3, 3, 3, 3, 5, 4, 3, 4, 3, 2, 3, 1, 3, 4, 3,
 3, 2, 3, 5, 6, 0, 3, 4, 2, 3, 5, 4, 5, 2, 4, 6, 3, 5, 6, 4, 4, 6,
 4, 2, 3, 2, 3, 6, 1, 4, 6, 6, 6, 6, 2, 6, 4, 3, 2, 2, 4, 3, 4, 3,
 1, 6, 6, 2, 2, 3, 4, 5, 3, 4, 3, 1, 4, 3, 3, 6, 6, 6, 6, 3, 4, 4,
 3, 2, 6, 5, 4, 5, 4, 4, 4, 6, 6, 3, 2, 4, 5, 3, 4, 6, 3, 4, 3, 5,
 2, 6, 5, 4, 1, 3, 2, 4, 2, 1, 6, 3, 6, 3, 4, 4, 3, 4, 1, 4, 3, 4,
 5, 3, 4, 3, 2, 3, 6, 4, 3, 3, 4, 3, 3, 6, 0, 3, 4, 2, 3, 5, 3, 1,
 4, 3, 3, 6, 2, 3, 5, 3, 6, 4, 6, 2, 3, 3, 5, 5, 4, 1, 6, 0, 2, 2,
 2, 2, 6, 6, 1, 2, 3, 4, 3, 6, 6, 5, 2, 6, 3, 3, 2, 5, 5, 3, 5, 5,
 3, 6, 6, 2, 2, 5, 5, 6, 6, 6, 6, 2, 4, 4, 4, 3, 6, 4, 4, 6, 3, 1,
 2, 3, 4, 6, 3, 4, 4, 6, 3, 3, 2, 2, 0, 5, 6, 6, 3, 1, 4, 5, 2, 6,
 1, 2, 6, 4, 4, 4, 4, 3, 3, 3, 1, 3, 3, 4, 2, 3, 6, 4, 3, 3, 4, 2,
 4, 6, 4, 2, 1, 3, 2, 6, 3, 5, 3, 6, 4, 4, 4, 3, 4, 6, 3, 4, 2, 6,
 4, 4, 3, 2, 1, 6, 3, 4, 4, 6, 2, 6, 3, 4, 2, 3, 5, 2, 4, 3, 4, 6,
 5, 3, 3, 5, 4, 6, 2, 5, 6, 4, 4, 3, 4, 3, 4, 2, 5, 2, 2, 5, 4, 3,
 4, 3, 4, 3, 6, 3, 2, 5, 2, 6, 4, 2, 6, 1, 4, 3, 2, 5, 4, 4, 5, 3,
 3, 2, 5, 1, 4, 2, 3, 3, 2, 6, 5, 2, 3, 2, 4, 2, 1, 4, 2, 3, 3, 4,
 4, 3, 3, 1, 3, 3, 4, 3, 4, 4, 2, 6, 2, 3, 2, 3, 2, 6, 3, 5, 1, 3,
 3, 6, 4, 4, 3, 4, 3, 6, 3, 3, 6, 2, 6, 2, 3, 3, 4, 5, 5, 4, 5, 6,
 6])

array([0, 6, 3, 5, 6, 1, 2, 6, 4, 6, 3, 3, 3, 3, 2, 2, 5, 6, 4, 3, 1, 4,
 3, 3, 5, 6, 4, 2, 3, 6, 1, 1, 4, 3, 6, 3, 3, 3, 4, 3, 3, 3, 4, 3,
 3, 4, 4, 6, 6, 3, 4, 3, 3, 5, 6, 4, 2, 5, 2, 4, 3, 3, 6, 2, 2, 4,
 2, 3, 1, 3, 4, 4, 2, 1, 3, 3, 2, 2, 2, 4, 6, 6, 2, 4, 3, 1, 1, 3,
 3, 4, 4, 5, 4, 6, 1, 3, 6, 1, 3, 6, 2, 4, 6, 4, 3, 3, 2, 1, 5, 6,
 2, 4, 3, 3, 5, 6, 4, 0, 5, 3, 1, 3, 4, 4, 5, 4, 1, 3, 4, 5, 3, 3,
 4, 6, 1, 3, 1, 1, 2, 4, 5, 2, 3, 5])

Height Weight Gender_Female Gender_Male family_history_with_overweight_no fam

635 1.654784 111.933152 1 0 0

118 1.529834 62.903938 1 0 1

273 1.542122 80.000000 1 0 0

448 1.756221 119.117122 0 1 0

34 1.550000 62.000000 1 0 0

144 rows × 42 columns

In [43]: # View Millenials Labels for Training Set:
mi_label_train

Out[43]:

In [44]: # View Millenials Labels for Testing Set:
mi_label_test

Out[44]:

In [45]: # Train Decision tree Classifier on the Training Data:
dt_mi = d_tree.fit(mi_train, mi_label_train)

99

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 16/27

Accuracy:0.896

Classification report
 precision recall f1-score support

 0 0.50 1.00 0.67 2
 1 0.83 0.62 0.71 16
 2 0.77 0.89 0.83 19
 3 1.00 0.91 0.95 43
 4 1.00 1.00 1.00 30
 5 0.69 0.85 0.76 13
 6 0.95 0.95 0.95 21

 accuracy 0.90 144
 macro avg 0.82 0.89 0.84 144
weighted avg 0.91 0.90 0.90 144

Confussion matrix
[[2 0 0 0 0 0 0]
 [2 10 0 0 0 3 1]
 [0 0 17 0 0 2 0]
 [0 0 4 39 0 0 0]
 [0 0 0 0 30 0 0]
 [0 1 1 0 0 11 0]
 [0 1 0 0 0 0 20]]

Average Test Accuracy: 0.8958333333333334
Average Train Accuracy: 1.0

Above, the Decision Tree classifer for the Millenials dataset did not perform as well as the model

for the Gen-Z or the full dataset. The model achieved an accuracy of 89.6%. Similar to the two

previous models, Class 4: 'Obesity_Type_III' had a prediction accuracy of 100%. Unlike the two

previous models, Class 6: 'Overweight_Level II' and Class 3: 'Obesity_Type_II' performed better

in this model with an accuracy of 95%. Class 0: 'Insufficient Weight' had an accuracy of 67%,

which is starkly lower in accuracy compared to the previous two models! Class 1:

'NormalWeight' also had a low accuracy at 71%. This aligns with the two previous models, which

also had the lowest accuracy in predicting Class 1: 'Normal Weight'.

['Weight' 'Gender_Female' 'Gender_Male'

In [46]: # Predict on Millenials Test Set, View Performance, and Accuracy of Decision Tre
measure_performance(mi_test, mi_label_test, dt_mi, show_confussion_matrix=True,

In [47]: # View the Accuracy of the Test and Training Sets:
print('Average Test Accuracy: ', d_tree.score(mi_test, mi_label_test))
print('Average Train Accuracy: ', d_tree.score(mi_train, mi_label_train))

In [48]: # Perform feature selection for top 15% of Millenials DF:
fs_mi = feature_selection.SelectPercentile(feature_selection.chi2, percentile=15
mi_train_fs = fs_mi.fit_transform(mi_train, mi_label_train)

In [49]: # View the top 15% of the most important features for Millenails:
print(data_millen.columns[fs_mi.get_support()].values)

100

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 17/27

 'family_history_with_overweight_no' 'FCVC_Always' 'CAEC_Frequently'
 'MTRANS_Automobile']

Weight 1599.4360572768592
Gender_Female 173.42692440859898
Gender_Male 146.10242506447887
family_history_with_overweight_no 169.89205402997
59
FCVC_Always 249.67035685056916
CAEC_Frequently 166.34169934064465
MTRANS_Automobile 110.75284152840752

Accuracy:0.799

Classification report
 precision recall f1-score support

 0 0.40 1.00 0.57 2
 1 0.82 0.56 0.67 16
 2 0.58 0.74 0.65 19
 3 0.95 0.86 0.90 43
 4 1.00 1.00 1.00 30
 5 0.56 0.77 0.65 13
 6 0.76 0.62 0.68 21

 accuracy 0.80 144
 macro avg 0.72 0.79 0.73 144
weighted avg 0.83 0.80 0.80 144

Confussion matrix
[[2 0 0 0 0 0 0]
 [3 9 0 0 0 3 1]
 [0 0 14 2 0 2 1]
 [0 0 4 37 0 1 1]
 [0 0 0 0 30 0 0]
 [0 1 1 0 0 10 1]
 [0 1 5 0 0 2 13]]

With the feature selection above, using the top 15% of features, resulted in the classifier

dropping in accuracy to 79.9%. The model performs slightly worse than the model for Gen-Z

age group. Class 4 again, had the highest accuracy at 100%, which is comparable to the full

dataset which also predicted class 4 at 100%. Class 2: 'Obesity_Type_I' and Class 5:

'Overweight_Level_I' had the lowest accuracy at 65%. Class 6:'Overweight_Level_II' has a

significant drop in accuracy, which prior to feature selection had a 95% prediction, and after

feature selection has a 68% prediction. This shows that the features necessarily to predict Class

6 are not included in the top 15% features. The model also does not classify Class 1:

'Normal_Weight' as well as the other classes, which is consistent pattern among all the models.

In [50]: # View scores for each top feature:
for i in range(len(data_millen.columns.values)):
 if fs_mi.get_support()[i]:
 print(data_millen.columns.values[i], '\t\t\t\t', fs_mi.scores_[i])

In [51]: # Evaluate the Classifier with the top 15% feature set for Millenials DF:
d_tree.fit(mi_train_fs, mi_label_train)
mi_test_fs = fs_mi.transform(mi_test)
measure_performance(mi_test_fs, mi_label_test, d_tree, show_confussion_matrix=Tr

101

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 18/27

In contrast, the model was able to predict Class 3: 'Obesity_Type_II' better than the model for

the Gen-Z age group.

The top 15% of features includes weight, gender both male and female, family history with

obesity, always eating vegetables with meals (FCVC), and frequently eating food between

meals. These features are the same top features from the model using the full dataset. Unlike

the previous two models, this model includes one additional top feature, a physical activity

feature, means of transportation as automobile. This is interesting since previous models did not

include a physical activity feature. Moreover, the model with the top 15% features for both the

Millennials age group and the Gen-Z age group yielded similar accuracy for classification. The

main difference is that a physical activity feature is included in the top features for Millennials

which is not included for Gen-Z.

Decision Tree and Feature Selection with Gen-X & Boomers Dataset:

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_

0 Gen-X &
Boomers

1.800000 99.000000 0 1

1 Gen-X &
Boomers

1.690000 87.000000 1 0

2 Gen-X &
Boomers

1.780000 84.000000 0 1

3 Gen-X &
Boomers

1.650000 66.000000 1 0

4 Gen-X &
Boomers

1.600000 80.000000 0 1

5 Gen-X &
Boomers

1.650000 80.000000 0 1

6 Gen-X &
Boomers

1.630000 77.000000 1 0

7 Gen-X &
Boomers

1.750000 118.000000 0 1

8 Gen-X &
Boomers

1.540000 80.000000 1 0

9 Gen-X &
Boomers

1.590000 50.000000 1 0

10 Gen-X &
Boomers

1.790000 90.000000 0 1

11 Gen-X &
Boomers

1.750000 110.000000 0 1

12 Gen-X &
Boomers

1.800000 92.000000 0 1

13 Gen-X &
Boomers

1.700000 86.000000 0 1

In [52]: # View Gen-X and Boomers Dataset:
genxboomers_df

Out[52]:

102

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 19/27

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_

14 Gen-X &
Boomers

1.721854 82.919584 1 0

15 Gen-X &
Boomers

1.768231 75.629310 1 0

16 Gen-X &
Boomers

1.769269 80.491339 0 1

17 Gen-X &
Boomers

1.647768 79.165306 1 0

18 Gen-X &
Boomers

1.745528 82.130728 0 1

19 Gen-X &
Boomers

1.733875 86.945380 1 0

20 Gen-X &
Boomers

1.675953 79.668320 1 0

21 Gen-X &
Boomers

1.657221 80.993213 0 1

22 Gen-X &
Boomers

1.718097 88.600878 0 1

23 Gen-X &
Boomers

1.673394 80.400306 0 1

24 Gen-X &
Boomers

1.678610 79.849252 1 0

25 Gen-X &
Boomers

1.743935 84.729197 0 1

26 Gen-X &
Boomers

1.687326 80.413997 1 0

27 Gen-X &
Boomers

1.569234 81.827288 1 0

28 Gen-X &
Boomers

1.583943 81.936398 1 0

29 Gen-X &
Boomers

1.587546 76.126112 1 0

30 Gen-X &
Boomers

1.646390 86.639861 1 0

31 Gen-X &
Boomers

1.643786 81.978743 1 0

32 Gen-X &
Boomers

1.595165 77.354744 1 0

33 Gen-X &
Boomers

1.567973 81.056851 1 0

34 Gen-X &
Boomers

1.571417 81.918809 1 0

35 Gen-X &
Boomers

1.584322 80.986496 1 0

103

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 20/27

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_

36 Gen-X &
Boomers

1.582523 81.919454 1 0

37 Gen-X &
Boomers

1.544937 77.053948 1 0

38 Gen-X &
Boomers

1.592316 77.001030 1 0

39 Gen-X &
Boomers

1.750000 116.594351 0 1

40 Gen-X &
Boomers

1.750000 115.806977 0 1

41 rows × 44 columns

Height Weight Gender_Female Gender_Male family_history_with_overweight_no famil

0 1.800000 99.000000 0 1 1

1 1.690000 87.000000 1 0 0

2 1.780000 84.000000 0 1 0

3 1.650000 66.000000 1 0 1

4 1.600000 80.000000 0 1 0

5 1.650000 80.000000 0 1 1

6 1.630000 77.000000 1 0 0

7 1.750000 118.000000 0 1 0

8 1.540000 80.000000 1 0 0

9 1.590000 50.000000 1 0 0

10 1.790000 90.000000 0 1 0

11 1.750000 110.000000 0 1 0

12 1.800000 92.000000 0 1 0

13 1.700000 86.000000 0 1 1

14 1.721854 82.919584 1 0 1

15 1.768231 75.629310 1 0 0

16 1.769269 80.491339 0 1 1

17 1.647768 79.165306 1 0 0

18 1.745528 82.130728 0 1 0

19 1.733875 86.945380 1 0 0

In [53]: #Remove the age and class label column for Millenials DF:
data_genxb = genxboomers_df.iloc[:,1:43]
data_genxb

Out[53]:

104

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 21/27

0 Obesity_Type_I
1 Obesity_Type_I
2 Overweight_Level_I
3 Normal_Weight
4 Obesity_Type_I
5 Overweight_Level_II
6 Overweight_Level_II
7 Obesity_Type_II
8 Obesity_Type_I
9 Normal_Weight
10 Overweight_Level_II
11 Obesity_Type_II
12 Overweight_Level_II
13 Overweight_Level_II

Height Weight Gender_Female Gender_Male family_history_with_overweight_no famil

20 1.675953 79.668320 1 0 0

21 1.657221 80.993213 0 1 0

22 1.718097 88.600878 0 1 0

23 1.673394 80.400306 0 1 0

24 1.678610 79.849252 1 0 0

25 1.743935 84.729197 0 1 0

26 1.687326 80.413997 1 0 0

27 1.569234 81.827288 1 0 0

28 1.583943 81.936398 1 0 0

29 1.587546 76.126112 1 0 0

30 1.646390 86.639861 1 0 0

31 1.643786 81.978743 1 0 0

32 1.595165 77.354744 1 0 0

33 1.567973 81.056851 1 0 0

34 1.571417 81.918809 1 0 0

35 1.584322 80.986496 1 0 0

36 1.582523 81.919454 1 0 0

37 1.544937 77.053948 1 0 0

38 1.592316 77.001030 1 0 0

39 1.750000 116.594351 0 1 0

40 1.750000 115.806977 0 1 0

41 rows × 42 columns

In [54]: # View Class Labels for Gen-X & Boomers DF:
labels_genxb = genxboomers_df['NObeyesdad']
labels_genxb

Out[54]:

105

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 22/27

14 Overweight_Level_I
15 Overweight_Level_I
16 Overweight_Level_II
17 Overweight_Level_II
18 Overweight_Level_II
19 Overweight_Level_II
20 Overweight_Level_II
21 Overweight_Level_II
22 Overweight_Level_II
23 Overweight_Level_II
24 Overweight_Level_II
25 Overweight_Level_II
26 Overweight_Level_II
27 Obesity_Type_I
28 Obesity_Type_I
29 Obesity_Type_I
30 Obesity_Type_I
31 Obesity_Type_I
32 Obesity_Type_I
33 Obesity_Type_I
34 Obesity_Type_I
35 Obesity_Type_I
36 Obesity_Type_I
37 Obesity_Type_I
38 Obesity_Type_I
39 Obesity_Type_II
40 Obesity_Type_II
Name: NObeyesdad, dtype: object

array([1, 1, 3, 0, 1, 4, 4, 2, 1, 0, 4, 2, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4,
 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2])

Height Weight Gender_Female Gender_Male family_history_with_overweight_no famil

22 1.718097 88.600878 0 1 0

21 1.657221 80.993213 0 1 0

32 1.595165 77.354744 1 0 0

27 1.569234 81.827288 1 0 0

33 1.567973 81.056851 1 0 0

29 1.587546 76.126112 1 0 0

31 1.643786 81.978743 1 0 0

In [55]: # Transform class label into numeric:
le_x = preprocessing.LabelEncoder()
genxb_labels = le_m.fit_transform(labels_genxb)
genxb_labels

Out[55]:

In [56]: # Build training and test sets for Gen-X and Boomers:
xb_train, xb_test, xb_label_train, xb_label_test = train_test_split(data_genxb,

In [57]: # View Gen-X and Boomers Training Set:
xb_train

Out[57]:

106

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 23/27

Height Weight Gender_Female Gender_Male family_history_with_overweight_no famil

40 1.750000 115.806977 0 1 0

4 1.600000 80.000000 0 1 0

14 1.721854 82.919584 1 0 1

10 1.790000 90.000000 0 1 0

36 1.582523 81.919454 1 0 0

24 1.678610 79.849252 1 0 0

26 1.687326 80.413997 1 0 0

35 1.584322 80.986496 1 0 0

20 1.675953 79.668320 1 0 0

18 1.745528 82.130728 0 1 0

25 1.743935 84.729197 0 1 0

6 1.630000 77.000000 1 0 0

13 1.700000 86.000000 0 1 1

7 1.750000 118.000000 0 1 0

39 1.750000 116.594351 0 1 0

1 1.690000 87.000000 1 0 0

16 1.769269 80.491339 0 1 1

0 1.800000 99.000000 0 1 1

15 1.768231 75.629310 1 0 0

5 1.650000 80.000000 0 1 1

11 1.750000 110.000000 0 1 0

9 1.590000 50.000000 1 0 0

8 1.540000 80.000000 1 0 0

12 1.800000 92.000000 0 1 0

37 1.544937 77.053948 1 0 0

32 rows × 42 columns

Height Weight Gender_Female Gender_Male family_history_with_overweight_no family

3 1.650000 66.000000 1 0 1

2 1.780000 84.000000 0 1 0

In [58]: # View Gen-X and Boomers Testing Set:
xb_test

Out[58]:

107

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 24/27

array([4, 4, 1, 1, 1, 1, 1, 2, 1, 3, 4, 1, 4, 4, 1, 4, 4, 4, 4, 4, 2, 2,
 1, 4, 1, 3, 4, 2, 0, 1, 4, 1])

array([0, 3, 4, 1, 4, 1, 4, 1, 1])

Accuracy:0.667

Classification report
 precision recall f1-score support

 0 0.00 0.00 0.00 1
 1 0.80 1.00 0.89 4
 3 0.00 0.00 0.00 1
 4 0.50 0.67 0.57 3

 accuracy 0.67 9
 macro avg 0.33 0.42 0.37 9
weighted avg 0.52 0.67 0.59 9

Confussion matrix
[[0 0 0 1]
 [0 4 0 0]
 [0 0 0 1]
 [0 1 0 2]]

Height Weight Gender_Female Gender_Male family_history_with_overweight_no family

23 1.673394 80.400306 0 1 0

38 1.592316 77.001030 1 0 0

17 1.647768 79.165306 1 0 0

28 1.583943 81.936398 1 0 0

19 1.733875 86.945380 1 0 0

34 1.571417 81.918809 1 0 0

30 1.646390 86.639861 1 0 0

9 rows × 42 columns

In [59]: # View Gen-X and Boomers Labels for Training Set:
xb_label_train

Out[59]:

In [60]: # View Gen-X and Boomers Labels for Testing Set:
xb_label_test

Out[60]:

In [61]: # Train Decision tree Classifier on the Training Data:
dt_xb = d_tree.fit(xb_train, xb_label_train)

In [62]: # Predict on Gen-X and Boomers Test Set, View Performance, and Accuracy of Decis
measure_performance(xb_test, xb_label_test, dt_xb, show_confussion_matrix=True,

108

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 25/27

Average Test Accuracy: 0.6666666666666666
Average Train Accuracy: 1.0

Above, the Decision Tree classifer for the Gen-X and Boomers dataset performed the worse

compared to all previous models. The model achieved an accuracy of 66.7%. This model

resulted in the lowest accuracy score compared to the previous models. This dataset is

significantly smaller than the previous two dataset. As such, not all classes are represented in

this model and due to the limited number of entries, the model does not have as much data for

the classifier to train on compared to previous three models. This model was able to predict

Class 1: 'Normal_weight' at 89% accuracy, which is higher in accuracy compared to all previous

models. This model was unable to predict Class 0: 'Insufficient_Weight or Class 3:

'Obesity_Type_II'.

['Weight' 'FCVC_Always' 'CH2O_More than 2 L' 'SCC_yes' 'FAF_2 or 4 days'
 'FAF_4 or 5 days' 'MTRANS_Public_Transportation']

Weight 59.13977455691617
FCVC_Always 9.282051282051283
CH2O_More than 2 L 9.376068376068377
SCC_yes 31.0
FAF_2 or 4 days 15.333333333333334
FAF_4 or 5 days 15.0
MTRANS_Public_Transportation 31.0

Accuracy:0.667

Classification report
 precision recall f1-score support

 0 0.00 0.00 0.00 1
 1 1.00 0.50 0.67 4
 3 0.50 1.00 0.67 1
 4 0.60 1.00 0.75 3

In [63]: # View the Accuracy of the Test and Training Sets:
print('Average Test Accuracy: ', d_tree.score(xb_test, xb_label_test))
print('Average Train Accuracy: ', d_tree.score(xb_train, xb_label_train))

In [64]: # Perform feature selection for top 15% of Gen-X and Boomers DF:
fs_xb = feature_selection.SelectPercentile(feature_selection.chi2, percentile=15
xb_train_fs = fs_xb.fit_transform(xb_train, xb_label_train)

In [65]: # View the top 15% of the most important features for Millenails:
print(data_genxb.columns[fs_xb.get_support()].values)

In [66]: # View scores for each top feature:
for i in range(len(data_genxb.columns.values)):
 if fs_xb.get_support()[i]:
 print(data_genxb.columns.values[i], '\t\t\t\t', fs_xb.scores_[i])

In [67]: # Evaluate the Classifier with the top 15% feature set for Gen-X and Boomers DF:
d_tree.fit(xb_train_fs, xb_label_train)
xb_test_fs = fs_xb.transform(xb_test)
measure_performance(xb_test_fs, xb_label_test, d_tree, show_confussion_matrix=Tr

109

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 26/27

 accuracy 0.67 9
 macro avg 0.53 0.62 0.52 9
weighted avg 0.70 0.67 0.62 9

Confussion matrix
[[0 0 1 0]
 [0 2 0 2]
 [0 0 1 0]
 [0 0 0 3]]

With the feature selection above, using the top 15% of features, resulted in the classifier

dropping in accuracy to 66.7%. This model underperformed compared to all previous models

with all classes having accuracy scores of 75% or lower. Again, the model was unable to predict

Class 0: ‘Insufficient_Weight.̓ Since some classes are not represented in this dataset and with a

lower amount of data for training, it is not unexpected that the model was unable to classify

obesity levels as well as the previous models.

The top 15% of features includes weight and always eating vegetables with meals (FCVC) which

are two features also included as top features for the full dataset, Gen-Z dataset, and

Millennialʼs dataset. Additional eating habits features are included as top features: water intake

at more than 2 liters per day and monitoring calories intake daily. In addition, physical activity

features include direct physical activity 1 to 2 days or 3 to 4 days and means of transportation

by public transit. This is interesting since previous models did not include specific eating habit

features such as water intake and direct exercise or direct physical activity. The results are

drastically different from the Gen-Z and Gen-X dataset but since the sample size is significantly

lower, more data would be needed for this population to perform a more detailed and thorough

analysis in validating these top features and determining what key features affect the

classification of obesity for the Gen-X and Boomers age group

Comparsion of Results:
The model with the best accuracy from the Decision Tree classifier is the full dataset. The top

15% features for this model include age, weight, gender, family history with obesity, always

eating vegetables with meals (FCVC) and frequently eating food between meals (CAEC). With

these top features, the model still performed well with an accuracy of 86.3%. Biological features

and family history with obesity are top features that are associated with classifying obesity. With

the full dataset, only two additional eating habit features were top features. The models for Gen-

Z age group and Millenials age group also included weight, gender, family history with obesity,

always eating vegetables with meals (FCVC), and frequently eating food between meals (CAEC)

as top features. Gen-Z includes more eating habit features including not eating high calorie

foods frequently and number of meals consumed daily and Millenials includes a physical activity

feature which is transportation by automobile. The accuracy for the the Gen-Z model is 91.8%

whereas the accuracy for the Millenails model is 89.5%. When evaluating the performance with

th top 15% features, the Millenials model performs slighly better at 80.6% wheras the Gen-Z

model had an accuracy of 80.1%. The model for the Gen-X and Boomers age group performed

the worst at an accuracy of 77.8%. Gen-X and Boomers had different top features compared to

all other models. The top features still included weight, but no longer included gender and

110

11/20/21, 10:36 AM Project - Feature Selection with Decision Tree

file:///Users/cl/Desktop/AppendixC-FeatureSelectionwithDecisionTree(Le,Cody).html 27/27

instead includes both eating habits and physical activity features including water intake of 2

liters or more, calories intake daily, and direct physical activity. The model had significantly

lower amount of data compared to previous models which may contribute to the lower accuracy

and the low performance of the model.

In conclusion, Gen-Z age group is over represented in the full datset compared to Millenials and

Gen-X and Boomers. The classifier model performed better on the full dataset. The classifer

model equally performed well on the Gen-Z and Millenials datset. By looking at the top features

and evaluating the models using the top features, we can see which features are most important

in classifying obesity levels. In this case, for the Gen-Z and Millenials age group, biological and

hirediary features are more associated with obesity levels, with eating habits as additional top

features specifically eating vegetables with meals and eating between meals. Gender appears to

play a role with Gen-Z and Millenials age group. This is expected due to biological factors such

as difference in weight, height, and calorie intake. For Gen-X and Boomers age group, weight

and direct eating habits such as water intake, calorie intake, direct physical activity, and mode

of transportation are top features. More data is needed for Gen-X and Boomers to be able to

analysis and evaluate the models and determine which features affect classification of obesity

levels best.

In []:

111

	DSC478-Final Project-Title
	Executive Summary
	Contents & Contributions
	Introduction & Objective
	Data Schema & Preparation
	Approach & Data Preprocessing
	Cluster Analysis Exploration
	Classification and Model Selection
	Feature Selection
	Results
	Conclusion
	Works Cited

	Appendix A - Jupytor Notebook: Preprocessing & Classification
	Appendix B -Jupytor Notebook: Cluster Analysis Exploration
	Appendix C-Jupytor Notebook: Feature Selection

