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Executive Summary   
 
 In the last three decades, a dramatic increase and rise in obesity rates has occurred in Latin America. 
The region has declared obesity as a public health concern which has been exacerbated by changes in 
economy, shift in workforce, and changes in diet. Two key factors have been determined as the cause in the 
rise in obesity: increase in consuming saturated fats and shift to a sedentary lifestyle. This analysis explores 
obesity levels among adults from three regions of Latin America to determine which specific eating habits or 
daily activities most affect the classification of obesity levels. Naturally, the expectation is that eating habits 
such as consuming high calorie foods and eating between meals along with decrease in daily physical activity 
would be the most important factors in determining obesity levels. Other factors such as gender and age are 
also compared since physical differences exist by gender and ability differences exist by age. 
         The dataset contains a total of 17 attributes and 2,111 instances. The class label is obesity level which 
is determined by body mass index (BMI). The index is considered a nutritional status index developed as a risk 
indicator for risk with the higher the BMI the higher chance of disease including premature death. Most of the 
features are categorical variables which include six eating habit attributes and five daily activities attributes. 
The remaining variables are gender, age, weight, height, and family history of obesity which are considered 
biological attributes. The data is transformed and normalized for the analysis and dummy variables are used 
for categorical features. To explore how age groups play a role in classifying obesity levels, the age attribute is 
binned by generational groups representing three age groups: Generation-Z, Millennials, and Generation-X 
and Boomers. These age groups will be used for cluster analysis exploration and feature selection. 
         The methodologies used for this analysis include data exploration and feature transformations which 
are part of preprocessing, cluster analysis exploration, classification and model selection, and feature 
selection. K-means algorithm is used for cluster analysis and performed on the original dataset as well as the 
transformed dataset with age groups to determine if patterns exist in the data. Classification models are built 
using a pipeline which bundles preprocessing and classifier models and returns a classification report for 
various models. The best classifier model is used in feature selection which compares the top 15% of the most 
important features in classifying obesity levels between the original dataset and each age group dataset. The 
top features will be evaluated in determining which factors are most salient in determining obesity levels. 
         The cluster analysis exploration revealed that a pattern exists between male and female gender. This 
aligns with the original prediction that gender differences play a role in classifying obesity levels. The analysis 
did not reveal any significant pattern in the generational age groups. Decision Tree was determined as the best 
classifier model with an accuracy of around 94%. The classifier model had the best accuracy and performance 
using the original dataset. The accuracy decreased steadily when the model was performed on age group 
datasets. The results of the feature selection using the classifier model revealed that the most important factors 
affecting the classification of obesity levels are age, gender, weight, and family history with obesity. The 
original prediction stated that eating high calorie foods frequently, eating between meals, and having lower 
days of physical activity would be the most salient attributes in determining obesity levels. However, the results 
show that always eating vegetables with meals and frequently eating between meals are the most important 
factors besides gender, weight, and family history with obesity. Physical activity attributes were not the most 
important factors in classifying obesity levels. Although age is an important factor, an individual’s generational 
group does not play a salient factor in classifying obesity level. 
         In summary, this analysis shows that obesity level as defined here is a nutritional status index as the 
classes are created using BMI. In analyzing the data set of the adult population in Mexico, Peru, and Columbia, 
we found that eating habit attributes are among the most important factors in classifying obesity level, 
specifically always eating vegetables with meals frequently and eating between meals frequently. Factors that 
are more salient than eating habits in determining the obesity level include gender, age, weight, height, and no 
family history with obesity. Daily physical activities are not among the most important factors in classifying 
obesity levels.    
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Introduction  
 

The World Health Organization (WHO) states that obesity has tripled since 1975. The WHO states that 
in 2016, more than 1.9 billion adults aged 18 and older were overweight and of these 650 million were obese. 
Being overweight is defined as abnormal or excessive fat accumulation that may increase the risk for 
noncommunicable diseases such as heart disease and stroke which was the leading cause of death in 2012, 
diabetes, osteoarthritis, and cancer including endometrial, breast, ovarian, prostate, liver, gallbladder, kidney, 
and colon cancer. Today, a simple Body Mass Index (BMI) which is a radio of weight-for-height is used to 
classify overweight and obesity in adults. 

In the last few decades, a dramatic increase in obesity rates has occurred in Latin America, becoming a 
public health concern for the region mostly exasperated by regions undergoing industrialization resulting to 
lifestyle changes (Kain et. Al 2003). Statistics from the WHO show that obesity rates have increased every 
decade in both men and women of all age groups, but in the last few years the upward trend is particularity 
dramatic in men. Two key factors play a role in the upward trend in Latina America, dietary changes, and 
physical inactivity due to a shift in the workforce. With improved economies in the region, increases in income 
results to an increase energy consumption and ultimately an increase in consuming saturated fats. Shifts in the 
labor force in the more developed countries in Latin America from a labor workforce to a service-oriented 
workforce has led to a sedentary lifestyle with activities that involve less physical movement such as watching 
television, playing computer games, and increased use of motor vehicles (Kain et. Al 2003). Research in 
dietary consumption and sedentary lifestyle in Latin America has not yet been fully studied and more data is 
needed to further understand the reasons for trends in obesity.  

The WHO believes that obesity is preventable. What causes obesity? One main cause of obesity is 
energy imbalance between calories consumed and calories expanded. Changes in dietary and physical activity 
patterns are direct results in recent years of changes in environment and societal demands. Moreover, 
malnutrition is another threat that low and middle-income countries experience which exacerbates the dietary 
imbalance. What specific dietary and physical activity patterns leads to obesity levels in adults? This analysis 
will explore recent data of eating habits and daily physical activity among adults from Latin America to 
determine which specific factors lead to an individual’s obesity level. Are there other factors that influence an 
individual’s obesity level such as gender and age which past research has shown may influence the upward 
trend in obesity? This analysis will examine this question and allow for a better understanding of what 
aspects of an individual’s daily life can they focus on to maintain or change their obesity level.  

 
 

 
Objective  
 

This analysis seeks to analyze a dataset containing obesity levels among adults from Mexico, 
Peru, and Colombia to determine which specific eating habit or daily activities most affect the 
classification of obesity levels. It is predicted that eating high calorie foods frequently, eating between 
meals, and having lower days of physical activity are the most salient attributes to determining obesity 
levels. In addition, studies have shown that gender and age may play a role in rising obesity trends as 
such results should show that gender and age will affect the top attributes differently. It is predicted 
that eating habit attributes will be most salient among younger age groups and physical activity 
attributes will be most salient among elderly age group.  
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Data Schema and Preparation  
  

The dataset was obtained from the University of California Irvine (UCI) Machine Learning 
Repository. 23% of the data was collected directly from users through an online survey platform and 
77% of the data was simulated data.  The dataset contains a total of 17 attributes and 2,111 
instances. The original file size is 264KB in comma separated values format.  The class label is 
NObeyesdad (Obesity Level) representing the obesity levels. The total number of features is 16, 
which corresponds to the 16 remaining attributes.  Most of the attributes are categorical variables with 
only three attributes as numeric variables: Age, Height, and Weight. These three numeric variables 
were used to create the class level (which was pre-calculated from the dataset using BMI index). 
Some categorical attributes were already pre-processed and displayed using numeric numbers that 
correspond to categories instead of actual categories. All variables that were meant to be categorical 
that read as numeric were transformed back to categorical. Two variables FCVC (eating high calorie 
foods frequently) and CAEC (eating food between meals) were transformed to ordinal variables due 
to the nature of the response having an orderly occurrence. The table below shows the attributes, 
their original data type, category description (if applicable), and the transformed data type (if 
applicable) used for the analysis:  
 
# Attribute Name Original 

Data Type 
Categories Final Data 

Type 
1. Gender Categorical / 

Object 
Male 
Female 

Categorical / 
Object 

2. Age in Years Numeric / Float  Numeric / 
Integer 

3.  Height in Meters Numeric / Float  Numeric / Float 
4.  Weight in Kilograms Numeric / Float  Numeric / Float 
5.  family_history_with_overweight Categorical / 

Object 
 Categorical / 

Object 
6.  FAVC 

(eating high calorie foods 
frequently) 

Categorical / 
Object 

Yes 
No 

Categorical / 
Object 

7. FCVC 
(eating vegetables in meals) 

Numeric / Float 1 – Never 
2 – Sometimes  
3 – Always  

Ordinal / Object 

8. NCP 
(number of main meals daily) 

Numeric / Float 1 – ‘1’  
2 – ‘2’  
3 – ‘3’  
4 – ‘3+’ 

Categorical / 
Object 

9.  CAEC 
(eating food between meals) 

Categorical / 
Object 

No  
Sometimes  
Frequently 
Always 

Ordinal / Object 

10. Smoke Categorical / 
Object 

Yes 
No 

Categorical / 
Object 

11. CH2O 
(water intake per day in liters) 

Numeric / Float 1 – ‘Less than a liter’  
2 – ‘Between 1 and 2 
L’  

Categorical / 
Object 
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3 – ‘More than 2 L’  

12.  SCC 
(monitor calories on a daily 

basis) 

Categorical / 
Object 

Yes 
No 

Categorical / 
Object 

13. FAF 
(physical activity in number of 

days) 

Numeric / Float 0 – ‘I do not have’  
1 – ‘1 or 2 days’  
2 – ‘2 or 4 days’  
3 – ‘4 or 5 days’  

Categorical / 
Object 

14.  TUE 
(time spent on technology) 

Numeric / Float 0 – ‘0 – 2 hours’ 
1 – ‘3 – 5 hours’  
2 – ‘More than 5 
hours’ 

Categorical / 
Object 

15.  CALC  
(alcohol intake) 

Categorical / 
Object 

I do not drink  
Sometimes  
Frequently  
Always 

Categorical / 
Object 

16.  MTRANS  
(means of transportation)  

Categorical / 
Object 

Automobile  
Motor Bike  
Bike  
Public-Transportation 
Walking 

Categorical / 
Object 

17.  NObeyesdad  
(accordining to BMI) 
--- Class Label ---  

Categorical / 
Object 

Insufficient_Weight  
Normal_Weight  
Overweight_Level_I  
Overweight_Level_II  
Obesity_Type_I  
Obesity_Type_II  
Obesity_Type_III 

Categorical / 
Object 

  
The class label NObeyesdad will be used as the target variable which consist of seven 

classes: Insufficient_Weight corresponds to a Body Mass Index (BMI) of less than 18.5, 
Normal_Weight corresponds to a body mass index of 18.5 to 24.9, Overweight_Level_I corresponds 
to a body mass index of 25 to 26.9, Overweight_Level_II corresponds to a body mass index of 27.0 to 
29.9, Obesity_Type_I corresponds to a body mass index of 30 to 34.9, Obesity_Type_II corresponds 
to a body mass index of 35.0 to 39.9, and Obesity_Type_III corresponds to a body mass index of 
over 40. The classes were calculated using the BMI which is weight in kilograms divided by height 
squared. The WHO states that BMI ranges are based on the effect of excessive body fat and risk of 
disease or death. The index is developed as a risk indicator of disease. The higher the BMI, the 
higher risk of diseases including premature death, cardiovascular diseases, high blood pressure, 
osteoarthritis, some cancers, and diabetes. The index and the classes associated at each level of the 
index are considered nutritional statuses. The ideal BMI is normal weight, which is corresponds to 
18.5 to 24.9, any range below this range or above this range are considered higher risk for disease.  

The class label will be transformed to numeric for the analysis with 0 - representing 
Insufficient_Weight, 1 - representing Normal_Weight, 2 - representing Overweight_Level_I, 3 - 
representing Overweight_Level_II, 4 - representing Obesity_Type_I, 5 – representing 
Obesity_Type_II, and 6 – representing Obesity_Type_III. All categorical and ordinal features will be 
transformed to dummy variables for the analysis. The dummy variables will be used to represent the 
numeric version of the feature. With the dummy variables, the total feature size for the analysis is 43.  
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Additional datasets were created for the exploration of the data through clustering analysis. 

The age attribute was transformed to categorical variable based on age group generation. Age group 
generations were selected because of the common trends and traits associated with different 
generational groups. The age groups were transformed by binning the ages based on the following 
generations from the Beresford Research group which defined the generations based on U.S. 
Census Bureau and data from Pew Research Center: Gen-Z includes ages 9 – 24, Millennials 
includes ages 25 – 40, Gen-X includes ages 41 – 56, and Boomers include ages 57 to 66. For this 
analysis, Gen-X and Boomer were combined into one age group due to the low instances in the data 
for this category. The three age groups are separated into three separate datasets. The Gen-Z age 
group contains 1,353 instances, the Millennials age group contains 717 instances, and the Gen-X and 
Boomers age group contains 41 instances. In addition to analyzing the full dataset, classification will 
also be performed on each age group dataset to determine most important features and compare 
results for evaluation.  

 
 
 

Approach  
 
 The approach and methodology in this analysis first begins with data preprocessing which 
includes data exploration and clustering analysis. The data exploration provides a visual of key 
features being explored such as gender as well as the class label being explored which is obesity 
level by BMI. The clustering analysis is performed as an exploratory analysis to determine if there are 
any patterns in the full dataset and if any patterns exist when the age groups are binned to the 
generational groups. The clustering analysis uses K-means clustering algorithm which is a method of 
vector quantization with the goal of partitioning specified number of observations into specified 
number of clusters based on the nearest mean. Next, the data analysis is performed by performing 
classification and model selection on the data. Several classifier models are fit to the dataset 
including K-Nearest Neighbor, Decision Tree, Stochastic Gradient Descent, and Support Vector 
Machine, and models are evaluated using a classification report for best performance. The best 
performing classifier is used in the next part of the analysis to perform feature selection on the full 
dataset and each of the age group datasets. The top 15% of the most important features are selected 
from each dataset and compared to determine which attributes are most salient in classifying obesity. 
The full methodology can be simplified as: 
 

1. Data Preprocessing: 
a. Data Exploration – Visualization of Key Features 
b. Feature Transformations  

2. Cluster Analysis Exploration 
3. Classification and Model Selection  
4. Feature Selection  
5. Results 
6. Conclusion   

 
 
 
Data Preprocessing  
 
Data Exploration 
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Gender will be explored as visualization in with height and weight. In terms of height, male and 

female are similarly distributed according to the box plot in Figure A1.1 below. While males are 
generally taller than females, both male and female share a similar average in weight, with females 
having a much larger range of weight (as well as BMI) compared to male. 
 

 
Figure A1.1 – Box Plot Comparing Male and Female Height and Weight (from Appendix A, Page 25) 

Figure A1.2 below shows the Line plot between weight and height of females and males shows 
that the weight and height are more linear for females than males. 
 
 

 
Figure A1.2 – Line Plot Comparing Gender to Weight and Height (from Appendix A, Page 27) 
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 The class label obesity levels were also be visualized. Figure A1.3 shows the general pie chart 
distribution for the class label. It is almost equally distributed between all the elements of the obesity 
category types.  

 
Figure A1.3 – Pie Chart of Obesity Type Distribution (from Appendix A, Page 28) 

 
Figure A1.4 below shows that a bigger proportion of females with a higher BMI is reflected by 

the large slice of Obesity Type III in the pie chart below, while Obesity Type II is the most prevalent 
type of obesity in men. Interestingly, there is also a higher proportion of Insufficient Weight in females 
compared to male. These results could be explained by a heavier societal pressure on women in 
terms of dietary restrictions.  

 

 
Figure A1.4 – Pie Charts Comparing Distribution of Obesity Types based on Gender (from Appendix A, Page 29)  
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Feature Transformations  
 

In the original data set, there are numerical (both continuous and discrete) and categorical (including 
ordinal, non-ordinal, and binary features. Binary features are categorical features with a yes or no category.  
Imputation is used in both numerical and categorical data to fill in missing values. Feature scaling is employed 
for continuous numerical values, including age, weight, and height. Ordinal and Label Encoding are used for 
non-ordinal categorical data, such as means of transportation and obesity level, while One Hot Encoding is 
applied to data which is ordinal in nature (e.g., never, sometimes, always). 
 The above preprocessing procedures are bundled into a pipeline, which also applies multiple models 
on the data set in search for the best model. Since the classifier cannot operate with label data directly, One 
Hot Encoder and Label Encoding will be used to assign numeric values to each category. The class label, 
NObeyesdad, will be transformed into a digit label with LabelEncoder. StandardScaler is applied to 
attributes with values which ranges are not consistent with the rest, to avoid disproportionate weight 
assigned to these values (i.e., Age, Height, Weight).  

Features that are ordinal in nature (i.e., answers including 'never', 'sometimes', 'always') will be 
preprocessed with OrdinalEncoder (this function is the same function as LabelEncoder, however 
LabelEncoder will take in multiple arguments as the latter is meant for target values only). Features 
that are non-ordinal in nature will be preprocessed with OneHotEncoder, so that the generated labels 
will not be interpreted in a way that suggests one answer is more important than the other (e.g., 3 is 
more important than 1). SimpleImputer is applied to all attributes to deal with missing values. All 
preprocessing techniques will be bundled into a pipeline, which will be deployed with the classifier 
models.  
 
 
 
 
Cluster Analysis Exploration  
 
 Cluster analysis using K-Means algorithm was performed on the full dataset. To perform the 
cluster analysis, first, the class label, NObeyesdad is removed from the dataset. The dataset is 
transformed to ensure the correct data types exist for each feature. Dummy variables are created for 
the categorical features. The numeric dataset contains 2,111 rows and 43 columns. K-Means 
algorithm looks at the nearest neighbor based on distance to group datapoints into clusters. The 
standard Euclidean distance function is used for the K-means clustering. To ensure that the algorithm 
performs optimally, the data is scaled using min-max scaling. Min-max normalization scales all values 
of the data between 0 and 1. K-means requires selecting a number for K, which is the number of 
clusters. For this exploration, several values of K are explored including K = 5, K = 3, and K = 2. In 
addition to declaring the number for K, the algorithm also requires a stopping point, since the 
algorithm is designed to continue each iteration and repeat the clustering of the datapoints over and 
over. The maximum iterations used for this analysis is 500. For each value of K, the cluster centroids 
were examined to determine if any pattern exists in the data. A silhouette analysis is performed for to 
evaluate the separation between the resulting clusters and determine the quality of the clusters. The 
silhouette plots display a measure of how close each point in one cluster is to points in the 
neighboring clusters. The mean silhouette value is calculated and used as a threshold when 
determining the cluster quality. Clusters with most of their coefficients above the mean silhouette 
value are considered better quality which means that clusters are further away from the neighboring 
clusters. Clusters with most of their coefficients below the mean silhouette value reveals that samples 
are very close to the decision boundary between two neighboring clusters and negative coefficient 
values indicate that samples are assigned to the wrong cluster. When the silhouette plot does not 
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display any negative coefficients and have the thickest plots visually above the silhouette mean, the 
correct number of K has been selected.  
 Figure B1.1 below shows the results of the silhouette analysis for K = 5. The plot of the 
silhouettes shows that cluster 0 outperformed the other clusters with all its coefficients above the 
mean silhouette value. Cluster 4 also performed well with many of its coefficients above the mean 
silhouette value. The remaining three clusters did not perform as well since most of their coefficients 
are below the mean silhouette value. Four of the clusters display negative values with cluster 3 
having the most negative coefficients, which indicates that 5 clusters are too high for the dataset.  
 

 
Figure B1.1 – K-Means at K=5, Silhouette Plot (from Appendix B, Page 56) 

 
 
 Next, K-means is performed again at K = 3. Figure B1.2 below shows the results of the 
silhouette analysis for K=3, which reveals that the algorithm performed neither better nor worse than 
at K = 5. The plot of the silhouettes shows that cluster 2 outperformed the other clusters with all its 
coefficients above the mean silhouette value. Cluster 1 performed the worst and did not have any 
coefficients above the mean silhouette value, but instead has negative coefficients. When evaluating 
the centroids, cluster 0 has Gender_Male with a value of 1.00 and Gender_Female with a value of 0. 
Cluster 0 most likely represents the male gender. Cluster 1 and 2 both contain a value of 0.99 for 
Gender_Female and 0.01 for Gender_Male, which shows that most likely Cluster 1 is misclassified. 
Most likely this cluster is pulling coefficients where it should not be and is too close to cluster 0 to be 
its own cluster. We can conclude from the silhouette plots that likely three cluster is still too high and 
that two clusters may be sufficient.  
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Figure B1.2 – K-Means at K=3, Silhouette Plot (from Appendix B, Page 60) 

 
 

 
Figure B1.3 – K-Means at K=2, Silhouette Plot (from Appendix B, Page 65) 

 
 

Lastly, K-means is performed again at K = 2. Figure B1.3 above shows the results of the 
silhouette analysis for K=2, which achieved the best silhouette plot compared to previous plots at K = 
5 and K = 3. This silhouette plot shows that both cluster 0 and 1 have coefficients that are above the 
mean silhouette value and none of the coefficients are negative. Both clusters are neither thick nor 
full, although, cluster 0 appears thicker than cluster 1, but from the clustering results above, this result 
is most successful. When looking at the centroids, the two features that stand out that most likely 
represent the clusters compared to all other features is Gender_Male and Gender_Female. In cluster 
0, Gender_Male has a value of 1.00 while Gender_Female has a value of -0.00 and in cluster 1, 
Gender_Female has a value of 1.00 while Gender_Male has a value 0.00. Moreover, we can 
conclude from the silhouette plots above that likely, cluster 0 represents males and cluster 1 
represents female. This evaluation shows that a pattern exists by gender and that gender may play a 
role in the dataset and in determining classification of obesity levels.  
 Next, we will explore the K-means algorithm with the three generational age groups: Gen-Z, 
Millennials, and Gen-X and Boomers. This exploration is being explored to see if a pattern exists 
based on age range which the cluster analysis for the full dataset did not evaluate since the age 
groups were not grouped into categories. The youngest age is 14 and the oldest age is 61. The age 
groups are created by binning the Age attribute and then transforming the age group attribute into 
dummy variables. For exploratory purposes, K-means is performed on the dataset first without min-
max normalization and second with min-max normalization at K = 3. The results of cluster analysis 
without normalization shows a very healthy silhouette plot with all three clusters full, thick, and with 
coefficients above the mean silhouette value. Figure B2.1 below confirms that clusters when age is 
grouped by range. When looking at the centroids, cluster 2 shows Gen-Z at 0.9 while Millennials at 
.10 and Gen-X and Boomers at 0.00. Most likely Gen-Z is represented in cluster 2.  
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Figure B2.1 – K-Means at K=3 for Grouped Aged, Silhouette Plot (from Appendix B, Page 71) 

 
 

The completeness and homogeneity scores were calculated for clusters since the class labels 
exist for further examination of the cluster quality. The completeness score was 0.70 which shows 
that members of a given class are assigned to the same cluster 70% of the time. The completeness 
score is positive and confirms that the clusters captured most of one class. The homogeneity score 
was much lower at 0.39 which shows that the clusters are not pure. These results may indicate that 
age group may be a factor in deciding the clusters for the data, but it may not be the main factor that 
affects obesity level for classification. The silhouette plots above display that a pattern exist but we 
must take into consideration that the data was not scaled. As such, we will next, perform K-means 
again with the data normalized to validate the results.  

Figure B2.2 below shows the results silhouette analysis for K=2 with the normalized data. The 
results are drastically different from the results from Figure B2.1. Cluster 0 outperformed all other 
clusters with all its coefficients above the mean silhouette value. Cluster 2 performed adequately with 
many of its coefficients above the mean silhouette value and only a few of its coefficients in negative. 
Cluster 1 did not perform as well as many of the coefficients are in negative and none of them are 
above the mean silhouette value. When looking at the centroids, the values of the age group do not 
directly correspond to the silhouette plots.  

 

 
Figure B2.2 – K-Means at K=3 for Grouped Aged (normalized), Silhouette Plot (from Appendix B, Page 79) 
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These results show that with the normalized data, a pattern may not necessarily appear in the 

age groups. Moreover, when examining K-means and clustering, we can see how not scaling the 
data may lead to conclusions or patterns about the data when a pattern may not necessarily exist. 
This is validated when evaluating the completeness and homogeneity scores, which both resulted in 
low scores. The completeness score was around 0.34 and the homogeneity score is lower at 0.18. 
These scores show that grouping by age is not the main determining factor for the classification of 
obesity levels. Age still may play a role as a key feature, but the clustering exploration does not 
necessary reveal that the age groupings have a significant pattern. By building the classification 
models and performing feature selection, we will be able to obtain a better picture of age and age 
groupings and their role in classifying obesity levels.  

 
 
 
 
 
 
Classification and Model Selection 
 

Classification will be performed to predict discrete and nominal values (class and category labels) by 
organizing and categorizing data into different classes. For this analysis, the following classifiers are explored: 
K-Nearest Neighbor, Decision Tree, Stochastic Gradient Descent, and Support Vector Machines. The first step 
begins with the model construction where we construct a target function during training. The target will be the 
class and points will be class labels. The second step will be model evaluation, based on the test set. We will 
estimate the accuracy of the model. We will use a confusion matrix to evaluate the model accuracy. The final 
step will be classification to find or predict the outcomes for the actual class label (NObeyesdad) in an 
evaluation set. 

To perform the classification, the classifiers are selected and stored in a list, each classifier will be 
looped through, and the preprocessor will be applied each time in the pipeline. The accuracy score of every 
classifier will be printed for comparison. The classification report is used to investigate the performance of each 
classifier in classes (type and level of obesity). 'Precision' shows the percentage of the classifier that can 
correctly predict the class (i.e., True Positive / (True Positive + False Positive). 'Recall' shows the percentage 
of the actual positive cases that the classifier can identify (i.e., True Positive / (True Positive + False Negative). 
'F1' is the harmonic mean between Precision and Recall. 'Support' is the number of occurrences of the given 
class in the dataset. More consistent the amount of 'Support' of each class is, the more balanced the dataset. 
Detailed classification reports with all values for the classifiers are shown in the figures below: 
 
Figure A2.1 - K-Nearest Neighbor Classifier Model (from Appendix A, Page 40): 
 
Model Accuracy Score: 0.821 

precision     recall  f1-score   support 

Insufficient Weight 0.72       0.92      0.81        25 
Normal Weight  0.61       0.35      0.45        31 
Obesity Type I  0.84       0.95      0.89        44 
Obesity Type II  0.94       1.00      0.97        31 
Obesity Type III 1.00       1.00      1.00        27 
Overweight Level I 0.77       0.82      0.79        28 
Overweight Level II 0.77       0.65      0.71        26 
Accuracy      0.82       212 
macro avg  0.81       0.81      0.80       212 
weighted avg  0.81      0.82     0.81       212 
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Figure A2.2 – Decision Tree Classifier Model (from Appendix A, Page 40): 
 
Model Accuracy Score: 0.939 
 
                       precision     recall  f1-score   support 
Insufficient Weight 0.96       0.92      0.94        25 
Normal Weight  0.90       0.87      0.89        31 
Obesity Type I  0.95       0.95      0.95        44 
Obesity Type II  0.94       1.00      0.97        31 
Obesity Type III 1.00       1.00      1.00        27 
Overweight Level I 0.89       0.89      0.89        28 
Overweight Level II 0.92       0.92      0.92        26 
Accuracy      0.94       212 
macro avg  0.94       0.94      0.94       212 
weighted avg  0.94       0.94      0.94       212 
 
 
Figure A2.3 – Stochastic Gradient Descent Classifier Model (from Appendix A, Page 42):  
 

Model Accuracy Score: 0.575 

precision     recall  f1-score   support 

Insufficient Weight 1.00       0.60      0.75        25 
Normal Weight  0.30       0.94      0.45        31 
Obesity Type I  0.92       0.25      0.39        44 
Obesity Type II  0.82       1.00      0.90        31 
Obesity Type III 1.00       1.00      1.00        27 
Overweight Level I 0.37       0.25      0.30        28 
Overweight Level II 0.50       0.08      0.13        26 
Accuracy      0.58       212 
macro avg  0.70       0.59      0.56       212 
weighted avg  0.71       0.58      0.55       212 
 
 
 
Figure A2.4 - C-Support Vector Classifier Model (C=0.025, probability=True) (from Appendix A, Page 40):  
 
Model Accuracy Score: 0.505 
 

precision     recall f1-score   support 
Insufficient Weight 0.67       0.24      0.35        25 
Normal Weight  0.35       0.19      0.25        31 
Obesity Type I  0.34       1.00      0.51        44 
Obesity Type II  0.83       0.77      0.80        31 
Obesity Type III 1.00       1.00      1.00        27 
Overweight Level I 0.00       0.00      0.00        28 
Overweight Level II       0.00       0.00      0.00        26 
Accuracy       0.50       212 
macro avg  0.46       0.46      0.42       212 
weighted avg  0.45       0.50      0.43       212 
 
 

K-Nearest Neighbor (KNN) and Decision Tree Classifier models are the top two models that score the 
highest in terms of accuracy. KNN score 0.821 and Decision Tree scored 0.939 model accuracy values. 
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Feature Selection 
 
 The best classifier model for the dataset was Decision Tree. The Decision Tree classifier 
model will be used to evaluate the full dataset and each age-group dataset and perform feature 
selection. Decision Trees are non-parametric supervised learning algorithms used for both 
classification and regression. The models predict the value of a target variable by learning rules that 
the model creates from the dataset. Decision Tree models are considered best for data with high 
categorical variables and has the advantage of being able to perform feature selection. Feature 
selection is a dimensionality reduction method that select key features and improves a models 
accuracy score or retain the model’s accuracy score while limiting the number of features. Feature 
selection uses a statistic test to test the samples and retrieve a specified number of features. In this 
analysis, the chi-square test is used as the statistic measure which is a common statistical approach 
for categorical features. Feature selection will be used to determine the top 15% of features for the 
data. This percentage was selected as it returned seven features which is a better number of features 
for interpretation.  
 The feature selection process begins by splitting the data to training set, training labels, testing 
set, and testing labels using an 80/20 random split with an 80% training set and a 20% testing set. 
The Decision Tree classifier model is then trained on the training set. Then, the model predicts on the 
test set. The classification report is generated showing the model accuracy and the confusion matrix. 
Then feature selection is performed with chi-square at a percentile of 15% and the resulting features 
are then transformed with the training set. Lastly, the model is retrained using the transformed 
training set with top features. The testing set is also transformed using the top features. Thereafter, 
the transformed training and testing sets are then evaluated with decision tree to reveal the accuracy 
of the transformed model. The accuracy is compared, and conclusions can be made regarding the 
top features.  
 The classifier model on the full dataset performed very well with an accuracy of 94.1%. Class 
4: 'Obesity_Type_III' had a 100% accurate prediction. Class 0: 'Insufficient_Weight' and 3: 
'Obesity_Type_II' achieved above 95% accuracy. Class 6: 'Obesity_Type_II' had the lowest accuracy 
at 91%. The accuracy for the training set is 100% and the accuracy for the test set is 94.09%. The 
model is performing well and not overfitting since the accuracy for the test set is very close to the 
training set and not experiencing high variance. With the feature selection, using the top 15% of 
features, the classifier still performed well with an accuracy of 86.3%. Although, the accuracy reduced 
from the original feature set, the reduced feature set contains only seven features and still achieved a 
high level of accuracy. Class 1: 'Normal Weight' and Class 6: 'Overweight_level II' had the lowest 
accuracy score at 74% and 75% respectively. Class 4: 'Obesity Type III' achieved 100% accuracy 
and Class 3: 'Obesity Type II' still maintained over 95% accuracy. Moreover, for the full dataset, the 
top features that are associated to obesity levels are Age, Weight, Gender_Female, Gender_Male, 
family_history_with_overweight as ‘no’, FCVC as ‘Always’ and CAEC as ‘Frequently.’ These results 
confirm that male and female genders are salient features for the classification of obesity levels. This 
result mirrors the results of the cluster analysis exploration which split the data into two clusters 
representing male and female genders. Besides gender, the results also show that individuals 
indicating no history of obesity in their family as an important feature when classifying obesity levels. 
This shows that hereditary, family, or environmental factors associated with families with a history of 
obesity, plays a key role in an individual’s obesity levels. Lastly, two eating habit features, always 
eating vegetables with meals (FCVC) and frequently eating food between meals round up the top 
features. Surprisingly, daily activity features and physical activity features were not included in the top 
features. instead, biological factors and eating habits were features that had more precedents in 
determining obesity levels. 
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 The classifier model on the Gen-Z dataset performed equally as well as the full dataset with 
slightly lower accuracy at 91.9%. Class 0: 'Insufficient_Weight' and 2: 'Obesity_Type_I' achieved 
above 95% accuracy. Class 3: 'Obesity_Type_II' had the lowest accuracy at 84%. Class 1: 
'Normal_Weight' and 6: 'Overweight_Level_II' had the next lowest accuracy at 88% and 89% 
respectively. Moreover, with the Gen-Z dataset, the model performed better in prediction of Class 0: 
'Insufficient_Weight' and 2: 'Obesity_Type_I'. Both the full dataset and the Gen-Z dataset had lowest 
accuracy with Class 6: 'Overweight_Level_II'. With feature selection using the top 15% of features, 
the accuracy of the classifier decreased to 80.8%. This model with feature selection does not perform 
as well as the model using the full dataset. Class 4 had the highest accuracy at 98%, which is 
comparable to the full dataset which predicted class 4 at 100%. Class 6: 'Overweight_Level II' had the 
lowest accuracy at 58%. This shows that for the Gen-Z age group, the model is unable to classify 
'Overweight_Level II' using the top 15% of features. Likely, this means that other attributes are 
required to accurately classify this obesity level. Like the model using the full dataset, this model also 
does not classify Class 1: 'Normal_Weight' or Class 3: 'Obesity_Type_II' as well as the other classes. 
In both models, the lowest accuracy was in classifying class 1: 'Normal_Weight'. The lack of accuracy 
in predicting normal weight could be due to how the features were crafted for the data. The features 
were created to help determine if an individual is overweight and not necessarily to help determine 
normal weight. Likely, this means that these features are not salient to classifying an individual that is 
neither underweight nor overweight.  The top 15% of features includes weight, gender_male, 
family_history_with_obesity as ‘no’, always eating vegetables with meals (FCVC) as ‘always’, and 
frequently eating food between meals. These features are the same top features from the model 
using the full dataset except, for gender only male gender is included. Two additional eating habits 
features are included in the top features with the Gen-Z age group: not eating high calorie foods 
frequently and number of meals consumed daily. Moreover, eating habit features are the most 
important features in association with obesity level for Gen-Z age group along with biological and 
hereditary features. Like the model in the full dataset, physical activity features were not included in 
the top features for the classification of obesity levels. 
 The classifier model on the Millennials dataset did not perform as well as the model for the 
Gen-Z or full dataset. The model achieved an accuracy of 89.6%. Like the two previous models, 
Class 4: 'Obesity_Type_III' had a prediction accuracy of 100%. Unlike the two previous models, Class 
6: 'Overweight_Level II' and Class 3: 'Obesity_Type_II' performed better in this model with an 
accuracy of 95%. Class 0: 'Insufficient Weight' had an accuracy of 67%, which is starkly lower in 
accuracy compared to the previous two models. Class 1: 'Normal_Weight' also had a low accuracy at 
71%. This aligns with the two previous models, which also had the lowest accuracy in predicting 
Class 1: 'Normal_Weight'. With the feature selection using the top 15% of features, the model’s 
accuracy dropped to 79.9%. The model performs slightly worse than the model for Gen-Z age group. 
Class 4 again, had the highest accuracy at 100%, which is comparable to the full dataset which also 
predicted class 4 at 100%. Class 2: 'Obesity_Type_I' and Class 5: 'Overweight_Level_I' had the 
lowest accuracy at 65%. Class 6: 'Overweight_Level_II' has a significant drop in accuracy, which prior 
to feature selection had a 95% prediction, and after feature selection has a 68% prediction. This 
shows that the features necessarily to predict Class 6 are not included in the top 15% features. The 
model also does not classify Class 1: 'Normal_Weight' as well as the other classes, which is 
consistent pattern among all the models. In contrast, the model was able to predict Class 3: 
'Obesity_Type_II' better than the model for the Gen-Z age group. The top 15% of features includes 
weight, gender both male and female, family_history_with_ obesity as ‘no’, always eating vegetables 
with meals (FCVC), and frequently eating food between meals. These features are the same top 
features from the model using the full dataset. Unlike the previous two models, this model includes 
one additional top feature, a physical activity feature, means of transportation as automobile. This is 
interesting since previous models did not include a physical activity feature. Moreover, the model with 
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the top 15% features for both the Millennials age group and the Gen-Z age group yielded similar 
accuracy for classification. The main difference is that a physical activity feature is included in the top 
features for Millennials which is not included for Gen-Z. 
 The classifier model for the Gen-X and Boomers dataset performed the worse compared to all 
previous models. The model achieved an accuracy of 66.7%. This model resulted in the lowest 
accuracy score compared to the previous models. This dataset is significantly smaller than the 
previous two dataset. As such, not all classes are represented in this model and due to the limited 
number of entries, the model does not have as much data for the classifier to train on compared to 
previous three models. This model was able to predict Class 1: 'Normal_Weight' at 89% accuracy, 
which is higher in accuracy compared to all previous models. This model was unable to predict Class 
0: 'Insufficient_Weight or Class 3: 'Obesity_Type_II'. With the feature selection using the top 15% of 
features, the model maintained its accuracy at 66.7%. This model underperformed compared to all 
previous models with all classes having accuracy scores of 75% or lower. Again, the model was 
unable to predict Class 0: ‘Insufficient_Weight.’ Since some classes are not represented in this 
dataset and with a lower amount of data for training, it is not unexpected that the model was unable to 
classify obesity levels as well as the previous models. The top 15% of features includes weight and 
always eating vegetables with meals (FCVC) which are two features also included as top features for 
the full dataset, Gen-Z dataset, and Millennial’s dataset. Additional eating habits features are included 
as top features: water intake at more than 2 liters per day and monitoring calories intake daily. In 
addition, physical activity features include direct physical activity 1 to 2 days or 3 to 4 days and 
means of transportation by public transit. This is interesting since previous models did not include 
specific eating habit features such as water intake and direct exercise or direct physical activity. The 
results are drastically different from the Gen-Z and Gen-X dataset but since the sample size is 
significantly lower, more data would be needed for this population to perform a more detailed and 
thorough analysis in validating these top features and determining what key features affect the 
classification of obesity for the Gen-X and Boomers age group. 
  
  
 
Results  
 
 Two classifiers performed well for classification of obesity levels: Decision Tree and K-Nearest 
Neighbor (KNN). Since the dataset contained many categorical variables, the classifier model using 
Decision Tree resulted in the highest accuracy. Feature selection was performed using Decision Tree 
to determine the top 15% most important features. With feature selection, the model using the full 
dataset resulted in the best accuracy. The top 15% features for this model include age, weight, male 
gender, no family history with obesity, always eating vegetables with meals (FCVC) and frequently 
eating food between meals (CAEC). With feature selection, the model still performed well with an 
accuracy of 86.3%. Biological features and family history with obesity are top features that are 
associated with classifying obesity. With the full dataset, only two additional eating habit features 
were top features. The models for Gen-Z age group and Millennials age group also included weight, 
both male and female gender, no family history with obesity, always eating vegetables with meals 
(FCVC), and frequently eating food between meals (CAEC) as top features. Gen-Z includes more 
eating habit features including not eating high calorie foods frequently and number of meals 
consumed daily, and Millennials includes a physical activity feature which is transportation by 
automobile. The model for the Gen-X and Boomers age group performed the worst and had different 
top features compared to all other models. The top features still included weight, but no longer 
included gender and instead included both eating habits and physical activity features including water 
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intake of 2 liters or more, calories intake daily, and direct physical activity. The model had significantly 
lower amount of data compared to previous models which may contribute to the lower accuracy and 
lower performance.  
 The cluster analysis showed a pattern with gender but did not necessarily show a pattern with 
age groups. Although from the feature selection, age plays a salient factor in classifying obesity level, 
the generational age groupings used for this analysis may not necessarily be as significant. The 
results conclude that eating habit features such as always eating vegetables with meals and 
frequently eating between meals are salient factors in determining obesity levels among younger 
adults. Since the data for the older adults were conclusive due to low sample size, we cannot 
confidently specify which eating habit or physical activity features are salient factors in determining 
obesity levels for older adults. We can conclude that biological factors such as gender, height, weight, 
and no family history of obesity play an important role in classifying obesity levels. Contrary to popular 
belief, physical activity features were not the most important features in classifying obesity level. 
Since the class label using the body mass index, which is an index based on nutrition, the outcome 
confirms that ultimately diet and nutrition is the key to classifying obesity levels.  
 
 
 
 
Conclusion  
  
 In this analysis, clustering analysis was explored on the dataset to discover patterns by groups 
in the data. Although age was grouped, a pattern was only found with gender and not with age. 
Classification and model selection was performed, and Decision Tree was selected as the best 
classifier. Feature selection was performed using the classifier model to determine the top 15% of 
features which represents the most salient factors in determining obesity levels among adults in 
regions of Latin America. This analysis of the dataset containing obesity levels among adults from 
Mexico, Peru, and Colombia revealed that factors that affect the classification of obesity levels the 
most are age, gender, weight, and family history with obesity. The original prediction stated that 
eating high calorie foods frequently, eating between meals, and having lower days of physical activity 
would be the most salient attributes in determining obesity levels. However, the results show that 
always eating vegetables with meals and frequently eating between meals are the most important 
factors besides gender, weight, and family history with obesity. Physical activity attributes were not 
the most important factors in classifying obesity levels. Although age is an important factor, an 
individual’s generational group does not play a salient factor in classifying obesity level. Moreover, 
obesity level as defined here is a measure of nutritional status and thus, diet and eating habit factors 
are more salient for classification. Due to the low sample size of older adults, future studies could 
focus on studying the older adult population in greater depth. In addition, this analysis did not focus 
on analyzing male and females separately. Future analysis can separate the two groups and perform 
separate analysis on the two types of gender since often gender differences may reveal latent factors 
in the data. 
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Appendix A: Preprocessing and Classification
Import all the required libraries

Reading File in to a DataFrame

Gender Age Height Weight family_history_with_overweight FAVC FCVC NC

0 Female 21.000000 1.620000 64.000000 yes no 2.0 3

1 Female 21.000000 1.520000 56.000000 yes no 3.0 3

2 Male 23.000000 1.800000 77.000000 yes no 2.0 3

3 Male 27.000000 1.800000 87.000000 no no 3.0 3

4 Male 22.000000 1.780000 89.800000 no no 2.0 1

... ... ... ... ... ... ... ...

2106 Female 20.976842 1.710730 131.408528 yes yes 3.0 3

2107 Female 21.982942 1.748584 133.742943 yes yes 3.0 3

2108 Female 22.524036 1.752206 133.689352 yes yes 3.0 3

In [6]: import pandas as pd 
import seaborn as sns 
from matplotlib import pyplot as plt 
import numpy as np 
import collections 
from collections import Counter 

import sklearn 
from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import OrdinalEncoder 
from sklearn.preprocessing import OneHotEncoder 
from sklearn.preprocessing import StandardScaler 
from sklearn.impute import SimpleImputer 
from sklearn.compose import ColumnTransformer 
from sklearn.pipeline import Pipeline 

from sklearn.neighbors import KNeighborsClassifier 
from sklearn.svm import SVC 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.ensemble import GradientBoostingClassifier 
from sklearn.ensemble import AdaBoostClassifier 
from sklearn.linear_model import SGDClassifier

from sklearn.metrics import accuracy_score 
from sklearn.metrics import classification_report 

In [7]: df = pd.read_csv('/Users/kokilamaddi/Documents/Final Assignment/ObesityDataSet/O

In [8]: df 

Out[8]:
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(2111, 17)

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 2111 entries, 0 to 2110 
Data columns (total 17 columns): 
 #   Column Non-Null Count  Dtype  
---  ------ --------------  -----  
 0   Gender 2111 non-null   object 
 1   Age 2111 non-null   float64 
 2   Height 2111 non-null   float64 
 3   Weight 2111 non-null   float64 
 4   family_history_with_overweight  2111 non-null   object 
 5   FAVC 2111 non-null   object 
 6   FCVC 2111 non-null   float64 
 7   NCP 2111 non-null   float64 
 8   CAEC 2111 non-null   object 
 9   SMOKE 2111 non-null   object 
 10  CH2O 2111 non-null   float64 
 11  SCC 2111 non-null   object 
 12  FAF 2111 non-null   float64 
 13  TUE 2111 non-null   float64 
 14  CALC 2111 non-null   object 
 15  MTRANS 2111 non-null   object 
 16  NObeyesdad 2111 non-null   object 
dtypes: float64(8), object(9) 
memory usage: 280.5+ KB 

Gender Age Height Weight family_history_with_overweight FAVC FCVC NC

2109 Female 24.361936 1.739450 133.346641 yes yes 3.0 3

2110 Female 23.664709 1.738836 133.472641 yes yes 3.0 3

2111 rows × 17 columns

Age Height Weight FCVC NCP CH2O FAF

count 2111.000000 2111.000000 2111.000000 2111.000000 2111.000000 2111.000000 2111.000000

mean 24.312600 1.701677 86.586058 2.419043 2.685628 2.008011 1.010298

std 6.345968 0.093305 26.191172 0.533927 0.778039 0.612953 0.850592

min 14.000000 1.450000 39.000000 1.000000 1.000000 1.000000 0.000000

25% 19.947192 1.630000 65.473343 2.000000 2.658738 1.584812 0.124505

50% 22.777890 1.700499 83.000000 2.385502 3.000000 2.000000 1.000000

75% 26.000000 1.768464 107.430682 3.000000 3.000000 2.477420 1.666678

max 61.000000 1.980000 173.000000 3.000000 4.000000 3.000000 3.000000

In [9]: df.shape 

Out[9]:

In [10]: df.info()

In [11]: df.describe() 

Out[11]:

21
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Index(['Gender', 'Age', 'Height', 'Weight', 'family_history_with_overweight', 
'FAVC', 'FCVC', 'NCP', 'CAEC', 'SMOKE', 'CH2O', 'SCC', 'FAF', 'TUE', 
'CALC', 'MTRANS', 'NObeyesdad'], 

      dtype='object')

Gender Age Height Weight family_history_with_overweight FAVC FCVC NC

0 Female 21.000000 1.620000 64.000000 yes no 2.0 3

1 Female 21.000000 1.520000 56.000000 yes no 3.0 3

2 Male 23.000000 1.800000 77.000000 yes no 2.0 3

3 Male 27.000000 1.800000 87.000000 no no 3.0 3

4 Male 22.000000 1.780000 89.800000 no no 2.0 1

... ... ... ... ... ... ... ...

2106 Female 20.976842 1.710730 131.408528 yes yes 3.0 3

2107 Female 21.982942 1.748584 133.742943 yes yes 3.0 3

2108 Female 22.524036 1.752206 133.689352 yes yes 3.0 3

2109 Female 24.361936 1.739450 133.346641 yes yes 3.0 3

2110 Female 23.664709 1.738836 133.472641 yes yes 3.0 3

2111 rows × 17 columns

Gender Age Height Weight family_history_with_overweight FAVC FCVC NCP CAE

0 Female 21.0 162.0 64.0 yes no 2.0 3.0 Sometim

1 Female 21.0 152.0 56.0 yes no 3.0 3.0 Sometim

2 Male 23.0 180.0 77.0 yes no 2.0 3.0 Sometim

3 Male 27.0 180.0 87.0 no no 3.0 3.0 Sometim

4 Male 22.0 178.0 89.8 no no 2.0 1.0 Sometim

In [12]: df.columns 

Out[12]:

In [13]: df.columns = ['Gender', 'Age', 'Height', 'Weight', 'family_history_with_overweig
'SMOKE', 'CH2O', 'SCC', 'FAF', 'TUE','CALC', 'MTRANS', 'NObeyesdad

df 

Out[13]:

In [14]: df['NObeyesdad'] = df['NObeyesdad'].apply(lambda x: x.replace('_', ' '))
df['MTRANS'] = df['MTRANS'].apply(lambda x: x.replace('_', ' ')) 
df['Height'] = df['Height']*100 
df['Height'] = df['Height'].round(1) 
df['Weight'] = df['Weight'].round(1) 
df['Age'] = df['Age'].round(1) 
df 

Out[14]:

22
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FCVC : min: 1.0 max: 3.0 
NCP : min: 1.0 max: 4.0 
CH2O : min: 1.0 max: 3.0 
FAF : min: 0.0 max: 3.0 
TUE : min: 0.0 max: 2.0 

Appendix A1

Exploratory Data Analysis

FCVC : min: 1 max: 3 int64 
[2 3 1] 
NCP : min: 1 max: 4 int64 
[3 1 4 2] 
CH2O : min: 1 max: 3 int64 
[2 3 1] 
FAF : min: 0 max: 3 int64 
[0 3 2 1] 
TUE : min: 0 max: 2 int64 
[1 0 2] 

Gender Age Height Weight family_history_with_overweight FAVC FCVC NCP CAE

... ... ... ... ... ... ... ... ...

2106 Female 21.0 171.1 131.4 yes yes 3.0 3.0 Sometim

2107 Female 22.0 174.9 133.7 yes yes 3.0 3.0 Sometim

2108 Female 22.5 175.2 133.7 yes yes 3.0 3.0 Sometim

2109 Female 24.4 173.9 133.3 yes yes 3.0 3.0 Sometim

2110 Female 23.7 173.9 133.5 yes yes 3.0 3.0 Sometim

2111 rows × 17 columns

In [15]: for x in ['FCVC', 'NCP', 'CH2O', 'FAF', 'TUE']: 
    value = np.array(df[x]) 
    print(x,':', 'min:', np.min(value), 'max:', np.max(value)) 

In [16]: for x in ['FCVC', 'NCP', 'CH2O', 'FAF', 'TUE']: 
    df[x] = df[x].apply(round) 
    value = np.array(df[x]) 
    print(x,':', 'min:', np.min(value), 'max:', np.max(value), df[x].dtype) 
    print(df[x].unique()) 

In [17]: df1 = df.copy() 

In [18]: mapping0 = {1:'Never', 2:'Sometimes', 3:'Always'} 
mapping1 = {1: '1', 2:'2' , 3: '3', 4: '3+'} 
mapping2 = {1: 'Less than a liter', 2:'Between 1 and 2 L', 3:'More than 2 L'} 
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Age, Height and Weight

Gender Age Height Weight family_history_with_overweight FAVC FCVC NCP

0 Female 21.0 162.0 64.0 yes no Sometimes 3 Som

1 Female 21.0 152.0 56.0 yes no Always 3 Som

2 Male 23.0 180.0 77.0 yes no Sometimes 3 Som

3 Male 27.0 180.0 87.0 no no Always 3 Som

4 Male 22.0 178.0 89.8 no no Sometimes 1 Som

... ... ... ... ... ... ... ... ...

2106 Female 21.0 171.1 131.4 yes yes Always 3 Som

2107 Female 22.0 174.9 133.7 yes yes Always 3 Som

2108 Female 22.5 175.2 133.7 yes yes Always 3 Som

2109 Female 24.4 173.9 133.3 yes yes Always 3 Som

2110 Female 23.7 173.9 133.5 yes yes Always 3 Som

2111 rows × 17 columns

mapping3 = {0: 'I do not have', 1: '1 or 2 days', 2: '2 or 4 days', 3: '4 or 5 d
mapping4 = {0: '0–2 hours', 1: '3–5 hours', 2: 'More than 5 hours'} 

In [19]: df['FCVC'] = df['FCVC'].replace(mapping0) 
df['NCP'] = df['NCP'].replace(mapping1) 
df['CH2O'] = df['CH2O'].replace(mapping2) 
df['FAF'] = df['FAF'].replace(mapping3) 
df['TUE'] = df['TUE'].replace(mapping4) 

In [20]: df 

Out[20]:

24
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In terms of height, male and female are similarly distributed according to the box plot below.
While male are generally taller than females, both male and female share a similar average in
weight, with females having a much larger range of weight (as well as BMI) compared to male.
This is further illustrated by the steeper line plot between weight and height of females than
male.

Figure A1.1

<AxesSubplot:xlabel='Gender', ylabel='Weight'>

                                            Figure A1.1

/opt/anaconda3/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarn
ing: Pass the following variables as keyword args: x, y. From version 0.12, the 
only valid positional argument will be `data`, and passing other arguments witho
ut an explicit keyword will result in an error or misinterpretation. 
  warnings.warn( 

<seaborn.axisgrid.JointGrid at 0x7fa739b244f0>

In [21]: sns.set() 
fig = plt.figure(figsize=(20,10)) 
plt.subplot(1, 2, 1) 
sns.boxplot(x='Gender', y='Height', data=df) 
plt.subplot(1, 2, 2) 
sns.boxplot(x='Gender', y='Weight', data=df) 

Out[21]:

In [22]: sns.set() 
g = sns.jointplot("Height", "Weight", data=df, 
                  kind="reg", truncate=False, 
                  xlim=(125, 200), ylim=(35, 180), 
                  color="m", height=10) 
g.set_axis_labels("Height (cm)", "Weight (kg)") 

Out[22]:
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Figure A1.2

<seaborn.axisgrid.FacetGrid at 0x7fa73d620640>

In [23]: g = sns.lmplot(x="Height", y="Weight", hue="Gender", 
               height=10, data=df) 
g.set_axis_labels("Height (cm)", "Weight (kg)") 

Out[23]:
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                                    Figure A1.2

Obesity

Counter({'Obesity Type I': 351, 'Obesity Type III': 324, 'Obesity Type II': 297, 
'Overweight Level I': 290, 'Overweight Level II': 290, 'Normal Weight': 287, 'In
sufficient Weight': 272}) 

Figure A1.3

In [24]: c = Counter(df['NObeyesdad']) 
print(c) 

In [25]: fig = plt.figure(figsize=(8,8)) 
plt.pie([float(c[v]) for v in c], labels=[str(k) for k in c], autopct=None) 
plt.title('Weight Category')  
plt.tight_layout() 
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                        Figure A1.3 

Counter({'Obesity Type II': 295, 'Obesity Type I': 195, 'Overweight Level II': 1
87, 'Normal Weight': 146, 'Overweight Level I': 145, 'Insufficient Weight': 99, 
'Obesity Type III': 1}) 
Counter({'Obesity Type III': 323, 'Insufficient Weight': 173, 'Obesity Type I': 
156, 'Overweight Level I': 145, 'Normal Weight': 141, 'Overweight Level II': 10
3, 'Obesity Type II': 2}) 

A bigger proportion of female with a higher BMI is reflected by the large slice of Obesity Type
III in the pie chart below, while Obesity Type II is the most prevalent type of obesity in make.
Interestingly, there is also a higher proportion of Insufficient Weight in female compared to
male, this could be explained by a heavier societal pressure on women to go on diets.

Figure A1.4

In [27]: filt = df['Gender'] == 'Male' 
c_m = Counter(df.loc[filt, 'NObeyesdad']) 
print(c_m) 
c_f = Counter(df.loc[~filt, 'NObeyesdad']) 
print(c_f) 

In [28]: fig = plt.figure(figsize=(20,8)) 
plt.subplot(1, 2, 1) 
plt.pie([float(c_m[v]) for v in c_m], labels=[str(k) for k in c_m], autopct=None
plt.title('Weight Category of Male')  
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                                            Figure A1.4

Eating and Exercise Routine

family_history_with_overweight ['yes', 'no'] [1726, 385] 
FAVC ['yes', 'no'] [1866, 245] 
FCVC ['Sometimes', 'Always', 'Never'] [1013, 996, 102] 
NCP ['3', '1', '2', '3+'] [1470, 316, 176, 149] 
CAEC ['Sometimes', 'Frequently', 'Always', 'no'] [1765, 242, 53, 51] 
SMOKE ['no', 'yes'] [2067, 44] 
CH2O ['Between 1 and 2 L', 'More than 2 L', 'Less than a liter'] [1110, 516, 48
5] 
SCC ['no', 'yes'] [2015, 96] 
FAF ['1 or 2 days', 'I do not have', '2 or 4 days', '4 or 5 days'] [776, 720, 49
6, 119] 
TUE ['0–2 hours', '3–5 hours', 'More than 5 hours'] [952, 915, 244] 
CALC ['Sometimes', 'no', 'Frequently', 'Always'] [1401, 639, 70, 1] 
MTRANS ['Public Transportation', 'Automobile', 'Walking', 'Motorbike', 'Bike'] 
[1580, 457, 56, 11, 7] 

plt.tight_layout() 
 
plt.subplot(1, 2, 2) 
plt.pie([float(c_f[v]) for v in c_f], labels=[str(k) for k in c_f], autopct=None
plt.title('Weight Category of Female')  
plt.tight_layout() 

In [29]: for a in df.columns[4:-1]: 
    data = df[a].value_counts() 
    values = df[a].value_counts().index.to_list() 
    counts = df[a].value_counts().to_list() 
     
    plt.figure(figsize=(12,5)) 
    ax = sns.barplot(x = values, y = counts) 
     
    plt.title(a) 
    plt.xticks(rotation=45) 
    print(a, values, counts) 
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Data Preprossing

Since classifier cannot operate with label data directly, One Hot Encoder and
Label Encoding will be used to assign numeric values to each category

Gender Age Height Weight family_history_with_overweight FAVC FCVC NCP CAEC

0 Female 21.0 162.0 64.0 yes no 2 3 Sometimes

1 Female 21.0 152.0 56.0 yes no 3 3 Sometimes

2 Male 23.0 180.0 77.0 yes no 2 3 Sometimes

3 Male 27.0 180.0 87.0 no no 3 3 Sometimes

4 Male 22.0 178.0 89.8 no no 2 1 Sometimes

In [30]: df1.head() 

Out[30]:

In [31]: # identity categorical variables (data type would be 'object') 
cat = df1.dtypes == object 
 
print(cat) 
 
# When dtype == object is 'true' 
print(cat[cat]) 
cat_labels = cat[cat].index 
print('Categorical variables:', cat_labels) 
 
# When dtype == object is 'false' 
false = cat[~cat] 
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Gender                             True 
Age                               False 
Height                            False 
Weight                            False 
family_history_with_overweight     True 
FAVC                               True 
FCVC                              False 
NCP                               False 
CAEC                               True 
SMOKE                              True 
CH2O                              False 
SCC                                True 
FAF                               False 
TUE                               False 
CALC                               True 
MTRANS                             True 
NObeyesdad                         True 
dtype: bool 
Gender                            True 
family_history_with_overweight    True 
FAVC                              True 
CAEC                              True 
SMOKE                             True 
SCC                               True 
CALC                              True 
MTRANS                            True 
NObeyesdad                        True 
dtype: bool 
Categorical variables: Index(['Gender', 'family_history_with_overweight', 'FAV
C', 'CAEC', 'SMOKE', 
       'SCC', 'CALC', 'MTRANS', 'NObeyesdad'], 
      dtype='object') 
Non Categorical variables: Index(['Age', 'Height', 'Weight', 'FCVC', 'NCP', 'CH2
O', 'FAF', 'TUE'], dtype='object') 

[{'Gender': 0}, {'Age': 1}, {'Height': 2}, {'Weight': 3}, {'family_history_with_

Gender Age Height Weight family_history_with_overweight FAVC FCVC NCP CAEC

0 Female 21.0 162.0 64.0 yes no 2 3 Sometimes

1 Female 21.0 152.0 56.0 yes no 3 3 Sometimes

2 Male 23.0 180.0 77.0 yes no 2 3 Sometimes

non_cat = false.index 
print('Non Categorical variables:', non_cat) 

In [35]: df1.head(3) 

Out[35]:

In [36]: df1.columns 
 
def col_no(x): 
    d = {} 
    d[df1.columns[x]] = x 
    return(d) 
 
print([col_no(x) for x in range(0, len(df1.columns))]) 
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overweight': 4}, {'FAVC': 5}, {'FCVC': 6}, {'NCP': 7}, {'CAEC': 8}, {'SMOKE': 
9}, {'CH2O': 10}, {'SCC': 11}, {'FAF': 12}, {'TUE': 13}, {'CALC': 14}, {'MTRAN
S': 15}, {'NObeyesdad': 16}] 

The target value, obesity level, will be transformed into digit label with LabelEncoder.

StandardScaler is applied to attributes with values which ranges are not consistent with the
rest, to avoid disproportionate weight assigned to these values. (i.e. Age, Height, Weight).

Features that are ordinal in nature (i.e. answers including 'never', 'sometimes', 'always') will
be preprocessed with OrdinalEncoder (exactly the same function is LabelEncoder, however
this will take in multiple arguments as the latter is meant for the y-value only).

Features that are non-ordinal in nature will be preprocessed with OneHotEncoder, so that the
generated labels will not be interpreted in a way that suggests one answer is more important
than the other (e.g. 3 is more important than 1).

SimpleImputer is applied to all attributes to deal with missing values.

All of these preprocessing techniques will be bundled into a pipeline, which will be deployed
with classifiers later.

array([2, 4, 2, ..., 3, 1, 5])

In [37]: x = df1[df1.columns[:-1]] 
y = df['NObeyesdad'] 
 
x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(x, y

In [39]: from sklearn.preprocessing import LabelEncoder

In [40]: le = LabelEncoder() 
y_train = le.fit_transform(y_train) 
y_train 

Out[40]:

In [44]: Scale_features = ['Age', 'Height', 'Weight'] 
Scale_transformer = Pipeline(steps=[ 
    ('imputer', SimpleImputer(strategy='median')), 
    ('Scaling', StandardScaler()) 
]) 
 
Ordi_features = ['CAEC', 'CALC'] 
Ordi_transformer = Pipeline(steps=[ 
    ('imputer', SimpleImputer(strategy='constant', fill_value='missing')), 
    ('Ordi', OrdinalEncoder()) 
]) 
 
NonO_features = ['Gender', 'family_history_with_overweight', 'FAVC', 'SMOKE', 'S
NonO_transformer = Pipeline(steps=[ 
    ('imputer', SimpleImputer(strategy='constant', fill_value='missing')), 
    ('Non-O', OneHotEncoder()) 
]) 
 
Preprocessor = ColumnTransformer(transformers=[ 
    ('Scale', Scale_transformer, Scale_features), 
    ('Ordinal', Ordi_transformer, Ordi_features), 
    ('Non-Ordinal', NonO_transformer, NonO_features) 
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Pipeline(steps=[('preprocessor', 
                 ColumnTransformer(remainder='passthrough', 
                                   transformers=[('Scale', 
                                                  Pipeline(steps=[('imputer', 
                                                                   SimpleImputer
(strategy='median')), 
                                                                  ('Scaling', 
                                                                   StandardScale
r())]), 
                                                  ['Age', 'Height', 'Weight']), 
                                                 ('Ordinal', 
                                                  Pipeline(steps=[('imputer', 
                                                                   SimpleImputer
(fill_value='missing', 
                                                                                 
strategy='constant')), 
                                                                  ('Ordi', 
                                                                   OrdinalEncode
r())]), 
                                                  ['CAEC', 'CALC']), 
                                                 ('Non-Ordinal', 
                                                  Pipeline(steps=[('imputer', 
                                                                   SimpleImputer
(fill_value='missing', 
                                                                                 
strategy='constant')), 
                                                                  ('Non-O', 
                                                                   OneHotEncoder
())]), 
                                                  ['Gender', 
                                                   'family_history_with_overweig
ht', 
                                                   'FAVC', 'SMOKE', 'SCC', 
                                                   'MTRANS'])]))])

(1899, 25)

['Age', 'Height', 'Weight', 'CAEC', 'CALC']

], remainder = 'passthrough') 
     
clf = Pipeline(steps=[('preprocessor', Preprocessor)]) 

In [45]: clf.fit(x_train, y_train) 

Out[45]:

In [46]: trans_df = clf.fit_transform(x_train) 
print(trans_df.shape) 

In [47]: # Column name of first two steps in pipeline 
 
cols = [y for x in [Scale_features, Ordi_features] for y in x] 
cols 

Out[47]:

In [48]: # Column names of OneHotEncoder step in pipeline 
 
ohe_cols = clf.named_steps['preprocessor'].transformers_[2][1]\ 
    .named_steps['Non-O'].get_feature_names(NonO_features) 
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/opt/anaconda3/lib/python3.8/site-packages/sklearn/utils/deprecation.py:87: Futu
reWarning: Function get_feature_names is deprecated; get_feature_names is deprec
ated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instea
d. 
  warnings.warn(msg, category=FutureWarning) 

['Gender_Female', 
 'Gender_Male', 
 'family_history_with_overweight_no', 
 'family_history_with_overweight_yes', 
 'FAVC_no', 
 'FAVC_yes', 
 'SMOKE_no', 
 'SMOKE_yes', 
 'SCC_no',
 'SCC_yes', 
 'MTRANS_Automobile', 
 'MTRANS_Bike', 
 'MTRANS_Motorbike', 
 'MTRANS_Public Transportation', 
 'MTRANS_Walking']

Index(['Age', 'Height', 'Weight', 'FCVC', 'NCP', 'CH2O', 'FAF', 'TUE'], dtype='o
bject')

Age Height Weight CAEC CALC Gender_Female Gender_Male
Family Histo

wi
Overweight_n

0 0.265303 -0.467044 0.128819 2.0 2.0 0.0 1.0 0

ohe_cols = [x for x in ohe_cols] 
ohe_cols 

Out[48]:

In [49]: # Column names of remainder='Passthrough' - remaining columns that didn't get pr
non_cat 

Out[49]:

In [50]: transformed_x_train = pd.DataFrame(trans_df, columns= ['Age', 'Height', 
 'Weight', 
 'CAEC', 'CALC','Gender_Female', 
 'Gender_Male', 
 'Family History with Overweight_no', 
 'Family History with Overweight_yes', 
 'FAVC_no', 
 'FAVC_yes', 
 'SMOKE_no', 
 'SMOKE_yes', 
 'SCC_no', 
 'SCC_yes', 
 'MTRANS_Automobile',
 'MTRANS_Bike', 
 'MTRANS_Motorbike', 
 'MTRANS_Public Transportation', 
 'MTRANS_Walking',  
 'FCVC', 'NCP', 'CH2O', 'FAF', 'TUE']) 

In [51]: # transformed/processed features 
 
transformed_x_train 

Out[51]:
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{0: 'Insufficient Weight', 1: 'Normal Weight', 2: 'Obesity Type I', 3: 'Obesity 
Type II', 4: 'Obesity Type III', 5: 'Overweight Level I', 6: 'Overweight Level I
I'} 

Appendix A2

Model Selection

Age Height Weight CAEC CALC Gender_Female Gender_Male
Family Histo

wi
Overweight_n

1 0.265303 -1.012489 0.697446 2.0 2.0 1.0 0.0 0

2 1.346780 0.891223 0.651956 2.0 2.0 0.0 1.0 0

3 -0.831847 0.623847 1.793002 2.0 2.0 1.0 0.0 0

4 -0.769152 -0.777199 -0.174449 2.0 2.0 1.0 0.0 0

... ... ... ... ... ... ... ...

1894 0.641469 0.709407 1.008296 2.0 2.0 0.0 1.0 0

1895 -0.675111 -1.076659 -1.387521 2.0 3.0 1.0 0.0 1

1896 0.986288 0.709407 1.205420 2.0 2.0 0.0 1.0 0

1897 0.108568 -1.397509 -1.197978 2.0 2.0 1.0 0.0 1

1898 0.422039 -1.611409 -0.932619 2.0 2.0 1.0 0.0 1

1899 rows × 25 columns

In [52]: le = LabelEncoder() 
y_test = le.fit_transform(y_test) 
le_name_mapping = dict(zip(le.transform(le.classes_), le.classes_)) 
print(le_name_mapping) 

In [54]: classifiers = [ 
    KNeighborsClassifier(n_neighbors = 5), 
    SVC(kernel="rbf", C=0.025, probability=True), 
    DecisionTreeClassifier(), 
    RandomForestClassifier(), 
    AdaBoostClassifier(), 
    GradientBoostingClassifier(), 
    SGDClassifier() 
    ] 
 
top_class = [] 
 
for classifier in classifiers: 
    pipe = Pipeline(steps=[('preprocessor', Preprocessor), 
                      ('classifier', classifier)]) 
     
    # training model 
    pipe.fit(x_train, y_train)    
    print(classifier) 
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KNeighborsClassifier() 
model score: 0.821 
                     precision    recall  f1-score   support 

Insufficient Weight       0.72      0.92      0.81        25 
      Normal Weight       0.61      0.35      0.45        31 
     Obesity Type I       0.84      0.95      0.89        44 
    Obesity Type II       0.94      1.00      0.97        31 
   Obesity Type III       1.00      1.00      1.00        27 
 Overweight Level I       0.77      0.82      0.79        28 
Overweight Level II       0.77      0.65      0.71        26 

           accuracy                           0.82       212 
          macro avg       0.81      0.81      0.80       212 
       weighted avg       0.81      0.82      0.81       212 

SVC(C=0.025, probability=True) 
model score: 0.505 
                     precision    recall  f1-score   support 

Insufficient Weight       0.67      0.24      0.35        25 
      Normal Weight       0.35      0.19      0.25        31 
     Obesity Type I       0.34      1.00      0.51        44 
    Obesity Type II       0.83      0.77      0.80        31 
   Obesity Type III       1.00      1.00      1.00        27 
 Overweight Level I       0.00      0.00      0.00        28 
Overweight Level II       0.00      0.00      0.00        26 

           accuracy                           0.50       212 
          macro avg       0.46      0.46      0.42       212 
       weighted avg       0.45      0.50      0.43       212 

DecisionTreeClassifier() 
model score: 0.939 
                     precision    recall  f1-score   support 

Insufficient Weight       0.96      0.92      0.94        25 
      Normal Weight       0.90      0.87      0.89        31 
     Obesity Type I       0.95      0.95      0.95        44 
    Obesity Type II       0.94      1.00      0.97        31 
   Obesity Type III       1.00      1.00      1.00        27 
 Overweight Level I       0.89      0.89      0.89        28 
Overweight Level II       0.92      0.92      0.92        26 

           accuracy                           0.94       212 
          macro avg       0.94      0.94      0.94       212 
       weighted avg       0.94      0.94      0.94       212 

/opt/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:13
08: UndefinedMetricWarning: Precision and F-score are ill-defined and being set 
to 0.0 in labels with no predicted samples. Use `zero_division` parameter to con

    acc_score = pipe.score(x_test, y_test) 
    print("model score: %.3f" % acc_score) 
     
    # using the model to predict 
    y_pred = pipe.predict(x_test) 
     
    target_names = [le_name_mapping[x] for x in le_name_mapping] 
    print(classification_report(y_test, y_pred, target_names=target_names)) 
     
    if acc_score > 0.8: 
        top_class.append(classifier) 
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trol this behavior. 
  _warn_prf(average, modifier, msg_start, len(result)) 
/opt/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:13
08: UndefinedMetricWarning: Precision and F-score are ill-defined and being set 
to 0.0 in labels with no predicted samples. Use `zero_division` parameter to con
trol this behavior. 
  _warn_prf(average, modifier, msg_start, len(result)) 
/opt/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:13
08: UndefinedMetricWarning: Precision and F-score are ill-defined and being set 
to 0.0 in labels with no predicted samples. Use `zero_division` parameter to con
trol this behavior. 
  _warn_prf(average, modifier, msg_start, len(result)) 
RandomForestClassifier() 
model score: 0.934 
                     precision    recall  f1-score   support 

Insufficient Weight       1.00      0.88      0.94        25 
      Normal Weight       0.77      0.97      0.86        31 
     Obesity Type I       1.00      0.95      0.98        44 
    Obesity Type II       1.00      1.00      1.00        31 
   Obesity Type III       1.00      1.00      1.00        27 
 Overweight Level I       0.92      0.82      0.87        28 
Overweight Level II       0.88      0.88      0.88        26 

           accuracy                           0.93       212 
          macro avg       0.94      0.93      0.93       212 
       weighted avg       0.94      0.93      0.94       212 

AdaBoostClassifier() 
model score: 0.283 
                     precision    recall  f1-score   support 

Insufficient Weight       0.00      0.00      0.00        25 
      Normal Weight       0.35      0.45      0.39        31 
     Obesity Type I       0.25      0.43      0.31        44 
    Obesity Type II       0.50      0.03      0.06        31 
   Obesity Type III       0.00      0.00      0.00        27 
 Overweight Level I       0.50      0.04      0.07        28 
Overweight Level II       0.27      0.96      0.43        26 

           accuracy                           0.28       212 
          macro avg       0.27      0.27      0.18       212 
       weighted avg       0.28      0.28      0.19       212 

/opt/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:13
08: UndefinedMetricWarning: Precision and F-score are ill-defined and being set 
to 0.0 in labels with no predicted samples. Use `zero_division` parameter to con
trol this behavior. 
  _warn_prf(average, modifier, msg_start, len(result)) 
/opt/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:13
08: UndefinedMetricWarning: Precision and F-score are ill-defined and being set 
to 0.0 in labels with no predicted samples. Use `zero_division` parameter to con
trol this behavior. 
  _warn_prf(average, modifier, msg_start, len(result)) 
/opt/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:13
08: UndefinedMetricWarning: Precision and F-score are ill-defined and being set 
to 0.0 in labels with no predicted samples. Use `zero_division` parameter to con
trol this behavior. 
  _warn_prf(average, modifier, msg_start, len(result)) 
GradientBoostingClassifier() 
model score: 0.958 
                     precision    recall  f1-score   support 

Insufficient Weight       1.00      0.92      0.96        25 
      Normal Weight       0.88      0.97      0.92        31 
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     Obesity Type I       0.96      1.00      0.98        44 
    Obesity Type II       1.00      0.97      0.98        31 
   Obesity Type III       1.00      1.00      1.00        27 
 Overweight Level I       0.96      0.86      0.91        28 
Overweight Level II       0.93      0.96      0.94        26 

           accuracy                           0.96       212 
          macro avg       0.96      0.95      0.96       212 
       weighted avg       0.96      0.96      0.96       212 

SGDClassifier() 
model score: 0.575 
                     precision    recall  f1-score   support 

Insufficient Weight       1.00      0.60      0.75        25 
      Normal Weight       0.30      0.94      0.45        31 
     Obesity Type I       0.92      0.25      0.39        44 
    Obesity Type II       0.82      1.00      0.90        31 
   Obesity Type III       1.00      1.00      1.00        27 
 Overweight Level I       0.37      0.25      0.30        28 
Overweight Level II       0.50      0.08      0.13        26 

           accuracy                           0.58       212 
          macro avg       0.70      0.59      0.56       212 
       weighted avg       0.71      0.58      0.55       212 

Classification Report

[KNeighborsClassifier(), 
 DecisionTreeClassifier(), 
 RandomForestClassifier(), 
 GradientBoostingClassifier()]

In [55]: top_class 

Out[55]:

In [ ]:   
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Appendix B: Preprocessing and Clustering Analysis Exploration

Cluster analysis using K-Means algorithm is performed on the full dataset. To perform the

cluster analysis, first, the class label, NObeyesdad is removed from the dataset. The dataset is

transformed to ensure the correct data types exist for each feature. Dummy variables are

created for the categorical features. The numeric dataset contains 2,111 rows and 43 columns.

'/Users/cl'

Gender Age Height Weight family_history_with_overweight FAVC FCVC NC

0 Female 21.000000 1.620000 64.000000 yes no 2.0 3

1 Female 21.000000 1.520000 56.000000 yes no 3.0 3

2 Male 23.000000 1.800000 77.000000 yes no 2.0 3

3 Male 27.000000 1.800000 87.000000 no no 3.0 3

4 Male 22.000000 1.780000 89.800000 no no 2.0 1

... ... ... ... ... ... ... ...

2106 Female 20.976842 1.710730 131.408528 yes yes 3.0 3

2107 Female 21.982942 1.748584 133.742943 yes yes 3.0 3

2108 Female 22.524036 1.752206 133.689352 yes yes 3.0 3

2109 Female 24.361936 1.739450 133.346641 yes yes 3.0 3

2110 Female 23.664709 1.738836 133.472641 yes yes 3.0 3

2111 rows × 17 columns

In [1]: import numpy as np 
import pylab as pl 
import pandas as pd 
import importlib 
import matplotlib.pyplot as plt 
from sklearn.cluster import KMeans 
from sklearn import decomposition 
from sklearn import preprocessing 
from sklearn import metrics 
from sklearn.metrics import completeness_score, homogeneity_score 
from sklearn.metrics import silhouette_samples 

In [2]: %pwd 

Out[2]:

In [3]: # Load dataset to Pandas dataframe: 
df = pd.read_csv('/Users/cl/ObesityDataset.csv', header=0) 

In [4]: # View dataframe: 
df 

Out[4]:
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Gender Age Height Weight family_history_with_overweight FAVC FCVC NC

0 Female 21.000000 1.620000 64.000000 yes no 2.0 3

1 Female 21.000000 1.520000 56.000000 yes no 3.0 3

2 Male 23.000000 1.800000 77.000000 yes no 2.0 3

3 Male 27.000000 1.800000 87.000000 no no 3.0 3

4 Male 22.000000 1.780000 89.800000 no no 2.0 1

... ... ... ... ... ... ... ...

2106 Female 20.976842 1.710730 131.408528 yes yes 3.0 3

2107 Female 21.982942 1.748584 133.742943 yes yes 3.0 3

2108 Female 22.524036 1.752206 133.689352 yes yes 3.0 3

2109 Female 24.361936 1.739450 133.346641 yes yes 3.0 3

2110 Female 23.664709 1.738836 133.472641 yes yes 3.0 3

2111 rows × 16 columns

Gender Age Height Weight family_history_with_overweight FAVC FCVC NC

0 Female 21.000000 1.620000 64.000000 yes no 2.0 3

1 Female 21.000000 1.520000 56.000000 yes no 3.0 3

2 Male 23.000000 1.800000 77.000000 yes no 2.0 3

3 Male 27.000000 1.800000 87.000000 no no 3.0 3

4 Male 22.000000 1.780000 89.800000 no no 2.0 1

... ... ... ... ... ... ... ...

2106 Female 20.976842 1.710730 131.408528 yes yes 3.0 3

2107 Female 21.982942 1.748584 133.742943 yes yes 3.0 3

2108 Female 22.524036 1.752206 133.689352 yes yes 3.0 3

2109 Female 24.361936 1.739450 133.346641 yes yes 3.0 3

2110 Female 23.664709 1.738836 133.472641 yes yes 3.0 3

2111 rows × 16 columns

In [5]: #remove the class label column 
df2 = df.iloc[:,:16] 
df2 

Out[5]:

In [6]: # Create a copy to clean the data: 
cleaned_data = df2 
cleaned_data 

Out[6]:

In [7]: # Convert FCVC, NCP, CH20, FAF, and TUE into a Categorical Feature by first, con
cleaned_data['FCVC'] = cleaned_data['FCVC'].astype('int') 
cleaned_data['NCP'] = cleaned_data['NCP'].astype('int') 
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Gender object 
Age int64 
Height float64 
Weight                            float64 
family_history_with_overweight     object 
FAVC                               object 
FCVC int64 
NCP int64 
CAEC object 
SMOKE object 
CH2O int64 
SCC object 
FAF int64 
TUE int64 
CALC object 
MTRANS object 
dtype: object

Gender Age Height Weight family_history_with_overweight FAVC FCVC NCP

0 Female 21 1.620000 64.000000 yes no Sometimes 3

cleaned_data['CH2O'] = cleaned_data['CH2O'].astype('int') 
cleaned_data['FAF'] = cleaned_data['FAF'].astype('int') 
cleaned_data['TUE'] = cleaned_data['TUE'].astype('int') 

# Convert Age from Float to Integer: 
cleaned_data['Age'] = cleaned_data['Age'].astype('int') 
cleaned_data.dtypes 

Out[7]:

In [8]: # Rename values in FCVC into Categorical Names:  
cleaned_data['FCVC'] = cleaned_data['FCVC'].replace({1: 'Never'}) 
cleaned_data['FCVC'] = cleaned_data['FCVC'].replace({2: 'Sometimes'}) 
cleaned_data['FCVC'] = cleaned_data['FCVC'].replace({3: 'Always'}) 

# Rename values in NCP into Categorical Names:  
cleaned_data['NCP'] = cleaned_data['NCP'].replace({1: '1'}) 
cleaned_data['NCP'] = cleaned_data['NCP'].replace({2: '2'}) 
cleaned_data['NCP'] = cleaned_data['NCP'].replace({3: '3'}) 
cleaned_data['NCP'] = cleaned_data['NCP'].replace({4: '3+'}) 

# Rename values in CH2O into Categorical Names: 
cleaned_data['CH2O'] = cleaned_data['CH2O'].replace({1: 'Less than a liter'}) 
cleaned_data['CH2O'] = cleaned_data['CH2O'].replace({2: 'Between 1 and 2 L'}) 
cleaned_data['CH2O'] = cleaned_data['CH2O'].replace({3: 'More than 2 L'}) 

# Rename values in FAF into Categorical Names:  
cleaned_data['FAF'] = cleaned_data['FAF'].replace({0: 'I do not have'}) 
cleaned_data['FAF'] = cleaned_data['FAF'].replace({1: '1 or 2 days'}) 
cleaned_data['FAF'] = cleaned_data['FAF'].replace({2: '2 or 4 days'}) 
cleaned_data['FAF'] = cleaned_data['FAF'].replace({3: '4 or 5 days'}) 

# Rename values in TUE into Categorical Names: 
cleaned_data['TUE'] = cleaned_data['TUE'].replace({0: '0-2 Hours'}) 
cleaned_data['TUE'] = cleaned_data['TUE'].replace({1: '3-5 Hours'}) 
cleaned_data['TUE'] = cleaned_data['TUE'].replace({2: 'More than 5 Hours'}) 

cleaned_data 

Out[8]:
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Gender Age Height Weight family_history_with_overweight FAVC FCVC NCP

1 Female 21 1.520000 56.000000 yes no Always 3

2 Male 23 1.800000 77.000000 yes no Sometimes 3

3 Male 27 1.800000 87.000000 no no Always 3

4 Male 22 1.780000 89.800000 no no Sometimes

... ... ... ... ... ... ... ... ..

2106 Female 20 1.710730 131.408528 yes yes Always 3

2107 Female 21 1.748584 133.742943 yes yes Always 3

2108 Female 22 1.752206 133.689352 yes yes Always 3

2109 Female 24 1.739450 133.346641 yes yes Always 3

2110 Female 23 1.738836 133.472641 yes yes Always 3

2111 rows × 16 columns

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_n

0 21 1.620000 64.000000 1 0

1 21 1.520000 56.000000 1 0

2 23 1.800000 77.000000 0 1

3 27 1.800000 87.000000 0 1

4 22 1.780000 89.800000 0 1

... ... ... ... ... ...

In [9]: # create dummy variables for cleaned dataset: 
data_numeric = pd.get_dummies(cleaned_data) 
pd.set_option("display.max_columns", 999) 
data_numeric 

Out[9]:
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Age    Height    Weight  Gender_Female  Gender_Male  \ 
0     0.148936  0.320755  0.186567 1.0 0.0   
1     0.148936  0.132075  0.126866 1.0 0.0   
2     0.191489  0.660377  0.283582 0.0 1.0   
3     0.276596  0.660377  0.358209 0.0 1.0   
4     0.170213  0.622642  0.379104 0.0 1.0   
... ... ... ... ... ...   
2106  0.127660  0.491943  0.689616 1.0 0.0   
2107  0.148936  0.563366  0.707037 1.0 0.0   
2108  0.170213  0.570200  0.706637 1.0 0.0   
2109  0.212766  0.546132  0.704079 1.0 0.0   
2110  0.191489  0.544974  0.705020 1.0 0.0   

      family_history_with_overweight_no  family_history_with_overweight_yes  \ 
0 0.0 1.0   
1 0.0 1.0   
2 0.0 1.0   
3 1.0 0.0   
4 1.0 0.0   
... ... ...   
2106 0.0 1.0   
2107 0.0 1.0   
2108 0.0 1.0   
2109 0.0 1.0   
2110 0.0 1.0   

      FAVC_no  FAVC_yes  FCVC_Always  FCVC_Never  FCVC_Sometimes  NCP_1  \ 
0 1.0 0.0 0.0 0.0 1.0    0.0   
1 1.0 0.0 1.0 0.0 0.0    0.0   
2 1.0 0.0 0.0 0.0 1.0    0.0   
3 1.0 0.0 1.0 0.0 0.0    0.0   

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_n

2106 20 1.710730 131.408528 1 0

2107 21 1.748584 133.742943 1 0

2108 22 1.752206 133.689352 1 0

2109 24 1.739450 133.346641 1 0

2110 23 1.738836 133.472641 1 0

2111 rows × 43 columns

In [10]: # Save Numeric Dataframe for future use: 
data_numeric.to_csv('/Users/cl/Obesity_numeric.csv', index = False) 

In [11]: # Normalize the numeric dataset with Min-Max Scaling: 
df_min_max_scaled = data_numeric.copy() 
for column in df_min_max_scaled.columns: 
    df_min_max_scaled[column] = (df_min_max_scaled[column] - df_min_max_scaled[c

In [12]: # View normalized data: 
print(df_min_max_scaled) 
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4 1.0 0.0 0.0 0.0 1.0    1.0   
... ... ... ... ... ...    ...   
2106      0.0 1.0 1.0 0.0 0.0    0.0   
2107      0.0 1.0 1.0 0.0 0.0    0.0   
2108      0.0 1.0 1.0 0.0 0.0    0.0   
2109      0.0 1.0 1.0 0.0 0.0    0.0   
2110      0.0 1.0 1.0 0.0 0.0    0.0   

      NCP_2  NCP_3  NCP_3+  CAEC_Always  CAEC_Frequently  CAEC_Sometimes  \ 
0 0.0    1.0     0.0 0.0 0.0 1.0   
1 0.0    1.0     0.0 0.0 0.0 1.0   
2 0.0    1.0     0.0 0.0 0.0 1.0   
3 0.0    1.0     0.0 0.0 0.0 1.0   
4 0.0    0.0     0.0 0.0 0.0 1.0   
...     ...    ...     ... ... ... ...   
2106    0.0    1.0     0.0 0.0 0.0 1.0   
2107    0.0    1.0     0.0 0.0 0.0 1.0   
2108    0.0    1.0     0.0 0.0 0.0 1.0   
2109    0.0    1.0     0.0 0.0 0.0 1.0   
2110    0.0    1.0     0.0 0.0 0.0 1.0   

      CAEC_no  SMOKE_no  SMOKE_yes  CH2O_Between 1 and 2 L  \ 
0 0.0 1.0 0.0 1.0   
1 0.0 0.0 1.0 0.0   
2 0.0 1.0 0.0 1.0   
3 0.0 1.0 0.0 1.0   
4 0.0 1.0 0.0 1.0   
... ... ... ... ...   
2106      0.0 1.0 0.0 0.0   
2107      0.0 1.0 0.0 1.0   
2108      0.0 1.0 0.0 1.0   
2109      0.0 1.0 0.0 1.0   
2110      0.0 1.0 0.0 1.0   

      CH2O_Less than a liter  CH2O_More than 2 L  SCC_no  SCC_yes  \ 
0 0.0                 0.0     1.0      0.0   
1 0.0 1.0     0.0      1.0   
2 0.0 0.0     1.0      0.0   
3 0.0 0.0     1.0      0.0   
4 0.0 0.0     1.0      0.0   
... ... ...     ...      ...   
2106 1.0 0.0     1.0      0.0   
2107 0.0 0.0     1.0      0.0   
2108 0.0 0.0     1.0      0.0   
2109 0.0 0.0     1.0      0.0   
2110 0.0 0.0     1.0      0.0   

      FAF_1 or 2 days  FAF_2 or 4 days  FAF_4 or 5 days  FAF_I do not have  \ 
0 0.0 0.0 0.0 1.0   
1 0.0 0.0 1.0 0.0   
2 0.0 1.0 0.0 0.0   
3 0.0 1.0 0.0 0.0   
4 0.0 0.0 0.0 1.0   
... ... ... ... ...   
2106 1.0 0.0 0.0 0.0   
2107 1.0 0.0 0.0 0.0   
2108 1.0 0.0 0.0 0.0   
2109 1.0 0.0 0.0 0.0   
2110 1.0 0.0 0.0 0.0   

      TUE_0-2 Hours  TUE_3-5 Hours  TUE_More than 5 Hours  CALC_Always  \ 
0 0.0 1.0 0.0 0.0   
1 1.0 0.0 0.0 0.0   
2 0.0 1.0 0.0 0.0   
3 1.0 0.0 0.0 0.0   
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4               1.0            0.0                    0.0          0.0    
...             ...            ...                    ...          ...    
2106            1.0            0.0                    0.0          0.0    
2107            1.0            0.0                    0.0          0.0    
2108            1.0            0.0                    0.0          0.0    
2109            1.0            0.0                    0.0          0.0    
2110            1.0            0.0                    0.0          0.0    

      CALC_Frequently  CALC_Sometimes  CALC_no  MTRANS_Automobile  \ 
0                 0.0             0.0      1.0                0.0    
1                 0.0             1.0      0.0                0.0    
2                 1.0             0.0      0.0                0.0    
3                 1.0             0.0      0.0                0.0    
4                 0.0             1.0      0.0                0.0    
...               ...             ...      ...                ...    
2106              0.0             1.0      0.0                0.0    
2107              0.0             1.0      0.0                0.0    
2108              0.0             1.0      0.0                0.0    
2109              0.0             1.0      0.0                0.0    
2110              0.0             1.0      0.0                0.0    

      MTRANS_Bike  MTRANS_Motorbike  MTRANS_Public_Transportation  \ 
0             0.0               0.0                           1.0    
1             0.0               0.0                           1.0    
2             0.0               0.0                           1.0    
3             0.0               0.0                           0.0    
4             0.0               0.0                           1.0    
...           ...               ...                           ...    
2106          0.0               0.0                           1.0    
2107          0.0               0.0                           1.0    
2108          0.0               0.0                           1.0    
2109          0.0               0.0                           1.0    
2110          0.0               0.0                           1.0    

      MTRANS_Walking   
0                0.0   
1                0.0   
2                0.0   
3                1.0   
4                0.0   
...              ...   
2106             0.0   
2107             0.0   
2108             0.0   
2109             0.0   
2110             0.0   

[2111 rows x 43 columns] 

0             Normal_Weight 
1             Normal_Weight 
2             Normal_Weight 
3        Overweight_Level_I 
4       Overweight_Level_II 
               ...          
2106       Obesity_Type_III 
2107       Obesity_Type_III 
2108       Obesity_Type_III 
2109       Obesity_Type_III 

In [13]: # View class labels: 
labels_df =  df['NObeyesdad'] 
labels_df 

Out[13]:
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2110       Obesity_Type_III 
Name: NObeyesdad, Length: 2111, dtype: object

array([1, 1, 1, ..., 4, 4, 4])

{0: 'Insufficient_Weight', 1: 'Normal_Weight', 2: 'Obesity_Type_I', 3: 'Obesity_
Type_II', 4: 'Obesity_Type_III', 5: 'Overweight_Level_I', 6: 'Overweight_Level_I
I'} 

Clustering Exporation with K-Means:
Below is the exploration of clustering using K-means with the normalized data. Various values of

k were tested and the centroids were evaluated to determine if a pattern appears in the clusters

based on the data. For each value of K, the cluster centroids were examined to determine if any

pattern exists in the data. A silhouette analysis is performed for to evaluate the separation

between the resulting clusters and determine the quality of the clusters. The silhouette plots

display a measure of how close each point in one cluster is to points in the neighboring clusters.

The mean silhouette value is calculated and used as a threshold when determining the cluster

quality. Clusters with most of their coefficients above the mean silhouette value are considered

better quality which means that clusters are further away from the neighboring clusters.

Clusters with most of their coefficients below the mean silhouette value reveals that samples

are very close to the decision boundary between two neighboring clusters and negative

coefficient values indicate that samples are assigned to the wrong cluster. When the silhouette

plot does not display any negative coefficients and have the thickest plots visually above the

silhouette mean, the correct number of K has been selected.

Initialization complete 
Iteration 0, inertia 11787.00508682668 
Iteration 1, inertia 8566.056202078382 
Iteration 2, inertia 8338.71778464269 
Iteration 3, inertia 8237.82330971913 
Iteration 4, inertia 8176.41527470928 
Iteration 5, inertia 8099.540960517189 
Iteration 6, inertia 8076.56013777138 
Iteration 7, inertia 8068.9930112547 
Iteration 8, inertia 8068.221972230656 
Iteration 9, inertia 8068.076896983779 
Iteration 10, inertia 8067.991083649056 
Iteration 11, inertia 8067.917526159745 

In [14]: # Transform class label into numeric:  
le = preprocessing.LabelEncoder() 
labels_num = le.fit_transform(labels_df) 
labels_num 

Out[14]:

In [15]: # View class label names and numeric association: 
label_names = dict(zip(le.transform(le.classes_), le.classes_)) 
print(label_names) 

In [16]: kmeans = KMeans(n_clusters=5, max_iter=500, verbose=1) #initialize k-means with 

In [17]: kmeans.fit(df_min_max_scaled) 
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Iteration 12, inertia 8067.434112719851 
Iteration 13, inertia 8067.300618383514 
Iteration 14, inertia 8066.690183145394 
Iteration 15, inertia 8065.724907535046 
Iteration 16, inertia 8065.1555932972105 
Iteration 17, inertia 8064.406578178977 
Iteration 18, inertia 8055.777491215358 
Iteration 19, inertia 8050.3019028424 
Iteration 20, inertia 8042.536097506457 
Iteration 21, inertia 8026.138983270792 
Iteration 22, inertia 7994.538660965364 
Iteration 23, inertia 7981.791935092773 
Iteration 24, inertia 7972.431678248945 
Iteration 25, inertia 7970.020550287187 
Iteration 26, inertia 7968.48651338652 
Iteration 27, inertia 7966.955938122063 
Iteration 28, inertia 7964.781849553093 
Iteration 29, inertia 7958.222148843893 
Iteration 30, inertia 7956.01524580361 
Iteration 31, inertia 7955.555539283562 
Iteration 32, inertia 7955.527509697825 
Iteration 33, inertia 7955.494519204406 
Converged at iteration 33: strict convergence. 
Initialization complete 
Iteration 0, inertia 11825.274489539268 
Iteration 1, inertia 8581.769457282187 
Iteration 2, inertia 8468.439310863918 
Iteration 3, inertia 8354.00074441653 
Iteration 4, inertia 8210.581719370295 
Iteration 5, inertia 8130.050202902669 
Iteration 6, inertia 8093.4953218710225 
Iteration 7, inertia 8076.467461725121 
Iteration 8, inertia 8059.590914960909 
Iteration 9, inertia 8051.452820847045 
Iteration 10, inertia 8044.333927734175 
Iteration 11, inertia 8039.893289001246 
Iteration 12, inertia 8036.123631679592 
Iteration 13, inertia 8032.046237708075 
Iteration 14, inertia 8029.674990266088 
Iteration 15, inertia 8026.254886825644 
Iteration 16, inertia 8023.089343537067 
Iteration 17, inertia 8019.880934083217 
Iteration 18, inertia 8008.990523342801 
Iteration 19, inertia 7969.300639772133 
Iteration 20, inertia 7919.97712322982 
Iteration 21, inertia 7910.686198322982 
Iteration 22, inertia 7906.238208315535 
Iteration 23, inertia 7899.756117486131 
Iteration 24, inertia 7892.545244873981 
Iteration 25, inertia 7890.019624999294 
Iteration 26, inertia 7889.072892812861 
Iteration 27, inertia 7888.575279501931 
Iteration 28, inertia 7888.2990556955165 
Iteration 29, inertia 7887.869135061676 
Iteration 30, inertia 7887.622886266341 
Iteration 31, inertia 7887.258246367743 
Iteration 32, inertia 7886.838669332199 
Iteration 33, inertia 7886.583695027855 
Iteration 34, inertia 7886.48352229928 
Converged at iteration 34: strict convergence. 
Initialization complete 
Iteration 0, inertia 12174.525656749454 
Iteration 1, inertia 8507.8234001361 
Iteration 2, inertia 8262.156761189228 
Iteration 3, inertia 8135.565056552313 
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Iteration 4, inertia 8072.3981424163885 
Iteration 5, inertia 8047.041186769761 
Iteration 6, inertia 8036.157681658016 
Iteration 7, inertia 8032.793289742063 
Iteration 8, inertia 8030.945913788686 
Iteration 9, inertia 8030.700347934296 
Iteration 10, inertia 8030.595081706321 
Iteration 11, inertia 8030.463150369052 
Iteration 12, inertia 8030.425825530467 
Converged at iteration 12: strict convergence. 
Initialization complete 
Iteration 0, inertia 12478.757883097682 
Iteration 1, inertia 8699.700914801515 
Iteration 2, inertia 8423.74786273518 
Iteration 3, inertia 8246.866008200308 
Iteration 4, inertia 8137.329970995708 
Iteration 5, inertia 8103.804191725505 
Iteration 6, inertia 8092.207693677892 
Iteration 7, inertia 8089.336054818334 
Iteration 8, inertia 8087.034378963835 
Iteration 9, inertia 8086.246069705694 
Iteration 10, inertia 8084.619362324052 
Iteration 11, inertia 8082.67643373668 
Iteration 12, inertia 8082.188515787069 
Converged at iteration 12: strict convergence. 
Initialization complete 
Iteration 0, inertia 11832.53539722714 
Iteration 1, inertia 8466.1801078797 
Iteration 2, inertia 8226.758916757437 
Iteration 3, inertia 8115.239236717611 
Iteration 4, inertia 8062.949256711981 
Iteration 5, inertia 8047.895976309511 
Iteration 6, inertia 8035.457973021038 
Iteration 7, inertia 8028.199810257129 
Iteration 8, inertia 8007.65676812841 
Iteration 9, inertia 7963.399143602098 
Iteration 10, inertia 7936.853393483585 
Iteration 11, inertia 7924.273139615089 
Iteration 12, inertia 7918.766371499822 
Iteration 13, inertia 7916.290733124256 
Iteration 14, inertia 7915.13212820532 
Iteration 15, inertia 7913.658090371352 
Iteration 16, inertia 7912.216196347794 
Iteration 17, inertia 7911.340690474468 
Iteration 18, inertia 7911.151814669988 
Iteration 19, inertia 7911.113667420209 
Converged at iteration 19: strict convergence. 
Initialization complete 
Iteration 0, inertia 11823.752663657368 
Iteration 1, inertia 8276.46780690895 
Iteration 2, inertia 8098.68081942101 
Iteration 3, inertia 8037.29250680346 
Iteration 4, inertia 7997.19138403611 
Iteration 5, inertia 7925.487303831875 
Iteration 6, inertia 7872.633962217118 
Iteration 7, inertia 7853.57013270058 
Iteration 8, inertia 7849.995965259756 
Iteration 9, inertia 7843.743550028235 
Iteration 10, inertia 7837.019905347132 
Iteration 11, inertia 7834.827151309026 
Iteration 12, inertia 7833.546296354347 
Iteration 13, inertia 7833.009378377764 
Iteration 14, inertia 7832.554446255171 
Iteration 15, inertia 7832.210277934463 
Iteration 16, inertia 7831.1753466434475 
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Iteration 17, inertia 7831.074055893812 
Iteration 18, inertia 7831.027292617523 
Iteration 19, inertia 7830.977013027618 
Converged at iteration 19: strict convergence. 
Initialization complete 
Iteration 0, inertia 11596.309798286276 
Iteration 1, inertia 8646.1997670067 
Iteration 2, inertia 8394.42223224813 
Iteration 3, inertia 8250.441907007784 
Iteration 4, inertia 8175.292252415538 
Iteration 5, inertia 8131.1038719677545 
Iteration 6, inertia 8088.55452146436 
Iteration 7, inertia 8032.992455465169 
Iteration 8, inertia 7978.52526813498 
Iteration 9, inertia 7956.801794915094 
Iteration 10, inertia 7947.744891687089 
Iteration 11, inertia 7941.340182646654 
Iteration 12, inertia 7937.882158960003 
Iteration 13, inertia 7936.406248808135 
Iteration 14, inertia 7934.818469379045 
Iteration 15, inertia 7934.023804051918 
Iteration 16, inertia 7932.807323423373 
Iteration 17, inertia 7931.7472552303025 
Iteration 18, inertia 7931.066262593041 
Iteration 19, inertia 7930.419081526247 
Iteration 20, inertia 7915.339857061065 
Iteration 21, inertia 7886.689696466735 
Iteration 22, inertia 7859.242618003011 
Iteration 23, inertia 7850.823479552829 
Iteration 24, inertia 7847.789675688788 
Iteration 25, inertia 7846.48853874517 
Iteration 26, inertia 7842.455320611688 
Iteration 27, inertia 7839.4277804122285 
Iteration 28, inertia 7836.555716423136 
Iteration 29, inertia 7835.294209939629 
Iteration 30, inertia 7834.188876497395 
Iteration 31, inertia 7833.097135623066 
Iteration 32, inertia 7832.671449816852 
Iteration 33, inertia 7832.380999582051 
Iteration 34, inertia 7832.259089755594 
Iteration 35, inertia 7832.232553830457 
Converged at iteration 35: strict convergence. 
Initialization complete 
Iteration 0, inertia 12864.885199156606 
Iteration 1, inertia 8534.055041539128 
Iteration 2, inertia 8208.402584930189 
Iteration 3, inertia 8134.677983160359 
Iteration 4, inertia 8061.954032765476 
Iteration 5, inertia 8012.741078486168 
Iteration 6, inertia 7973.675852821764 
Iteration 7, inertia 7960.156905577035 
Iteration 8, inertia 7955.948758245115 
Iteration 9, inertia 7937.8692456423405 
Iteration 10, inertia 7929.672981125681 
Iteration 11, inertia 7912.395873582756 
Iteration 12, inertia 7884.993609624193 
Iteration 13, inertia 7867.601997438204 
Iteration 14, inertia 7864.718177831521 
Iteration 15, inertia 7863.772078183434 
Iteration 16, inertia 7863.723388842099 
Converged at iteration 16: strict convergence. 
Initialization complete 
Iteration 0, inertia 11871.688456665612 
Iteration 1, inertia 8444.666140084128 
Iteration 2, inertia 8172.684939816708 
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Iteration 3, inertia 8022.5123919112075 
Iteration 4, inertia 7989.103278787667 
Iteration 5, inertia 7979.526024439475 
Iteration 6, inertia 7972.321268249555 
Iteration 7, inertia 7965.892255679502 
Iteration 8, inertia 7959.862725195303 
Iteration 9, inertia 7948.061310377594 
Iteration 10, inertia 7926.876581312946 
Iteration 11, inertia 7922.760473428007 
Iteration 12, inertia 7920.461356227191 
Iteration 13, inertia 7918.936152811791 
Iteration 14, inertia 7918.355463902865 
Iteration 15, inertia 7918.230916735995 
Converged at iteration 15: strict convergence. 
Initialization complete 
Iteration 0, inertia 12258.81732786365 
Iteration 1, inertia 8490.528120624003 
Iteration 2, inertia 8287.639034367927 
Iteration 3, inertia 8199.024276953247 
Iteration 4, inertia 8142.15513015745 
Iteration 5, inertia 8082.207427076215 
Iteration 6, inertia 8037.963976518285 
Iteration 7, inertia 8007.417500726093 
Iteration 8, inertia 7978.869398652809 
Iteration 9, inertia 7937.0245485312225 
Iteration 10, inertia 7903.678870109956 
Iteration 11, inertia 7866.78478195413 
Iteration 12, inertia 7853.215930528641 
Iteration 13, inertia 7847.326673615622 
Iteration 14, inertia 7845.271749303697 
Iteration 15, inertia 7844.525551419671 
Iteration 16, inertia 7844.433188252878 
Iteration 17, inertia 7844.348811651154 
Converged at iteration 17: strict convergence. 

KMeans(max_iter=500, n_clusters=5, verbose=1)

Cluster

0 2

1 0

2 2

3 3

4 3

... ...

2106 0

2107 0

2108 0

2109 0

2110 0

Out[17]:

In [18]: clusters5 = kmeans.predict(df_min_max_scaled) 

In [19]: pd.DataFrame(clusters5, columns=["Cluster"]) 

Out[19]:
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2111 rows × 1 columns

Size of Cluster 0 =  420 
Size of Cluster 1 =  423 
Size of Cluster 2 =  455 
Size of Cluster 3 =  355 
Size of Cluster 4 =  458 

Mean Silhouette Value : 0.12696817428675627 

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no family_

0 0.19 0.43 0.52 1.00 0.00 0.00

1 0.37 0.51 0.36 0.33 0.67 0.06

2 0.16 0.41 0.30 0.55 0.45 0.00

3 0.15 0.37 0.14 0.65 0.35 0.98

4 0.18 0.63 0.42 0.00 1.00 0.02

In [20]: def cluster_sizes(clusters): 
    #clusters is an array of cluster labels for each instance in the data 
     
    size = {} 
    cluster_labels = np.unique(clusters) 
    n_clusters = cluster_labels.shape[0] 
 
    for c in cluster_labels: 
        size[c] = len(df[clusters == c]) 
    return size 

In [21]: size5 = cluster_sizes(clusters5) 
 
for c5 in size5.keys(): 
    print("Size of Cluster", c5, "= ", size5[c5]) 

In [22]: # The centroids provide an aggregate representation and a characterization of ea
pd.options.display.float_format='{:,.2f}'.format 
 
centroids5 = pd.DataFrame(kmeans.cluster_centers_, columns=df_min_max_scaled.col
centroids5 

Out[22]:

In [23]: # Silhouette Analysis at n = 5: 
c5_silhouette = metrics.silhouette_samples(df_min_max_scaled, clusters5) 
print('Mean Silhouette Value :', c5_silhouette.mean()) 

In [24]: def plot_silhouettes(data, clusters, metric='euclidean'): 
     
    from matplotlib import cm 
    from sklearn.metrics import silhouette_samples 
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Above, the plot of the silhouettes shows that cluster 0 outperformed the other clusters with all

its coefficients above the mean silhouette value. Cluster 4 also performed well with many of its

coefficients above the mean silhouette value. The remaining three clusters did not perform as

well since most of their coefficients are below the mean silhouette value. Four of the clusters

display negative values with cluster 3 having the most negative coefficients, which indicates

that 5 clusters are too high for the dataset.

    cluster_labels = np.unique(clusters) 
    n_clusters = cluster_labels.shape[0] 
    silhouette_vals = metrics.silhouette_samples(data, clusters, metric='euclide
    c_ax_lower, c_ax_upper = 0, 0 
    cticks = [] 
    for i, k in enumerate(cluster_labels): 
        c_silhouette_vals = silhouette_vals[clusters == k] 
        c_silhouette_vals.sort() 
        c_ax_upper += len(c_silhouette_vals) 
        color = cm.jet(float(i) / n_clusters) 
        pl.barh(range(c_ax_lower, c_ax_upper), c_silhouette_vals, height=1.0,  
                      edgecolor='none', color=color) 
 
        cticks.append((c_ax_lower + c_ax_upper) / 2) 
        c_ax_lower += len(c_silhouette_vals) 
     
    silhouette_avg = np.mean(silhouette_vals) 
    pl.axvline(silhouette_avg, color="red", linestyle="--")  
 
    pl.yticks(cticks, cluster_labels) 
    pl.ylabel('Cluster') 
    pl.xlabel('Silhouette coefficient') 
 
    pl.tight_layout() 
    #pl.savefig('images/11_04.png', dpi=300) 
    pl.show() 
     
    return 

In [25]: # Plot and Evaluate the Silhouettes: 
plot_silhouettes(df_min_max_scaled, clusters5)
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Initialization complete 
Iteration 0, inertia 12879.623786128155 
Iteration 1, inertia 9001.37311540421 
Iteration 2, inertia 8858.998139520381 
Iteration 3, inertia 8809.939108030303 
Iteration 4, inertia 8791.272204868248 
Iteration 5, inertia 8786.47670789417 
Iteration 6, inertia 8785.4661617069 
Iteration 7, inertia 8783.363746212328 
Iteration 8, inertia 8772.54056168085 
Iteration 9, inertia 8769.557983795672 
Iteration 10, inertia 8768.483498001466 
Iteration 11, inertia 8767.764124919666 
Iteration 12, inertia 8766.35120571748 
Iteration 13, inertia 8765.43867230093 
Iteration 14, inertia 8765.398780834916 
Converged at iteration 14: strict convergence. 
Initialization complete 
Iteration 0, inertia 14534.508672109176 
Iteration 1, inertia 9309.441488842096 
Iteration 2, inertia 9037.604181226367 
Iteration 3, inertia 8938.658231693586 
Iteration 4, inertia 8916.402643453937 
Iteration 5, inertia 8888.331390013225 
Iteration 6, inertia 8870.074074790271 
Iteration 7, inertia 8861.211103290092 
Iteration 8, inertia 8853.162119584285 
Iteration 9, inertia 8846.868576454352 
Iteration 10, inertia 8827.84407699484 
Iteration 11, inertia 8799.1609794804 
Iteration 12, inertia 8785.909269034124 
Iteration 13, inertia 8774.601325517255 
Iteration 14, inertia 8769.592571719972 
Iteration 15, inertia 8767.63492356255 
Iteration 16, inertia 8766.444849568958 
Iteration 17, inertia 8765.971992499608 
Iteration 18, inertia 8765.867441373892 
Iteration 19, inertia 8765.66116613612 
Iteration 20, inertia 8765.486144212005 
Iteration 21, inertia 8765.461045034992 
Converged at iteration 21: strict convergence. 
Initialization complete 
Iteration 0, inertia 13336.164818796795 
Iteration 1, inertia 9567.269152448953 
Iteration 2, inertia 9445.553561777502 
Iteration 3, inertia 9356.780028542624 
Iteration 4, inertia 9157.130002021417 
Iteration 5, inertia 9032.754433029859 
Iteration 6, inertia 8966.21740202369 
Iteration 7, inertia 8938.469471906204 
Iteration 8, inertia 8923.340927558393 
Iteration 9, inertia 8916.997734419223 
Iteration 10, inertia 8915.764064629098 
Iteration 11, inertia 8915.37813313638 
Iteration 12, inertia 8915.127678549246 
Iteration 13, inertia 8914.954033413907 
Iteration 14, inertia 8914.93152766286 
Iteration 15, inertia 8914.917473861125 
Converged at iteration 15: strict convergence. 

In [26]: kmeans3 = KMeans(n_clusters=3, max_iter=500, verbose=1) # k-means with n = 3 

In [27]: kmeans3.fit(df_min_max_scaled) 
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Initialization complete 
Iteration 0, inertia 12235.950953731766 
Iteration 1, inertia 9177.059040690088 
Iteration 2, inertia 8997.9480370336 
Iteration 3, inertia 8886.478645540206 
Iteration 4, inertia 8833.780310727954 
Iteration 5, inertia 8820.17237743324 
Iteration 6, inertia 8819.429241417094 
Iteration 7, inertia 8819.16005670056 
Iteration 8, inertia 8818.804519317317 
Iteration 9, inertia 8818.682843171513 
Iteration 10, inertia 8818.311487274063 
Iteration 11, inertia 8818.159940170133 
Iteration 12, inertia 8817.98907376872 
Iteration 13, inertia 8817.865936421687 
Iteration 14, inertia 8817.806917535885 
Iteration 15, inertia 8817.776092265041 
Iteration 16, inertia 8817.693711678381 
Iteration 17, inertia 8817.668602183467 
Converged at iteration 17: strict convergence. 
Initialization complete 
Iteration 0, inertia 14283.23672461032 
Iteration 1, inertia 9655.242214042786 
Iteration 2, inertia 9501.150166979987 
Iteration 3, inertia 9385.8241565813 
Iteration 4, inertia 9306.25122999164 
Iteration 5, inertia 9258.611440798086 
Iteration 6, inertia 9220.655830148746 
Iteration 7, inertia 9205.884675342035 
Iteration 8, inertia 9201.291862951928 
Iteration 9, inertia 9200.842008469204 
Iteration 10, inertia 9200.67414699048 
Iteration 11, inertia 9200.629965113641 
Converged at iteration 11: strict convergence. 
Initialization complete 
Iteration 0, inertia 12423.535126370873 
Iteration 1, inertia 9135.382864146819 
Iteration 2, inertia 9028.876396630194 
Iteration 3, inertia 8968.812555470771 
Iteration 4, inertia 8910.48089075226 
Iteration 5, inertia 8856.621151522155 
Iteration 6, inertia 8821.480910675746 
Iteration 7, inertia 8818.661138265279 
Iteration 8, inertia 8818.274441804033 
Iteration 9, inertia 8818.095197547456 
Iteration 10, inertia 8817.924137895994 
Iteration 11, inertia 8817.828887772916 
Iteration 12, inertia 8817.806917535885 
Iteration 13, inertia 8817.776092265041 
Iteration 14, inertia 8817.693711678381 
Iteration 15, inertia 8817.668602183467 
Converged at iteration 15: strict convergence. 
Initialization complete 
Iteration 0, inertia 15560.349375046955 
Iteration 1, inertia 9451.504598782774 
Iteration 2, inertia 9142.603376735178 
Iteration 3, inertia 8984.738489060503 
Iteration 4, inertia 8903.206814994957 
Iteration 5, inertia 8849.255938606113 
Iteration 6, inertia 8805.887151861752 
Iteration 7, inertia 8787.427510335308 
Iteration 8, inertia 8777.334874885435 
Iteration 9, inertia 8773.33734831006 
Iteration 10, inertia 8770.052840575934 
Iteration 11, inertia 8768.924265588485 
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Iteration 12, inertia 8768.062375098845 
Iteration 13, inertia 8766.037804380696 
Iteration 14, inertia 8765.5613568244 
Iteration 15, inertia 8765.461045034992 
Converged at iteration 15: strict convergence. 
Initialization complete 
Iteration 0, inertia 14256.23978990368 
Iteration 1, inertia 9202.001056480733 
Iteration 2, inertia 8958.453465999479 
Iteration 3, inertia 8866.570788484862 
Iteration 4, inertia 8824.832909813438 
Iteration 5, inertia 8819.837479151136 
Iteration 6, inertia 8819.10078183813 
Iteration 7, inertia 8819.035876469317 
Iteration 8, inertia 8818.817563005117 
Iteration 9, inertia 8818.646974003661 
Iteration 10, inertia 8818.289586515795 
Iteration 11, inertia 8818.159940170133 
Iteration 12, inertia 8817.98907376872 
Iteration 13, inertia 8817.865936421687 
Iteration 14, inertia 8817.806917535887 
Iteration 15, inertia 8817.776092265041 
Iteration 16, inertia 8817.693711678381 
Iteration 17, inertia 8817.668602183467 
Converged at iteration 17: strict convergence. 
Initialization complete 
Iteration 0, inertia 14045.247730533238 
Iteration 1, inertia 9577.932151433946 
Iteration 2, inertia 9503.316242864512 
Iteration 3, inertia 9481.915359950877 
Iteration 4, inertia 9463.72742189162 
Iteration 5, inertia 9441.526557119001 
Iteration 6, inertia 9420.35228646382 
Iteration 7, inertia 9406.373961589723 
Iteration 8, inertia 9402.970170630471 
Iteration 9, inertia 9400.047385253652 
Iteration 10, inertia 9399.555304602607 
Iteration 11, inertia 9399.498839497075 
Iteration 12, inertia 9399.41018122203 
Iteration 13, inertia 9399.298956532946 
Iteration 14, inertia 9399.274680230332 
Iteration 15, inertia 9399.252245628535 
Converged at iteration 15: strict convergence. 
Initialization complete 
Iteration 0, inertia 13317.99475078725 
Iteration 1, inertia 8977.851327856566 
Iteration 2, inertia 8895.604119959466 
Iteration 3, inertia 8873.687473142223 
Iteration 4, inertia 8849.570415401187 
Iteration 5, inertia 8805.858315057407 
Iteration 6, inertia 8780.421553985545 
Iteration 7, inertia 8775.53080855752 
Iteration 8, inertia 8772.61887038512 
Iteration 9, inertia 8769.175262861294 
Iteration 10, inertia 8768.382144887562 
Iteration 11, inertia 8767.704981473666 
Iteration 12, inertia 8766.274753740365 
Iteration 13, inertia 8765.417169729853 
Iteration 14, inertia 8765.398780834916 
Converged at iteration 14: strict convergence. 

KMeans(max_iter=500, n_clusters=3, verbose=1)Out[27]:

In [28]: clusters3 = kmeans3.predict(df_min_max_scaled) 
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Size of Cluster 0 =  1058 
Size of Cluster 1 =  636 
Size of Cluster 2 =  417 

Mean Silhouette Value : 0.11634874352766442 

Above, shows the results of the silhouette analysis for K=3, which reveals that the algorithm

performed neither better nor worse than at K = 5. The plot of the silhouettes shows that cluster

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no family_

0 0.22 0.58 0.39 -0.00 1.00 0.14

1 0.21 0.33 0.19 0.99 0.01 0.34

2 0.19 0.43 0.52 0.99 0.01 0.04

In [29]: size3 = cluster_sizes(clusters3) 
 
for c in size3.keys(): 
    print("Size of Cluster", c, "= ", size3[c]) 

In [30]: # View centroids for an aggregate representation and a characterization of each 
pd.options.display.float_format='{:,.2f}'.format 
 
centroids3 = pd.DataFrame(kmeans3.cluster_centers_, columns=df_min_max_scaled.co
centroids3 

Out[30]:

In [31]: # Silhouette Analysis at n = 3: 
c3_silhouette = metrics.silhouette_samples(df_min_max_scaled, clusters3) 
print('Mean Silhouette Value :', c3_silhouette.mean()) 

In [32]: # Plot and Evaluate the Silhouettes: 
plot_silhouettes(df_min_max_scaled, clusters3)
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2 outperformed the other clusters with all its coefficients above the mean silhouette value.

Cluster 1 performed the worst and did not have any coefficients above the mean silhouette

value, but instead has negative coefficients. When evaluating the centroids, cluster 0 has

Gender_Male with a value of 1.00 and Gender_Female with a value of 0. Cluster 0 most likely

represents the male gender. Cluster 1 and 2 both contain a value of 0.99 for Gender_Female and

0.01 for Gender_Male, which shows that most likely Cluster 1 is misclassified. Most likely this

cluster is pulling coefficients where it should not be and is too close to cluster 0 to be its own

cluster. We can conclude from the silhouette plots that likely three cluster is still too high and

that two clusters may be sufficient.

Initialization complete 
Iteration 0, inertia 21141.470043487447 
Iteration 1, inertia 10146.649638459037 
Iteration 2, inertia 10052.393229584075 
Iteration 3, inertia 9978.55949142651 
Iteration 4, inertia 9931.576115637514 
Iteration 5, inertia 9882.008890876072 
Iteration 6, inertia 9833.033569152649 
Iteration 7, inertia 9820.76522415991 
Iteration 8, inertia 9810.381012107375 
Iteration 9, inertia 9806.43745895125 
Iteration 10, inertia 9802.52445906197 
Iteration 11, inertia 9788.188974953495 
Iteration 12, inertia 9784.590860736775 
Iteration 13, inertia 9781.587461096071 
Iteration 14, inertia 9764.62868015089 
Iteration 15, inertia 9703.250240710777 
Iteration 16, inertia 9654.064419604409 
Iteration 17, inertia 9640.924590400316 
Iteration 18, inertia 9633.269288654592 
Iteration 19, inertia 9627.22637779535 
Iteration 20, inertia 9626.211067157712 
Iteration 21, inertia 9625.966275262466 
Iteration 22, inertia 9625.900707169734 
Iteration 23, inertia 9625.880356300455 
Converged at iteration 23: strict convergence. 
Initialization complete 
Iteration 0, inertia 16459.557174738147 
Iteration 1, inertia 9900.362639271163 
Iteration 2, inertia 9489.377342057842 
Iteration 3, inertia 9440.231621454297 
Iteration 4, inertia 9439.746651906471 
Iteration 5, inertia 9439.70314554615 
Converged at iteration 5: strict convergence. 
Initialization complete 
Iteration 0, inertia 16654.425161503892 
Iteration 1, inertia 9928.457371508537 
Iteration 2, inertia 9838.23752341025 
Iteration 3, inertia 9788.863247705292 
Iteration 4, inertia 9548.861615101538 
Iteration 5, inertia 9442.673615150014 
Iteration 6, inertia 9439.835639639505 
Iteration 7, inertia 9439.703145546147 
Converged at iteration 7: strict convergence. 

In [33]: kmeans2 = KMeans(n_clusters=2, max_iter=500, verbose=1) # k-means with n = 2 

In [34]: kmeans2.fit(df_min_max_scaled) 
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Initialization complete 
Iteration 0, inertia 18427.311216298647 
Iteration 1, inertia 10184.320163749075 
Iteration 2, inertia 10006.009344174558 
Iteration 3, inertia 9946.739537737863 
Iteration 4, inertia 9924.402102243388 
Iteration 5, inertia 9910.780896241331 
Iteration 6, inertia 9905.110900156222 
Iteration 7, inertia 9902.264415823509 
Iteration 8, inertia 9897.72566174957 
Iteration 9, inertia 9895.57672400781 
Iteration 10, inertia 9894.774416642193 
Iteration 11, inertia 9892.907792732634 
Iteration 12, inertia 9889.535477719926 
Iteration 13, inertia 9885.189090329697 
Iteration 14, inertia 9882.336535503198 
Iteration 15, inertia 9878.48056558997 
Iteration 16, inertia 9874.201130739495 
Iteration 17, inertia 9869.024206385815 
Iteration 18, inertia 9859.9664768237 
Iteration 19, inertia 9851.6930077618 
Iteration 20, inertia 9844.315605926562 
Iteration 21, inertia 9838.560305605188 
Iteration 22, inertia 9828.42281943376 
Iteration 23, inertia 9813.08654486762 
Iteration 24, inertia 9801.820301212163 
Iteration 25, inertia 9796.444293037726 
Iteration 26, inertia 9794.424054751174 
Iteration 27, inertia 9794.231982639427 
Iteration 28, inertia 9794.184865647467 
Converged at iteration 28: center shift 1.1769791973055172e-05 within tolerance 
1.1825910645989139e-05. 
Initialization complete 
Iteration 0, inertia 16402.36648533896 
Iteration 1, inertia 9994.565703554776 
Iteration 2, inertia 9934.77322692749 
Iteration 3, inertia 9909.912786027671 
Iteration 4, inertia 9883.607078127476 
Iteration 5, inertia 9850.433915715637 
Iteration 6, inertia 9791.58073461284 
Iteration 7, inertia 9734.449876536686 
Iteration 8, inertia 9646.394815196176 
Iteration 9, inertia 9627.336127098832 
Iteration 10, inertia 9625.954342511643 
Iteration 11, inertia 9625.884133923937 
Iteration 12, inertia 9625.86108434419 
Iteration 13, inertia 9625.840681351561 
Converged at iteration 13: strict convergence. 
Initialization complete 
Iteration 0, inertia 14969.584620698479 
Iteration 1, inertia 9901.195321252426 
Iteration 2, inertia 9853.041301002952 
Iteration 3, inertia 9828.346078346132 
Iteration 4, inertia 9821.497722659567 
Iteration 5, inertia 9816.797972478129 
Iteration 6, inertia 9815.160587833674 
Iteration 7, inertia 9813.203694536212 
Iteration 8, inertia 9812.379447087993 
Iteration 9, inertia 9811.952753836797 
Iteration 10, inertia 9811.747610338476 
Iteration 11, inertia 9811.640620134325 
Iteration 12, inertia 9811.132844140293 
Iteration 13, inertia 9810.651492658839 
Iteration 14, inertia 9810.461157499503 
Iteration 15, inertia 9809.569339539601 
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Iteration 16, inertia 9808.659582332328 
Iteration 17, inertia 9808.2561123607 
Iteration 18, inertia 9807.986336248636 
Iteration 19, inertia 9807.906534765058 
Iteration 20, inertia 9807.487360220597 
Iteration 21, inertia 9806.667738269354 
Iteration 22, inertia 9805.834740565373 
Iteration 23, inertia 9800.048920420628 
Iteration 24, inertia 9788.128577786762 
Iteration 25, inertia 9779.417579204792 
Iteration 26, inertia 9775.38432414417 
Iteration 27, inertia 9761.684802413005 
Iteration 28, inertia 9709.236797762258 
Iteration 29, inertia 9653.799784178347 
Iteration 30, inertia 9642.172114603334 
Iteration 31, inertia 9636.202113008087 
Iteration 32, inertia 9620.09415505929 
Iteration 33, inertia 9617.977388582693 
Iteration 34, inertia 9615.658558431482 
Iteration 35, inertia 9610.65542615645 
Iteration 36, inertia 9607.248540288658 
Iteration 37, inertia 9603.493341174244 
Iteration 38, inertia 9599.523654632054 
Iteration 39, inertia 9597.642822643924 
Iteration 40, inertia 9596.209483776676 
Iteration 41, inertia 9595.35635092364 
Iteration 42, inertia 9594.882428291552 
Iteration 43, inertia 9594.678998923426 
Iteration 44, inertia 9594.37636625157 
Iteration 45, inertia 9594.115982262558 
Iteration 46, inertia 9594.001524563828 
Iteration 47, inertia 9592.870319464864 
Iteration 48, inertia 9587.715138968875 
Iteration 49, inertia 9578.793233518765 
Iteration 50, inertia 9556.18315100723 
Iteration 51, inertia 9517.365630351003 
Iteration 52, inertia 9457.17665798308 
Iteration 53, inertia 9440.017782540526 
Iteration 54, inertia 9439.746651906471 
Iteration 55, inertia 9439.703145546147 
Converged at iteration 55: strict convergence. 
Initialization complete 
Iteration 0, inertia 16595.25826599754 
Iteration 1, inertia 10109.37538869094 
Iteration 2, inertia 9915.261803411886 
Iteration 3, inertia 9789.099147804835 
Iteration 4, inertia 9778.126542918279 
Iteration 5, inertia 9777.915684703536 
Converged at iteration 5: strict convergence. 
Initialization complete 
Iteration 0, inertia 15375.183674102089 
Iteration 1, inertia 9952.678493621155 
Iteration 2, inertia 9884.256882726944 
Iteration 3, inertia 9864.875145644339 
Iteration 4, inertia 9859.869224463644 
Iteration 5, inertia 9858.379095829157 
Iteration 6, inertia 9854.219459620635 
Iteration 7, inertia 9841.672028071058 
Iteration 8, inertia 9832.676859254072 
Iteration 9, inertia 9818.161920484818 
Iteration 10, inertia 9805.876930142955 
Iteration 11, inertia 9798.29221813926 
Iteration 12, inertia 9794.467009896513 
Iteration 13, inertia 9794.22218892144 
Iteration 14, inertia 9794.184865647467 
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Converged at iteration 14: center shift 1.1769791973055237e-05 within tolerance 
1.1825910645989139e-05. 
Initialization complete 
Iteration 0, inertia 18359.985955431566 
Iteration 1, inertia 10101.593413896659 
Iteration 2, inertia 9982.754190681128 
Iteration 3, inertia 9917.840303560613 
Iteration 4, inertia 9890.496715960406 
Iteration 5, inertia 9876.352494100358 
Iteration 6, inertia 9865.682282638423 
Iteration 7, inertia 9853.175178022406 
Iteration 8, inertia 9841.405257717575 
Iteration 9, inertia 9828.743052973643 
Iteration 10, inertia 9812.10020465191 
Iteration 11, inertia 9800.966469728079 
Iteration 12, inertia 9795.474672343822 
Iteration 13, inertia 9794.39208071576 
Iteration 14, inertia 9794.247097906948 
Iteration 15, inertia 9794.203342487108 
Converged at iteration 15: center shift 1.1189193902305637e-05 within tolerance 
1.1825910645989139e-05. 
Initialization complete 
Iteration 0, inertia 14840.19634222251 
Iteration 1, inertia 10012.892987021458 
Iteration 2, inertia 9937.527748973907 
Iteration 3, inertia 9874.816695079277 
Iteration 4, inertia 9840.194716250331 
Iteration 5, inertia 9814.311264293689 
Iteration 6, inertia 9800.700957677194 
Iteration 7, inertia 9771.602530465227 
Iteration 8, inertia 9541.236198237983 
Iteration 9, inertia 9441.157699191357 
Iteration 10, inertia 9439.835639639505 
Iteration 11, inertia 9439.70314554615 
Converged at iteration 11: strict convergence. 

KMeans(max_iter=500, n_clusters=2, verbose=1)

Size of Cluster 0 =  1067 
Size of Cluster 1 =  1044 

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no family_

0 0.22 0.58 0.39 -0.00 1.00 0.14

Out[34]:

In [35]: clusters2 = kmeans2.predict(df_min_max_scaled) 

In [36]: size2 = cluster_sizes(clusters2) 
 
for c in size2.keys(): 
    print("Size of Cluster", c, "= ", size2[c]) 

In [37]: # View centroids for an aggregate representation and a characterization of each 
pd.options.display.float_format='{:,.2f}'.format 
 
centroids2 = pd.DataFrame(kmeans2.cluster_centers_, columns=df_min_max_scaled.co
centroids2 

Out[37]:
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Mean Silhouette Value : 0.13093478332005926 

above shows the results of the silhouette analysis for K=2, which achieved the best silhouette

plot compared to previous plots at K = 5 and K = 3. This silhouette plot shows that both cluster

0 and 1 have coefficients that are above the mean silhouette value and none of the coefficients

are negative. Both clusters are neither thick nor full, although, cluster 0 appears thicker than

cluster 1, but from the clustering results above, this result is most successful. When looking at

the centroids, the two features that stand out that most likely represent the clusters compared

to all other features is Gender_Male and Gender_Female. In cluster 0, Gender_Male has a value

of 1.00 while Gender_Female has a value of -0.00 and in cluster 1, Gender_Female has a value of

1.00 while Gender_Male has a value 0.00. Moreover, we can conclude from the silhouette plots

above that likely, cluster 0 represents males and cluster 1 represents female. This evaluation

shows that a pattern exists by gender and that gender may play a role in the dataset and in

determining classification of obesity levels.

Next, we will create age groups and seperate the age of each individual based
on generation. Exploring age groups will allow us to re-evaluate the clusters and
determine if a pattern exists also within age group for classification.

Discretize the Age attribute into 4 seperate age groups and re-run K-Means
Clustering:

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no family_

1 0.21 0.36 0.32 1.00 0.00 0.22

In [38]: # Silhouette Analysis at n = 2: 
c2_silhouette = metrics.silhouette_samples(df_min_max_scaled, clusters2) 
print('Mean Silhouette Value :', c2_silhouette.mean()) 

In [39]: # Plot and Evaluate the Silhouettes: 
plot_silhouettes(df_min_max_scaled, clusters2)
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Gen-Z (1997 – 2012), Age: 9 – 24

Millennials (1981 – 1996), Age: 25 – 40

Gen-X (1965 – 1980), Age: 41 – 56

Boomers (1955 - 1964), Age: 57 - 66

14

61

0    (13.999, 24.0] 
1    (13.999, 24.0] 
2    (13.999, 24.0] 
3      (24.0, 40.0] 
4    (13.999, 24.0] 
Name: Age, dtype: category 
Categories (3, interval[float64]): [(13.999, 24.0] < (24.0, 40.0] < (40.0, 61.
0]]

Age Group Age

0 Gen-Z 21

1 Gen-Z 21

2 Gen-Z 23

3 Millenials 27

4 Gen-Z 22

5 Millenials 29

6 Gen-Z 23

7 Gen-Z 22

8 Gen-Z 24

9 Gen-Z 22

In [40]: data_numeric.Age.min() #youngest age in the dataset  

Out[40]:

In [41]: data_numeric.Age.max() #oldest age in the dataset 

Out[41]:

In [42]: age_bins = pd.qcut(data_numeric.Age, [0, .61, .972, 1]) 
age_bins.head(5) 

Out[42]:

In [43]: age_bins = pd.qcut(data_numeric.Age, [0, .61, .972, 1], labels = ['Gen-Z', 'Mill
age_df = pd.concat([age_bins, df2['Age']], axis=1) 
age_df.columns = ['Age Group', 'Age'] 
age_df.head(10) 

Out[43]:

In [44]: data_age_groups = data_numeric 
data_age_groups["Age"] = age_df['Age Group'] 
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K-means algorithm with the three generational age groups: Gen-Z, Millennials, and Gen-X and

Boomers. This exploration is being explored to see if a pattern exists based on age range which

the cluster analysis for the full dataset did not evaluate since the age groups were not grouped

into categories. The youngest age is 14 and the oldest age is 61. The age groups are created by

binning the Age attribute and then transforming the age group attribute into dummy variables.

For exploratory purposes, K-means is performed on the dataset first without min-max

normalization and second with min-max normalization at K = 3.

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no fa

0 Gen-Z 1.62 64.00 1 0 0

1 Gen-Z 1.52 56.00 1 0 0

2 Gen-Z 1.80 77.00 0 1 0

3 Millenials 1.80 87.00 0 1 1

4 Gen-Z 1.78 89.80 0 1 1

5 Millenials 1.62 53.00 0 1 1

6 Gen-Z 1.50 55.00 1 0 0

7 Gen-Z 1.64 53.00 0 1 1

8 Gen-Z 1.78 64.00 0 1 0

9 Gen-Z 1.72 68.00 0 1 0

Height Weight Gender_Female Gender_Male family_history_with_overweight_no family_histo

0 1.62 64.00 1 0 0

1 1.52 56.00 1 0 0

2 1.80 77.00 0 1 0

3 1.80 87.00 0 1 1

4 1.78 89.80 0 1 1

In [45]: data_age_groups.head(10) 

Out[45]:

In [46]: # Create Dummy Variables for Binned Dataset: 
df_age_groups = pd.get_dummies(data_age_groups) 
df_age_groups.head(5) 

Out[46]:

In [47]: # Perform K-Means Clustering with N = 3: 
kmeans = KMeans(n_clusters=3, max_iter=500, verbose=1) #initialize k-means with 
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Initialization complete 
Iteration 0, inertia 266216.09575717594 
Iteration 1, inertia 215521.27371160412 
Iteration 2, inertia 210755.68046562248 
Iteration 3, inertia 209722.10499704749 
Iteration 4, inertia 209418.75170585237 
Iteration 5, inertia 209024.46758980726 
Iteration 6, inertia 208957.87320545508 
Iteration 7, inertia 208952.94787903182 
Converged at iteration 7: center shift 0.0008306717121226465 within tolerance 0.
0015358503717230955. 
Initialization complete 
Iteration 0, inertia 502841.1735953951 
Iteration 1, inertia 327560.09540897014 
Iteration 2, inertia 315527.1447145528 
Iteration 3, inertia 309720.53549766104 
Iteration 4, inertia 300890.08942123153 
Iteration 5, inertia 292303.3695465401 
Iteration 6, inertia 287217.5099774456 
Iteration 7, inertia 283800.36697429675 
Iteration 8, inertia 278425.3310745159 
Iteration 9, inertia 270545.8711724134 
Iteration 10, inertia 246805.06029650217 
Iteration 11, inertia 232750.70198980303 
Iteration 12, inertia 226653.87489398956 
Iteration 13, inertia 216920.98018306002 
Iteration 14, inertia 212292.1259899532 
Iteration 15, inertia 209925.16585043436 
Iteration 16, inertia 209641.8566251863 
Iteration 17, inertia 209612.29209838895 
Iteration 18, inertia 209601.88285883892 
Iteration 19, inertia 209598.80247956378 
Converged at iteration 19: strict convergence. 
Initialization complete 
Iteration 0, inertia 326936.9440904384 
Iteration 1, inertia 226724.44726938492 
Iteration 2, inertia 213994.4657317486 
Iteration 3, inertia 210480.97315506768 
Iteration 4, inertia 209660.8099794086 
Iteration 5, inertia 209614.6304476699 
Iteration 6, inertia 209601.88285883892 
Iteration 7, inertia 209598.80247956383 
Converged at iteration 7: strict convergence. 
Initialization complete 
Iteration 0, inertia 244660.38351519656 
Iteration 1, inertia 211950.75265903442 
Iteration 2, inertia 209849.7543072008 
Iteration 3, inertia 209518.7500452044 
Iteration 4, inertia 209060.11326694212 
Iteration 5, inertia 208957.87320545508 
Iteration 6, inertia 208952.94787903182 
Converged at iteration 6: center shift 0.0008306717121226465 within tolerance 0.
0015358503717230955. 
Initialization complete 
Iteration 0, inertia 293038.3352946884 
Iteration 1, inertia 213135.03302011758 
Iteration 2, inertia 210104.25819821077 
Iteration 3, inertia 209618.1187074107 
Iteration 4, inertia 209113.16767690537 
Iteration 5, inertia 208962.37801962328 
Iteration 6, inertia 208952.94787903185 

In [48]: kmeans.fit(df_age_groups) 
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Converged at iteration 6: center shift 0.0008306717121226769 within tolerance 0.
0015358503717230955. 
Initialization complete 
Iteration 0, inertia 275553.3335700919 
Iteration 1, inertia 222295.79489500792 
Iteration 2, inertia 212492.7176855583 
Iteration 3, inertia 209869.48135591563 
Iteration 4, inertia 209628.24667814613 
Iteration 5, inertia 209612.29209838895 
Iteration 6, inertia 209601.88285883892 
Iteration 7, inertia 209598.80247956383 
Converged at iteration 7: strict convergence. 
Initialization complete 
Iteration 0, inertia 286761.1414317467 
Iteration 1, inertia 210695.01280865865 
Iteration 2, inertia 209668.3036758006 
Iteration 3, inertia 209614.6304476699 
Iteration 4, inertia 209601.88285883892 
Iteration 5, inertia 209598.80247956383 
Converged at iteration 5: strict convergence. 
Initialization complete 
Iteration 0, inertia 383050.70537416794 
Iteration 1, inertia 268032.44644019724 
Iteration 2, inertia 222407.19095729562 
Iteration 3, inertia 213626.56770579072 
Iteration 4, inertia 210456.74923156487 
Iteration 5, inertia 209703.02658441686 
Iteration 6, inertia 209362.03202101542 
Iteration 7, inertia 209013.56709803338 
Iteration 8, inertia 208954.93374886544 
Iteration 9, inertia 208952.94787903185 
Converged at iteration 9: center shift 0.0008306717121226467 within tolerance 0.
0015358503717230955. 
Initialization complete 
Iteration 0, inertia 374254.3643704856 
Iteration 1, inertia 227441.0113142989 
Iteration 2, inertia 210113.7182635559 
Iteration 3, inertia 209144.6971247129 
Iteration 4, inertia 209037.23080006722 
Iteration 5, inertia 208970.75843448716 
Iteration 6, inertia 208958.73649992305 
Converged at iteration 6: center shift 0.0010520324381042456 within tolerance 0.
0015358503717230955. 
Initialization complete 
Iteration 0, inertia 306059.6127144407 
Iteration 1, inertia 230381.17640096927 
Iteration 2, inertia 216298.96923962721 
Iteration 3, inertia 211115.72555699918 
Iteration 4, inertia 209886.61690318544 
Iteration 5, inertia 209525.64261090878 
Iteration 6, inertia 209040.15129423398 
Iteration 7, inertia 208957.87320545508 
Iteration 8, inertia 208952.94787903182 
Converged at iteration 8: center shift 0.0008306717121226166 within tolerance 0.
0015358503717230955. 

KMeans(max_iter=500, n_clusters=3, verbose=1)Out[48]:

In [49]: age_clusters = kmeans.predict(df_age_groups) 

In [50]: size = cluster_sizes(age_clusters) 
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Size of Cluster 0 =  789 
Size of Cluster 1 =  731 
Size of Cluster 2 =  591 

0   0.64 
1   0.43 
2   0.90 
Name: Age_Gen-Z, dtype: float64

0   0.31 
1   0.56 
2   0.10 
Name: Age_Millenials, dtype: float64

0   0.04 
1   0.01 
2   0.00 
Name: Age_Gen-X & Boomers, dtype: float64

Mean Silhouette Value : 0.5691256560102319 

Height Weight Gender_Female Gender_Male family_history_with_overweight_no family_histo

0 1.70 82.18 0.39 0.61 0.13

1 1.74 116.59 0.44 0.56 0.00

2 1.65 55.37 0.69 0.31 0.48

for c in size.keys(): 
    print("Size of Cluster", c, "= ", size[c]) 

In [51]: # View centroids for an aggregate representation and a characterization of each 
pd.options.display.float_format='{:,.2f}'.format 
 
centroids = pd.DataFrame(kmeans.cluster_centers_, columns=df_age_groups.columns.
centroids 

Out[51]:

In [52]: centroids['Age_Gen-Z'] #clusters containing Gen-Z 

Out[52]:

In [53]: centroids['Age_Millenials'] #clusters containing Millenials 

Out[53]:

In [54]: centroids['Age_Gen-X & Boomers'] #clusters containing Gen-X and Boomers 

Out[54]:

In [55]: # Silhouette Analysis at n = 3: 
age_silhouette = metrics.silhouette_samples(df_age_groups, age_clusters) 
print('Mean Silhouette Value :', age_silhouette.mean()) 

In [56]: # Plot and Evaluate the Silhouettes: 
plot_silhouettes(df_age_groups, age_clusters) 
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The results of cluster analysis without normalization shows a very healthy silhouette plot with all

three clusters full, thick, and with coefficients above the mean silhouette value. Figure 2.1 below

confirms that clusters when age is grouped by range. When looking at the centroids, cluster 2

shows Gen-Z at 0.9 while Millennials at .10 and Gen-X and Boomers at 0.00. Most likely Gen-Z is

represented in cluster 2.

Completeness Score for Clusters: 0.7020884578966542 
Homogeneity Score for Clusters: 0.39448267211636195 

The completeness and homogeneity scores were calculated for clusters since the class labels

exist for further examination of the cluster quality. The completeness score was 0.70 which

shows that members of a given class are assigned to the same cluster 70% of the time. The

completeness score is positive and confirms that the clusters captured most of one class. The

homogeneity score was much lower at 0.39 which shows that the clusters are not pure. These

results may indicate that age group may be a factor in deciding the clusters for the data, but it

may not be the main factor that affects obesity level for classification. The silhouette plots

above display that a pattern exist but we must take into consideration that the data was not

scaled. As such, we will next, perform K-means again with the data normalized to validate the

results.

Perform K-Means with Normalized Data on Age Groups for Comparsion:

In [57]: # Calculate Completeness and Homogeneity for the clusters: 
complete = completeness_score(labels_num, age_clusters) 
print(f"Completeness Score for Clusters: {complete}") 
homogene = homogeneity_score(labels_num, age_clusters) 
print(f"Homogeneity Score for Clusters: {homogene}") 

In [58]: # Normalize the dataset with Min-Max Scaling: 
df_age_groups_norm = df_age_groups.copy()
for column in df_age_groups_norm.columns: 
    df_age_groups_norm[column] = (df_age_groups_norm[column] - df_age_groups_nor

In [59]: # View normalized data: 
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      Height  Weight  Gender_Female  Gender_Male  \ 
0       0.32    0.19           1.00         0.00    
1       0.13    0.13           1.00         0.00    
2       0.66    0.28           0.00         1.00    
3       0.66    0.36           0.00         1.00    
4       0.62    0.38           0.00         1.00    
...      ...     ...            ...          ...    
2106    0.49    0.69           1.00         0.00    
2107    0.56    0.71           1.00         0.00    
2108    0.57    0.71           1.00         0.00    
2109    0.55    0.70           1.00         0.00    
2110    0.54    0.71           1.00         0.00    

      family_history_with_overweight_no  family_history_with_overweight_yes  \ 
0                                  0.00                                1.00    
1                                  0.00                                1.00    
2                                  0.00                                1.00    
3                                  1.00                                0.00    
4                                  1.00                                0.00    
...                                 ...                                 ...    
2106                               0.00                                1.00    
2107                               0.00                                1.00    
2108                               0.00                                1.00    
2109                               0.00                                1.00    
2110                               0.00                                1.00    

      FAVC_no  FAVC_yes  FCVC_Always  FCVC_Never  FCVC_Sometimes  NCP_1  \ 
0        1.00      0.00         0.00        0.00            1.00   0.00    
1        1.00      0.00         1.00        0.00            0.00   0.00    
2        1.00      0.00         0.00        0.00            1.00   0.00    
3        1.00      0.00         1.00        0.00            0.00   0.00    
4        1.00      0.00         0.00        0.00            1.00   1.00    
...       ...       ...          ...         ...             ...    ...    
2106     0.00      1.00         1.00        0.00            0.00   0.00    
2107     0.00      1.00         1.00        0.00            0.00   0.00    
2108     0.00      1.00         1.00        0.00            0.00   0.00    
2109     0.00      1.00         1.00        0.00            0.00   0.00    
2110     0.00      1.00         1.00        0.00            0.00   0.00    

      NCP_2  NCP_3  NCP_3+  CAEC_Always  CAEC_Frequently  CAEC_Sometimes  \ 
0      0.00   1.00    0.00         0.00             0.00            1.00    
1      0.00   1.00    0.00         0.00             0.00            1.00    
2      0.00   1.00    0.00         0.00             0.00            1.00    
3      0.00   1.00    0.00         0.00             0.00            1.00    
4      0.00   0.00    0.00         0.00             0.00            1.00    
...     ...    ...     ...          ...              ...             ...    
2106   0.00   1.00    0.00         0.00             0.00            1.00    
2107   0.00   1.00    0.00         0.00             0.00            1.00    
2108   0.00   1.00    0.00         0.00             0.00            1.00    
2109   0.00   1.00    0.00         0.00             0.00            1.00    
2110   0.00   1.00    0.00         0.00             0.00            1.00    

      CAEC_no  SMOKE_no  SMOKE_yes  CH2O_Between 1 and 2 L  \ 
0        0.00      1.00       0.00                    1.00    
1        0.00      0.00       1.00                    0.00    
2        0.00      1.00       0.00                    1.00    
3        0.00      1.00       0.00                    1.00    
4        0.00      1.00       0.00                    1.00    
...       ...       ...        ...                     ...    
2106     0.00      1.00       0.00                    0.00    
2107     0.00      1.00       0.00                    1.00    
2108     0.00      1.00       0.00                    1.00    
2109     0.00      1.00       0.00                    1.00    
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2110     0.00      1.00       0.00                    1.00    

      CH2O_Less than a liter  CH2O_More than 2 L  SCC_no  SCC_yes  \ 
0                       0.00                0.00    1.00     0.00    
1                       0.00                1.00    0.00     1.00    
2                       0.00                0.00    1.00     0.00    
3                       0.00                0.00    1.00     0.00    
4                       0.00                0.00    1.00     0.00    
...                      ...                 ...     ...      ...    
2106                    1.00                0.00    1.00     0.00    
2107                    0.00                0.00    1.00     0.00    
2108                    0.00                0.00    1.00     0.00    
2109                    0.00                0.00    1.00     0.00    
2110                    0.00                0.00    1.00     0.00    

      FAF_1 or 2 days  FAF_2 or 4 days  FAF_4 or 5 days  FAF_I do not have  \ 
0                0.00             0.00             0.00               1.00    
1                0.00             0.00             1.00               0.00    
2                0.00             1.00             0.00               0.00    
3                0.00             1.00             0.00               0.00    
4                0.00             0.00             0.00               1.00    
...               ...              ...              ...                ...    
2106             1.00             0.00             0.00               0.00    
2107             1.00             0.00             0.00               0.00    
2108             1.00             0.00             0.00               0.00    
2109             1.00             0.00             0.00               0.00    
2110             1.00             0.00             0.00               0.00    

      TUE_0-2 Hours  TUE_3-5 Hours  TUE_More than 5 Hours  CALC_Always  \ 
0              0.00           1.00                   0.00         0.00    
1              1.00           0.00                   0.00         0.00    
2              0.00           1.00                   0.00         0.00    
3              1.00           0.00                   0.00         0.00    
4              1.00           0.00                   0.00         0.00    
...             ...            ...                    ...          ...    
2106           1.00           0.00                   0.00         0.00    
2107           1.00           0.00                   0.00         0.00    
2108           1.00           0.00                   0.00         0.00    
2109           1.00           0.00                   0.00         0.00    
2110           1.00           0.00                   0.00         0.00    

      CALC_Frequently  CALC_Sometimes  CALC_no  MTRANS_Automobile  \ 
0                0.00            0.00     1.00               0.00    
1                0.00            1.00     0.00               0.00    
2                1.00            0.00     0.00               0.00    
3                1.00            0.00     0.00               0.00    
4                0.00            1.00     0.00               0.00    
...               ...             ...      ...                ...    
2106             0.00            1.00     0.00               0.00    
2107             0.00            1.00     0.00               0.00    
2108             0.00            1.00     0.00               0.00    
2109             0.00            1.00     0.00               0.00    
2110             0.00            1.00     0.00               0.00    

      MTRANS_Bike  MTRANS_Motorbike  MTRANS_Public_Transportation  \ 
0            0.00              0.00                          1.00    
1            0.00              0.00                          1.00    
2            0.00              0.00                          1.00    
3            0.00              0.00                          0.00    
4            0.00              0.00                          1.00    
...           ...               ...                           ...    
2106         0.00              0.00                          1.00    
2107         0.00              0.00                          1.00    
2108         0.00              0.00                          1.00    
2109         0.00              0.00                          1.00    
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2110         0.00              0.00                          1.00    

      MTRANS_Walking  Age_Gen-Z  Age_Millenials  Age_Gen-X & Boomers   
0               0.00       1.00            0.00                 0.00   
1               0.00       1.00            0.00                 0.00   
2               0.00       1.00            0.00                 0.00   
3               1.00       0.00            1.00                 0.00   
4               0.00       1.00            0.00                 0.00   
...              ...        ...             ...                  ...   
2106            0.00       1.00            0.00                 0.00   
2107            0.00       1.00            0.00                 0.00   
2108            0.00       1.00            0.00                 0.00   
2109            0.00       1.00            0.00                 0.00   
2110            0.00       1.00            0.00                 0.00   

[2111 rows x 45 columns] 

Initialization complete 
Iteration 0, inertia 15293.30577388341 
Iteration 1, inertia 9968.066331837832 
Iteration 2, inertia 9920.180131785271 
Iteration 3, inertia 9903.77236856074 
Iteration 4, inertia 9896.176445738252 
Iteration 5, inertia 9891.495588792406 
Iteration 6, inertia 9889.624965572522 
Iteration 7, inertia 9888.823257389276 
Iteration 8, inertia 9888.487377405678 
Iteration 9, inertia 9888.340285312179 
Iteration 10, inertia 9888.20252958357 
Iteration 11, inertia 9887.532993038576 
Iteration 12, inertia 9887.504196402364 
Converged at iteration 12: strict convergence. 
Initialization complete 
Iteration 0, inertia 15755.748152264905 
Iteration 1, inertia 10291.16329342617 
Iteration 2, inertia 10228.905860318164 
Iteration 3, inertia 10188.107451127948 
Iteration 4, inertia 10144.37857128053 
Iteration 5, inertia 10107.001253617971 
Iteration 6, inertia 10086.05688167689 
Iteration 7, inertia 10077.969028399091 
Iteration 8, inertia 10068.115905357135 
Iteration 9, inertia 10054.640327576219 
Iteration 10, inertia 10036.68992669457 
Iteration 11, inertia 10012.308155223136 
Iteration 12, inertia 9995.089501496252 
Iteration 13, inertia 9979.257157992513 
Iteration 14, inertia 9938.759373638944 
Iteration 15, inertia 9911.724132573296 
Iteration 16, inertia 9891.1788188847 
Iteration 17, inertia 9754.311626803314 
Iteration 18, inertia 9678.154213662237 
Iteration 19, inertia 9667.068511677915 
Iteration 20, inertia 9660.214612839805 
Iteration 21, inertia 9654.574790207527 
Iteration 22, inertia 9645.63794782316 
Iteration 23, inertia 9644.899891129677 

In [60]: # Perform K-Means Clustering with N = 3: 
kmeans3 = KMeans(n_clusters=3, max_iter=500, verbose=1) 

In [61]: kmeans3.fit(df_age_groups_norm) 
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Iteration 24, inertia 9644.748605586845 
Iteration 25, inertia 9644.595919167177 
Iteration 26, inertia 9644.549083693555 
Iteration 27, inertia 9641.042116346523 
Iteration 28, inertia 9638.110099852393 
Iteration 29, inertia 9634.979187430297 
Iteration 30, inertia 9632.762887140108 
Iteration 31, inertia 9632.086194242833 
Iteration 32, inertia 9631.65577226331 
Iteration 33, inertia 9631.569838198466 
Iteration 34, inertia 9631.539746213291 
Converged at iteration 34: strict convergence. 
Initialization complete 
Iteration 0, inertia 14748.903594063975 
Iteration 1, inertia 9965.186003070134 
Iteration 2, inertia 9825.169923880945 
Iteration 3, inertia 9744.272576918649 
Iteration 4, inertia 9667.587922972407 
Iteration 5, inertia 9644.10573691932 
Iteration 6, inertia 9635.267693732794 
Iteration 7, inertia 9633.29914147962 
Iteration 8, inertia 9632.952141350772 
Iteration 9, inertia 9632.87014898023 
Converged at iteration 9: strict convergence. 
Initialization complete 
Iteration 0, inertia 14484.898807356742 
Iteration 1, inertia 9955.81303074818 
Iteration 2, inertia 9713.282859132194 
Iteration 3, inertia 9671.355873128363 
Iteration 4, inertia 9650.513068725491 
Iteration 5, inertia 9645.317685969698 
Iteration 6, inertia 9642.530506536332 
Iteration 7, inertia 9641.485885635826 
Iteration 8, inertia 9640.28240915911 
Iteration 9, inertia 9639.857937703955 
Iteration 10, inertia 9639.774644478792 
Iteration 11, inertia 9639.697843285941 
Iteration 12, inertia 9639.504960365535 
Iteration 13, inertia 9638.95769401947 
Iteration 14, inertia 9638.573356540428 
Iteration 15, inertia 9636.940111858781 
Iteration 16, inertia 9635.980505559797 
Iteration 17, inertia 9635.293549236569 
Iteration 18, inertia 9633.992196284771 
Iteration 19, inertia 9631.294896772604 
Iteration 20, inertia 9629.157517862288 
Iteration 21, inertia 9629.034229492028 
Iteration 22, inertia 9628.960271079659 
Iteration 23, inertia 9628.812549454027 
Iteration 24, inertia 9628.623882692866 
Iteration 25, inertia 9628.59305637934 
Iteration 26, inertia 9628.524787673914 
Iteration 27, inertia 9628.459530177464 
Converged at iteration 27: strict convergence. 
Initialization complete 
Iteration 0, inertia 16152.65491388627 
Iteration 1, inertia 10375.533418947318 
Iteration 2, inertia 10144.857929200623 
Iteration 3, inertia 10053.027516666378 
Iteration 4, inertia 10011.007658000435 
Iteration 5, inertia 9990.350407887636 
Iteration 6, inertia 9980.01909365632 
Iteration 7, inertia 9973.147134155095 
Iteration 8, inertia 9962.93227967642 
Iteration 9, inertia 9950.804233790155 
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Iteration 10, inertia 9929.106524971192 
Iteration 11, inertia 9893.61445739094 
Iteration 12, inertia 9871.997645307263 
Iteration 13, inertia 9853.145440604721 
Iteration 14, inertia 9818.078861860033 
Iteration 15, inertia 9757.278886917615 
Iteration 16, inertia 9713.510022024357 
Iteration 17, inertia 9680.926171314575 
Iteration 18, inertia 9674.777601266724 
Iteration 19, inertia 9673.122071852886 
Iteration 20, inertia 9672.685183118592 
Iteration 21, inertia 9672.518137679992 
Iteration 22, inertia 9672.500575556094 
Converged at iteration 22: strict convergence. 
Initialization complete 
Iteration 0, inertia 16505.93842126068 
Iteration 1, inertia 10174.540781006854 
Iteration 2, inertia 9896.176365470483 
Iteration 3, inertia 9755.217403382474 
Iteration 4, inertia 9710.856879173405 
Iteration 5, inertia 9695.291352573073 
Iteration 6, inertia 9683.148926900818 
Iteration 7, inertia 9667.5491075782 
Iteration 8, inertia 9655.586520230188 
Iteration 9, inertia 9649.747659712908 
Iteration 10, inertia 9645.46312963105 
Iteration 11, inertia 9644.40630542299 
Iteration 12, inertia 9644.101013829977 
Iteration 13, inertia 9643.642758888995 
Iteration 14, inertia 9643.008226227485 
Iteration 15, inertia 9642.844684153424 
Iteration 16, inertia 9642.701135334233 
Iteration 17, inertia 9642.57061072763 
Iteration 18, inertia 9642.519519077938 
Iteration 19, inertia 9642.504477800321 
Converged at iteration 19: strict convergence. 
Initialization complete 
Iteration 0, inertia 17172.960091144152 
Iteration 1, inertia 10194.671271050402 
Iteration 2, inertia 10127.428286254335 
Iteration 3, inertia 10110.648670434139 
Iteration 4, inertia 10088.305356307605 
Iteration 5, inertia 10056.98392140109 
Iteration 6, inertia 10014.54147542604 
Iteration 7, inertia 9984.782947200316 
Iteration 8, inertia 9948.035333426422 
Iteration 9, inertia 9907.185271483926 
Iteration 10, inertia 9884.78043245219 
Iteration 11, inertia 9863.689071376455 
Iteration 12, inertia 9845.824302775172 
Iteration 13, inertia 9831.477466918255 
Iteration 14, inertia 9805.29705603225 
Iteration 15, inertia 9788.493454238513 
Iteration 16, inertia 9782.947379376854 
Iteration 17, inertia 9781.810910498489 
Iteration 18, inertia 9781.446129264701 
Iteration 19, inertia 9781.063080143778 
Iteration 20, inertia 9780.165908514351 
Iteration 21, inertia 9779.376078944326 
Iteration 22, inertia 9778.781046860006 
Iteration 23, inertia 9777.25564144428 
Iteration 24, inertia 9771.593080768085 
Iteration 25, inertia 9759.993073682037 
Iteration 26, inertia 9741.127172080985 
Iteration 27, inertia 9725.59447725809 
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Iteration 28, inertia 9693.057299937595 
Iteration 29, inertia 9674.633488354748 
Iteration 30, inertia 9668.883857942214 
Iteration 31, inertia 9668.062939210902 
Iteration 32, inertia 9667.795522508974 
Converged at iteration 32: strict convergence. 
Initialization complete 
Iteration 0, inertia 16121.151887575434 
Iteration 1, inertia 10180.975017955254 
Iteration 2, inertia 10012.790506392183 
Iteration 3, inertia 9945.149592230093 
Iteration 4, inertia 9902.19445401729 
Iteration 5, inertia 9854.551471824738 
Iteration 6, inertia 9796.629809393482 
Iteration 7, inertia 9733.824033247713 
Iteration 8, inertia 9709.60496866079 
Iteration 9, inertia 9701.710992691354 
Iteration 10, inertia 9698.331774194536 
Iteration 11, inertia 9696.490391355273 
Iteration 12, inertia 9695.20652681061 
Iteration 13, inertia 9695.015903631236 
Iteration 14, inertia 9694.98725574485 
Converged at iteration 14: strict convergence. 
Initialization complete 
Iteration 0, inertia 15719.84699885392 
Iteration 1, inertia 10093.886021577151 
Iteration 2, inertia 9883.872126085509 
Iteration 3, inertia 9824.269228240664 
Iteration 4, inertia 9779.058685068434 
Iteration 5, inertia 9725.75686585067 
Iteration 6, inertia 9686.098533273536 
Iteration 7, inertia 9677.796926090543 
Iteration 8, inertia 9674.731965248277 
Iteration 9, inertia 9673.142492501147 
Iteration 10, inertia 9672.65337922592 
Iteration 11, inertia 9672.51584737018 
Iteration 12, inertia 9672.498249204844 
Converged at iteration 12: strict convergence. 
Initialization complete 
Iteration 0, inertia 15272.42924127074 
Iteration 1, inertia 10146.7544705174 
Iteration 2, inertia 10060.416621065493 
Iteration 3, inertia 10009.051773331206 
Iteration 4, inertia 9916.53892424252 
Iteration 5, inertia 9817.043864074043 
Iteration 6, inertia 9800.317052776645 
Iteration 7, inertia 9790.614521302858 
Iteration 8, inertia 9786.58080875628 
Iteration 9, inertia 9785.526700118644 
Iteration 10, inertia 9783.706006793813 
Iteration 11, inertia 9782.330522508842 
Iteration 12, inertia 9781.663433153548 
Iteration 13, inertia 9781.595470810445 
Iteration 14, inertia 9781.360992187556 
Iteration 15, inertia 9781.307176755947 
Converged at iteration 15: strict convergence. 

KMeans(max_iter=500, n_clusters=3, verbose=1)Out[61]:

In [62]: clusters_norm3 = kmeans3.predict(df_age_groups_norm) 

In [63]: size3 = cluster_sizes(clusters_norm3) 
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Size of Cluster 0 =  541 
Size of Cluster 1 =  1018 
Size of Cluster 2 =  552 

0   0.62 
1   0.99 
2   0.01 
Name: Age_Gen-Z, dtype: float64

0   0.37 
1   0.01 
2   0.92 
Name: Age_Millenials, dtype: float64

0   0.01 
1   0.00 
2   0.07 
Name: Age_Gen-X & Boomers, dtype: float64

Mean Silhouette Value : 0.11905854619225616 

Height Weight Gender_Female Gender_Male family_history_with_overweight_no family_histo

0 0.43 0.45 0.90 0.10 0.15

1 0.48 0.27 0.39 0.61 0.26

2 0.51 0.42 0.30 0.70 0.07

for c in size3.keys(): 
    print("Size of Cluster", c, "= ", size3[c]) 

In [64]: # View centroids for an aggregate representation and a characterization of each 
pd.options.display.float_format='{:,.2f}'.format 
 
centroids3 = pd.DataFrame(kmeans3.cluster_centers_, columns=df_age_groups_norm.c
centroids3 

Out[64]:

In [65]: centroids3['Age_Gen-Z'] #clusters containing Gen-Z Normalized 

Out[65]:

In [66]: centroids3['Age_Millenials'] #clusters containing Millenials Normalized 

Out[66]:

In [67]: centroids3['Age_Gen-X & Boomers'] #clusters containing Gen-X and Boomers Normali

Out[67]:

In [68]: # Silhouette Analysis at n = 3: 
age_norm_silhouette = metrics.silhouette_samples(df_age_groups_norm, clusters_no
print('Mean Silhouette Value :', age_norm_silhouette.mean()) 

In [69]: # Plot and Evaluate the Silhouettes: 
plot_silhouettes(df_age_groups_norm, clusters_norm3) 
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Above, the results are drastically different from the results from the non-normalized data.

Cluster 0 outperformed all other clusters with all its coefficients above the mean silhouette

value. Cluster 2 performed adequately with many of its coefficients above the mean silhouette

value and only a few of its coefficients in negative. Cluster 1 did not perform as well as many of

the coefficients are in negative and none of them are above the mean silhouette value. When

looking at the centroids, the values of the age group do not directly correspond to the silhouette

plots.

Completeness Score for Clusters: 0.3552093808452009 
Homogeneity Score for Clusters: 0.19224754943375816 

These results show that with the normalized data, a pattern may not necessarily appear in the

age groups. Moreover, when examining K-means and clustering, we can see how not scaling the

data may lead to conclusions or patterns about the data when a pattern may not necessarily

exist. This is validated when evaluating the completeness and homogeneity scores, which both

resulted in low scores. The completeness score was around 0.34 and the homogeneity score is

lower at 0.18. These scores show that grouping by age is not the main determining factor for the

classification of obesity levels. Age still may play a role as a key feature, but the clustering

exploration does not necessary reveal that the age groupings have a significant pattern. By

building the classification models and performing feature selection, we will be able to obtain a

better picture of age and age groupings and their role in classifying obesity levels.

Save Output of Data-Set (non-normalized) based on Age-Groups for Classifier Use:

In [70]: # Calculate Completeness and Homogeneity for the clusters: 
complete_norm = completeness_score(labels_num, clusters_norm3) 
print(f"Completeness Score for Clusters: {complete_norm}") 
homogene_norm = homogeneity_score(labels_num, clusters_norm3) 
print(f"Homogeneity Score for Clusters: {homogene_norm}") 

In [71]: # Create a copy of the data with the Age Groups: 
data_age_groups = data_numeric 
data_age_groups["Age"] = age_df['Age Group'] 
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Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no

0 Gen-Z 1.62 64.00 1 0 0

1 Gen-Z 1.52 56.00 1 0 0

2 Gen-Z 1.80 77.00 0 1 0

3 Millenials 1.80 87.00 0 1 1

4 Gen-Z 1.78 89.80 0 1 1

... ... ... ... ... ... ...

2106 Gen-Z 1.71 131.41 1 0 0

2107 Gen-Z 1.75 133.74 1 0 0

2108 Gen-Z 1.75 133.69 1 0 0

2109 Gen-Z 1.74 133.35 1 0 0

2110 Gen-Z 1.74 133.47 1 0 0

2111 rows × 43 columns

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no

0 Gen-Z 1.62 64.00 1 0 0

1 Gen-Z 1.52 56.00 1 0 0

2 Gen-Z 1.80 77.00 0 1 0

3 Millenials 1.80 87.00 0 1 1

4 Gen-Z 1.78 89.80 0 1 1

... ... ... ... ... ... ...

2106 Gen-Z 1.71 131.41 1 0 0

2107 Gen-Z 1.75 133.74 1 0 0

2108 Gen-Z 1.75 133.69 1 0 0

2109 Gen-Z 1.74 133.35 1 0 0

2110 Gen-Z 1.74 133.47 1 0 0

2111 rows × 44 columns

In [72]: data_age_groups 

Out[72]:

In [73]: # Add the class labels as a column to the dataset: 
data_age_groups['NObeyesdad'] = labels_df
data_age_groups 

Out[73]:
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Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no fa

0 Gen-
Z

1.62 64.00 1 0 0

1 Gen-
Z

1.52 56.00 1 0 0

2 Gen-
Z

1.80 77.00 0 1 0

4 Gen-
Z

1.78 89.80 0 1 1

6 Gen-
Z

1.50 55.00 1 0 0

... ... ... ... ... ... ...

2106 Gen-
Z

1.71 131.41 1 0 0

2107 Gen-
Z

1.75 133.74 1 0 0

2108 Gen-
Z

1.75 133.69 1 0 0

2109 Gen-
Z

1.74 133.35 1 0 0

2110 Gen-
Z

1.74 133.47 1 0 0

1353 rows × 44 columns

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no

3 Millenials 1.80 87.00 0 1 1

5 Millenials 1.62 53.00 0 1 1

10 Millenials 1.85 105.00 0 1 0

16 Millenials 1.93 102.00 0 1 0

In [74]: genz_df = data_age_groups[data_age_groups["Age"] == 'Gen-Z'] 
genz_df 

Out[74]:

In [75]: #Save Gen-Z dataframe to CSV: 
genz_df.to_csv('/Users/cl/genz_dataframe.csv', index = False) 

In [76]: millen_df = data_age_groups[data_age_groups["Age"] == 'Millenials'] 
millen_df 

Out[76]:
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Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no

17 Millenials 1.53 78.00 1 0 1

... ... ... ... ... ... ...

2098 Millenials 1.61 104.95 1 0 0

2099 Millenials 1.63 108.09 1 0 0

2100 Millenials 1.63 107.38 1 0 0

2101 Millenials 1.63 107.22 1 0 0

2102 Millenials 1.63 108.11 1 0 0

717 rows × 44 columns

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no

13 Gen-X &
Boomers

1.80 99.00 0 1 1

21 Gen-X &
Boomers

1.69 87.00 1 0 0

92 Gen-X &
Boomers

1.78 84.00 0 1 0

133 Gen-X &
Boomers

1.65 66.00 1 0 1

137 Gen-X &
Boomers

1.60 80.00 0 1 0

161 Gen-X &
Boomers

1.65 80.00 0 1 1

169 Gen-X &
Boomers

1.63 77.00 1 0 0

197 Gen-X &
Boomers

1.75 118.00 0 1 0

201 Gen-X &
Boomers

1.54 80.00 1 0 0

232 Gen-X &
Boomers

1.59 50.00 1 0 0

In [77]: # Save Millenials dataframe to CSV: 
millen_df.to_csv('/Users/cl/millenials_dataframe.csv', index = False) 

In [78]: genxboomers_df = data_age_groups[data_age_groups["Age"] == 'Gen-X & Boomers'] 
genxboomers_df 

Out[78]:
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Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no

252 Gen-X &
Boomers

1.79 90.00 0 1 0

358 Gen-X &
Boomers

1.75 110.00 0 1 0

375 Gen-X &
Boomers

1.80 92.00 0 1 0

492 Gen-X &
Boomers

1.70 86.00 0 1 1

751 Gen-X &
Boomers

1.72 82.92 1 0 1

813 Gen-X &
Boomers

1.77 75.63 1 0 0

1013 Gen-X &
Boomers

1.77 80.49 0 1 1

1017 Gen-X &
Boomers

1.65 79.17 1 0 0

1034 Gen-X &
Boomers

1.75 82.13 0 1 0

1062 Gen-X &
Boomers

1.73 86.95 1 0 0

1063 Gen-X &
Boomers

1.68 79.67 1 0 0

1088 Gen-X &
Boomers

1.66 80.99 0 1 0

1101 Gen-X &
Boomers

1.72 88.60 0 1 0

1158 Gen-X &
Boomers

1.67 80.40 0 1 0

1162 Gen-X &
Boomers

1.68 79.85 1 0 0

1179 Gen-X &
Boomers

1.74 84.73 0 1 0

1208 Gen-X &
Boomers

1.69 80.41 1 0 0

1215 Gen-X &
Boomers

1.57 81.83 1 0 0

1216 Gen-X &
Boomers

1.58 81.94 1 0 0

1267 Gen-X &
Boomers

1.59 76.13 1 0 0

1285 Gen-X &
Boomers

1.65 86.64 1 0 0

83



11/20/21, 10:35 AM Group_Project - Preprocessing & Clustering

file:///Users/cl/Desktop/AppendixB-Cluster(Le,Cody).html 42/42

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no

1286 Gen-X &
Boomers

1.64 81.98 1 0 0

1305 Gen-X &
Boomers

1.60 77.35 1 0 0

1325 Gen-X &
Boomers

1.57 81.06 1 0 0

1385 Gen-X &
Boomers

1.57 81.92 1 0 0

1386 Gen-X &
Boomers

1.58 80.99 1 0 0

1387 Gen-X &
Boomers

1.58 81.92 1 0 0

1489 Gen-X &
Boomers

1.54 77.05 1 0 0

1490 Gen-X &
Boomers

1.59 77.00 1 0 0

1529 Gen-X &
Boomers

1.75 116.59 0 1 0

1618 Gen-X &
Boomers

1.75 115.81 0 1 0

In [79]: # Save Gen-X and Boomers dataframe to CSV: 
genxboomers_df.to_csv('/Users/cl/genxboomers_dataframe.csv', index = False) 

In [ ]:   
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Appendix C: Feature Selection with Decision Tree

Since the best classifer for the dataset was Decision Tree, we will use the Decision Tree

classifier and evaluate it with the full dataset and each age-group dataset. Feature selection will

be performed to obtain the best features from the classification. The top features will determine

which features ultimately affect obesity levels the most. In addition, performing the

classification on the different age groups will allow us to compare and contrast to see if a

certain obesity level based on certain attributes effects a certain age group over another.

'/Users/cl'

Decision Tree and Feature Selection with Full Dataset:

0 Normal_Weight 
1 Normal_Weight 
2 Normal_Weight 
3 Overweight_Level_I 
4 Overweight_Level_II 

...
2106 Obesity_Type_III 
2107 Obesity_Type_III 
2108 Obesity_Type_III 
2109 Obesity_Type_III 

In [1]: import numpy as np 
import pylab as pl 
import pandas as pd 
import importlib 
import matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split 
from sklearn import model_selection 
from sklearn import tree 
from sklearn import feature_selection 
from sklearn import preprocessing 
from sklearn import metrics 

In [2]: %pwd

Out[2]:

In [3]: # Load original dataset to Pandas dataframe: 
df = pd.read_csv('/Users/cl/ObesityDataset.csv', header=0) 
# Load transformed dataset with numeric values only: 
data_numeric = pd.read_csv('/Users/cl/Obesity_numeric.csv', header=0) 
# Load Gen-Z Dataframe: 
genz_df = pd.read_csv('/Users/cl/genz_dataframe.csv', header=0) 
# Load Millenials Dataframe: 
millen_df = pd.read_csv('/Users/cl/millenials_dataframe.csv', header=0)
# Load Gen-X and Boomers Dataframe: 
genxboomers_df = pd.read_csv('/Users/cl/genxboomers_dataframe.csv', header=0) 

In [4]: # Obtain the class label from original dataset: 
labels_df =  df['NObeyesdad'] 
labels_df 

Out[4]:
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2110       Obesity_Type_III 
Name: NObeyesdad, Length: 2111, dtype: object

array([1, 1, 1, ..., 4, 4, 4])

{0: 'Insufficient_Weight', 1: 'Normal_Weight', 2: 'Obesity_Type_I', 3: 'Obesity_
Type_II', 4: 'Obesity_Type_III', 5: 'Overweight_Level_I', 6: 'Overweight_Level_I
I'} 

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_n

0 21 1.620000 64.000000 1 0

1 21 1.520000 56.000000 1 0

2 23 1.800000 77.000000 0 1

3 27 1.800000 87.000000 0 1

4 22 1.780000 89.800000 0 1

... ... ... ... ... ...

2106 20 1.710730 131.408528 1 0

2107 21 1.748584 133.742943 1 0

2108 22 1.752206 133.689352 1 0

2109 24 1.739450 133.346641 1 0

2110 23 1.738836 133.472641 1 0

2111 rows × 43 columns

In [5]: # Transform class label into numeric:  
le = preprocessing.LabelEncoder() 
labels_num = le.fit_transform(labels_df) 
labels_num 

Out[5]:

In [6]: # View class label names and numeric association: 
label_names = dict(zip(le.transform(le.classes_), le.classes_)) 
print(label_names) 

In [7]: # View Transformed Numeric Data: 
data_numeric 

Out[7]:

In [8]: # Build training and test sets: 
x_train, x_test, label_train, label_test = train_test_split(data_numeric, labels

In [9]: # View Training Set: 
x_train 

Out[9]:
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array([1, 6, 4, ..., 6, 1, 6])

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_nAge Height Weight Gender_Female Gender_Male family_history_with_overweight_n

53 23 1.630000 55.000000 1 0

267 38 1.700000 78.000000 0 1

1825 18 1.821566 142.102468 1 0

386 18 1.590000 53.000000 1 0

1413 40 1.559005 77.601483 1 0

... ... ... ... ... ... .

960 17 1.618683 67.193585 1 0

905 20 1.849425 85.228116 0 1

1096 39 1.688354 79.278896 1 0

235 19 1.690000 70.000000 1 0

1061 23 1.725587 82.480214 0 1

1688 rows × 43 columns

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_no

553 16 1.752755 50.000000 0 1

331 17 1.740000 56.000000 0 1 0

241 22 1.600000 66.000000 0 1

1957 26 1.641209 111.856492 1 0 0

1691 30 1.779325 120.751656 0 1 0

... ... ... ... ... ... ..

1201 24 1.789193 89.393589 0 1 0

363 19 1.800000 80.000000 0 1

11 21 1.720000 80.000000 1 0 0

510 22 1.675446 51.154201 1 0 0

1711 28 1.758618 113.501549 0 1 0

423 rows × 43 columns

In [10]: # View Testing Set:  
x_test 

Out[10]:

In [11]: # View Labels for Training Set:  
label_train
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array([0, 1, 5, 4, 3, 4, 2, 4, 2, 2, 1, 3, 2, 2, 5, 2, 5, 3, 0, 6, 2, 2, 
       6, 2, 2, 2, 2, 5, 6, 3, 2, 4, 6, 5, 0, 2, 0, 0, 6, 6, 1, 2, 5, 1, 
       0, 4, 0, 0, 5, 2, 4, 2, 0, 5, 4, 2, 0, 2, 0, 1, 0, 3, 4, 6, 1, 5, 
       4, 2, 6, 3, 2, 0, 4, 4, 3, 3, 0, 6, 3, 4, 5, 5, 4, 2, 0, 6, 1, 4, 
       1, 4, 6, 6, 4, 5, 0, 3, 0, 5, 4, 4, 0, 2, 5, 1, 4, 6, 1, 3, 2, 6, 
       2, 1, 0, 0, 6, 6, 4, 6, 0, 0, 2, 2, 2, 2, 4, 4, 5, 3, 4, 5, 1, 5, 
       2, 2, 6, 2, 1, 4, 6, 3, 3, 0, 6, 6, 0, 6, 6, 5, 4, 4, 2, 2, 0, 6, 
       5, 2, 4, 0, 6, 3, 2, 4, 1, 3, 4, 1, 5, 0, 6, 0, 5, 4, 5, 5, 4, 3, 
       6, 3, 2, 2, 5, 5, 6, 1, 6, 3, 3, 2, 4, 3, 1, 2, 3, 1, 2, 2, 4, 2, 
       0, 2, 6, 2, 5, 5, 1, 2, 0, 0, 2, 3, 6, 5, 5, 3, 4, 1, 2, 0, 1, 5, 
       1, 5, 2, 5, 3, 6, 4, 4, 5, 0, 3, 5, 4, 6, 5, 1, 1, 2, 4, 3, 2, 0, 
       6, 6, 3, 0, 4, 0, 5, 0, 2, 5, 6, 5, 2, 5, 6, 3, 3, 0, 3, 5, 2, 4, 
       2, 4, 5, 4, 4, 4, 0, 0, 2, 3, 1, 0, 0, 1, 1, 2, 3, 5, 6, 2, 2, 1, 
       6, 5, 6, 1, 0, 3, 2, 3, 3, 2, 6, 0, 0, 0, 2, 6, 6, 5, 3, 5, 1, 0, 
       6, 4, 4, 5, 5, 2, 4, 5, 3, 5, 5, 3, 1, 0, 6, 6, 3, 3, 2, 1, 1, 3, 
       5, 0, 5, 1, 3, 5, 4, 0, 5, 1, 1, 4, 3, 6, 6, 4, 5, 4, 6, 3, 5, 1, 
       2, 6, 0, 4, 2, 6, 2, 4, 6, 0, 5, 2, 6, 5, 5, 0, 4, 4, 5, 6, 5, 3, 
       0, 0, 4, 4, 1, 0, 3, 6, 4, 0, 1, 2, 3, 4, 2, 3, 2, 0, 6, 2, 2, 3, 
       3, 2, 2, 2, 4, 6, 1, 0, 4, 0, 4, 6, 1, 3, 1, 1, 2, 1, 4, 2, 3, 2, 
       6, 1, 6, 0, 3])

Accuracy:0.941  

Classification report 
              precision    recall  f1-score   support 

           0       0.97      0.98      0.98        61 
           1       0.91      0.89      0.90        45 
           2       0.89      0.95      0.92        79 
           3       0.95      0.96      0.95        54 
           4       1.00      1.00      1.00        63 
           5       0.95      0.90      0.92        61 

Out[11]:

In [12]: # View Labels for Test Set:  
label_test 

Out[12]:

In [13]: # Train Decision tree Classifier on the Training Data: 
d_tree = tree.DecisionTreeClassifier() 
dt_all = d_tree.fit(x_train, label_train) 

In [14]: # Function for Measure Performance: 
def measure_performance(X, y, clf, show_accuracy=True, show_classification_repor
    y_pred = clf.predict(X)    
    if show_accuracy: 
         print ("Accuracy:{0:.3f}".format(metrics.accuracy_score(y, y_pred)),"\n
     
    if show_classification_report: 
        print ("Classification report") 
        print (metrics.classification_report(y, y_pred, zero_division=0),"\n") 
       
    if show_confussion_matrix: 
        print ("Confussion matrix") 
        print (metrics.confusion_matrix(y, y_pred),"\n") 

In [15]: # Predict on Test Set, View Performance, and Accuracy of Decision Tree Model: 
measure_performance(x_test, label_test, dt_all, show_confussion_matrix=True, sho
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           6       0.93      0.88      0.91        60 

    accuracy                           0.94       423 
   macro avg       0.94      0.94      0.94       423 
weighted avg       0.94      0.94      0.94       423 
  

Confussion matrix 
[[60  1  0  0  0  0  0] 
 [ 2 40  0  0  0  3  0] 
 [ 0  0 75  3  0  0  1] 
 [ 0  0  2 52  0  0  0] 
 [ 0  0  0  0 63  0  0] 
 [ 0  3  0  0  0 55  3] 
 [ 0  0  7  0  0  0 53]]  

Above, the Decision Tree classifer performed well on the full dataset, accurately classifying the

classes at around 94.1% acurracy. Class 4: 'Obesity_Type_III' had a 100% accurate prediction.

Class 0: 'Insufficient_Weight' and 3: 'Obesity_Type_II' achieved above 95% accuracy. Class 6:

'Obesity_Type_II' had the lowest accuracy at 91%. Below we calculate the accuracy for both the

test and the training sets. The accuracy for the training set is 100% and the accuracy for the

test set is 94.09%. The model is performing well and not overfitting since the accuracy for the

test set is very close to the training set and not experiencing high variance.

Average Test Accuracy:  0.9408983451536643 
Average Train Accuracy:  1.0 

['Age' 'Weight' 'Gender_Female' 'Gender_Male' 
 'family_history_with_overweight_no' 'FCVC_Always' 'CAEC_Frequently'] 

Age      470.510134679508 
Weight      11390.601482312912 
Gender_Female      274.57777589368993 
Gender_Male      262.4874450895646 
family_history_with_overweight_no      405.00183379903
723 
FCVC_Always      542.9949158091111 
CAEC_Frequently      348.88961093191773 

In [16]: # View the Accuracy of the Test and Training Sets: 
print('Average Test Accuracy: ', d_tree.score(x_test, label_test)) 
print('Average Train Accuracy: ', d_tree.score(x_train, label_train)) 

In [17]: # Perform feature selection for top 15% 
fs = feature_selection.SelectPercentile(feature_selection.chi2, percentile=15) 
x_train_fs = fs.fit_transform(x_train, label_train) 

In [18]: # View the top 15% of the most important features: 
print(data_numeric.columns[fs.get_support()].values) 

In [19]: # View scores for each top feature: 
for i in range(len(data_numeric.columns.values)): 
    if fs.get_support()[i]: 
        print(data_numeric.columns.values[i], '\t\t\t\t', fs.scores_[i]) 

In [20]:
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Accuracy:0.863  

Classification report 
              precision    recall  f1-score   support 

           0       0.95      0.93      0.94        61 
           1       0.71      0.78      0.74        45 
           2       0.84      0.84      0.84        79 
           3       0.91      0.98      0.95        54 
           4       1.00      1.00      1.00        63 
           5       0.81      0.79      0.80        61 
           6       0.78      0.72      0.75        60 

    accuracy                           0.86       423 
   macro avg       0.86      0.86      0.86       423 
weighted avg       0.86      0.86      0.86       423 
  

Confussion matrix 
[[57  4  0  0  0  0  0] 
 [ 3 35  0  0  0  6  1] 
 [ 0  0 66  5  0  1  7] 
 [ 0  0  1 53  0  0  0] 
 [ 0  0  0  0 63  0  0] 
 [ 0  9  0  0  0 48  4] 
 [ 0  1 12  0  0  4 43]]  

Above with the feature selection, using the top 15% of features, resulted in the classifier still

being able to predict at an accuracy of 86.3%. Although, the accuracy reduced from the original

feature set, the reduced feature set contains only seven features and still achieved a high level

of accuracy. Class 1: 'Normal Weight' and Class 6: 'Overweight_level II' had the lowest accuracy

score at 74% and 75% respectively. Class 4: 'Obesity Type III' achieved 100% accuracy and

Class 3: 'Obesity Type II' still maintained over 95% accuracy. Moreover, for the full dataset, the

top features that are associated to obesity levels is age, weight, gender, family history, FCVC

and CAEC. Male and female gender as attributes are features that are salient to classifying

obesity levels. This was seen during the cluster exploration which split the data into two clusters

representing male and female genders. In addition to age and weight, family history, specifically

with individuals indicating no history of obesity in their family is also an important feature when

classifying obesity levels. This shows that hereditary, family, or environmental factors associated

with families with a history of obesity, plays a role in an individuals obesity levels. Lastly, two

eating habit features, always eating vegetables with meals (FCVC) and frequently eating food

between meals round up the top features. Moreover, with the full dataset, physical activity

features did were not included in the top 15% of features and instead, biological factors and

eating habits were features that had more precedents in determining obesity levels.

Decision Tree and Feature Selection with Gen-Z Dataset:

# Evaluate the Classifier with the top 15% feature set: 
d_tree.fit(x_train_fs, label_train) 
x_test_fs = fs.transform(x_test) 
measure_performance(x_test_fs, label_test, d_tree, show_confussion_matrix=True, 

In [21]: # View Gen-Z Dataset:
genz_df 
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Age Height Weight Gender_Female Gender_Male family_history_with_overweight_

0 Gen-
Z
1.620000 64.000000 1 0

1 Gen-
Z
1.520000 56.000000 1 0

2 Gen-
Z
1.800000 77.000000 0 1

3 Gen-
Z
1.780000 89.800000 0 1

4 Gen-
Z
1.500000 55.000000 1 0

... ... ... ... ... ...

1348 Gen-
Z

1.710730 131.408528 1 0

1349 Gen-
Z
1.748584 133.742943 1 0

1350 Gen-
Z
1.752206 133.689352 1 0

1351 Gen-
Z
1.739450 133.346641 1 0

1352 Gen-
Z
1.738836 133.472641 1 0

1353 rows × 44 columns

Height Weight Gender_Female Gender_Male family_history_with_overweight_no fam

0 1.620000 64.000000 1 0 0

1 1.520000 56.000000 1 0 0

2 1.800000 77.000000 0 1 0

3 1.780000 89.800000 0 1 1

4 1.500000 55.000000 1 0 0

... ... ... ... ... ...

1348 1.710730 131.408528 1 0 0

1349 1.748584 133.742943 1 0 0

1350 1.752206 133.689352 1 0 0

1351 1.739450 133.346641 1 0 0

1352 1.738836 133.472641 1 0 0

Out[21]:

In [22]: #Remove the age and class label column for Gen-Z DF: 
data_genz = genz_df.iloc[:,1:43] 
data_genz 

Out[22]:
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0             Normal_Weight 
1             Normal_Weight 
2             Normal_Weight 
3       Overweight_Level_II 
4             Normal_Weight 
               ...          
1348       Obesity_Type_III 
1349       Obesity_Type_III 
1350       Obesity_Type_III 
1351       Obesity_Type_III 
1352       Obesity_Type_III 
Name: NObeyesdad, Length: 1353, dtype: object

array([1, 1, 1, ..., 4, 4, 4])

1353 rows × 42 columns

Height Weight Gender_Female Gender_Male family_history_with_overweight_no fa

382 1.770612 133.963349 1 0 0

584 1.524926 42.000000 1 0 1

6 1.780000 64.000000 0 1 0

699 1.712061 75.000000 0 1 0

705 1.456346 55.523481 1 0 1

... ... ... ... ... ...

715 1.624831 69.975607 1 0 0

905 1.589100 72.713611 1 0 0

1096 1.769328 105.000576 0 1 0

235 1.600000 57.000000 1 0 1

1061 1.607182 82.368441 1 0 0

In [23]: # View Class Labels for Gen-Z DF:  
labels_genz =  genz_df['NObeyesdad'] 
labels_genz

Out[23]:

In [24]: # Transform class label into numeric:  
le_z = preprocessing.LabelEncoder() 
genz_labels = le_z.fit_transform(labels_genz) 
genz_labels

Out[24]:

In [25]: # Build training and test sets for Gen-Z: 
genz_train, genz_test, genz_label_train, genz_label_test = train_test_split(data

In [26]: # View Gen-Z Training Set: 
genz_train 

Out[26]:
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array([4, 0, 1, ..., 2, 1, 2])

array([1, 0, 2, 5, 6, 1, 6, 5, 6, 0, 5, 5, 2, 1, 2, 0, 0, 2, 1, 1, 4, 3, 
       5, 0, 1, 0, 1, 1, 6, 5, 4, 5, 5, 5, 2, 1, 2, 5, 5, 2, 5, 6, 1, 2, 
       1, 3, 2, 6, 2, 2, 1, 3, 0, 0, 2, 6, 6, 4, 0, 5, 5, 1, 2, 2, 5, 6, 
       2, 4, 0, 6, 5, 5, 4, 2, 2, 4, 4, 0, 3, 1, 0, 5, 6, 2, 1, 6, 2, 0, 
       5, 0, 1, 0, 4, 5, 3, 3, 0, 5, 3, 4, 1, 0, 6, 1, 6, 3, 4, 2, 2, 2, 
       1, 1, 3, 2, 0, 2, 1, 2, 4, 1, 2, 2, 5, 0, 5, 6, 5, 4, 0, 5, 0, 0, 
       5, 0, 3, 2, 3, 0, 2, 5, 6, 0, 1, 6, 6, 1, 2, 4, 6, 6, 0, 2, 5, 1, 
       4, 1, 0, 2, 1, 2, 3, 5, 3, 0, 1, 2, 1, 4, 2, 4, 0, 0, 2, 2, 5, 5, 
       5, 1, 5, 3, 2, 0, 1, 0, 1, 2, 5, 2, 1, 6, 5, 6, 5, 1, 5, 4, 0, 2, 
       1, 0, 5, 5, 5, 5, 6, 0, 2, 6, 5, 2, 5, 2, 0, 3, 5, 1, 0, 6, 0, 2, 
       0, 2, 2, 5, 2, 5, 3, 0, 6, 4, 5, 5, 5, 1, 5, 4, 1, 6, 5, 4, 1, 1, 
       2, 0, 3, 2, 1, 0, 5, 1, 1, 0, 6, 3, 5, 0, 5, 1, 2, 1, 0, 5, 6, 1, 
       0, 0, 1, 0, 0, 1, 4])

1082 rows × 42 columns

Height Weight Gender_Female Gender_Male family_history_with_overweight_no fam

91 1.560000 51.000000 1 0 0

442 1.759358 55.010450 1 0 0

1078 1.738397 93.890682 1 0 0

686 1.800000 85.000000 0 1 0

857 1.717722 81.929910 0 1 0

... ... ... ... ... ...

78 1.660000 60.000000 1 0 0

561 1.757958 52.094320 0 1 1

292 1.700000 50.000000 1 0 1

35 1.820000 72.000000 0 1 0

1316 1.682594 127.427458 1 0 0

271 rows × 42 columns

In [27]: # View Gen-Z Testing Set: 
genz_test 

Out[27]:

In [28]: # View Gen-Z Labels for Training Set: 
genz_label_train

Out[28]:

In [29]: # View Gen-Z Labels for Testing Set: 
genz_label_test 

Out[29]:

In [30]: # Train Decision tree Classifier on the Training Data: 
dt_genz = d_tree.fit(genz_train, genz_label_train) 
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Accuracy:0.919  

Classification report 
              precision    recall  f1-score   support 

           0       0.96      1.00      0.98        49 
           1       0.93      0.83      0.88        48 
           2       0.91      1.00      0.95        51 
           3       1.00      0.72      0.84        18 
           4       0.87      0.95      0.91        21 
           5       0.92      0.89      0.91        55 
           6       0.84      0.93      0.89        29 

    accuracy                           0.92       271 
   macro avg       0.92      0.90      0.91       271 
weighted avg       0.92      0.92      0.92       271 
  

Confussion matrix 
[[49  0  0  0  0  0  0] 
 [ 2 40  0  0  0  3  3] 
 [ 0  0 51  0  0  0  0] 
 [ 0  0  2 13  3  0  0] 
 [ 0  0  1  0 20  0  0] 
 [ 0  3  1  0  0 49  2] 
 [ 0  0  1  0  0  1 27]]  

Above, the Decision Tree classifer for the Gen-Z dataset performed well with accuracy slightly

lower than the full dataset at 91.9%. Class 0: 'Insufficient_Weight' and 2: 'Obesity_Type_I'

achieved above 95% accuracy. Class 0: 'Insufficient_Weight' and 2: 'Obesity_Type_I' achieved

above 95% accuracy. Class 3: 'Obesity_Type_II' had the lowest accuracy at 84%. Class 1:

'Normal_Weight' and 6: 'Overweight_Level_II' had the next lowest accuracy at 88% and 89%

respectively. Moreover, for Gen-Z dataset, the model performed better in prediction with Class

0: 'Insufficient_Weight' and 2: 'Obesity_Type_I'. Both the full dataset and the Gen-Z dataset had

lowest accuracy with Class 6: 'Overweight_Level_II'.

['Weight' 'Gender_Male' 'family_history_with_overweight_no' 'FAVC_no' 
 'FCVC_Always' 'NCP_2' 'CAEC_Frequently'] 

In [31]: # Predict on Gen-Z Test Set, View Performance, and Accuracy of Decision Tree Mod
measure_performance(genz_test, genz_label_test, dt_genz, show_confussion_matrix=

In [ ]: # View the Accuracy of the Test and Training Sets: 
print('Average Test Accuracy: ', d_tree.score(genz_test, genz_label_test)) 
print('Average Train Accuracy: ', d_tree.score(genz_train, genz_label_train)) 

In [32]: # Perform feature selection for top 15% of Gen-Z DF:  
fs_genz = feature_selection.SelectPercentile(feature_selection.chi2, percentile=
genz_train_fs = fs_genz.fit_transform(genz_train, genz_label_train) 

In [33]: # View the top 15% of the most important features for Gen-Z: 
print(data_genz.columns[fs_genz.get_support()].values) 

In [34]: # View scores for each top feature: 
for i in range(len(data_genz.columns.values)): 
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Weight      9715.93028639861 
Gender_Male      119.37576369900033 
family_history_with_overweight_no      230.20882848759
723 
FAVC_no      135.28900924705363 
FCVC_Always      292.28229522019336 
NCP_2      167.46598969723757 
CAEC_Frequently      202.1009043591279 

Accuracy:0.808  

Classification report 
              precision    recall  f1-score   support 

           0       0.91      0.88      0.90        49 
           1       0.76      0.77      0.76        48 
           2       0.86      0.86      0.86        51 
           3       0.80      0.67      0.73        18 
           4       0.95      1.00      0.98        21 
           5       0.79      0.82      0.80        55 
           6       0.57      0.59      0.58        29 

    accuracy                           0.81       271 
   macro avg       0.81      0.80      0.80       271 
weighted avg       0.81      0.81      0.81       271 
  

Confussion matrix 
[[43  6  0  0  0  0  0] 
 [ 4 37  0  0  0  3  4] 
 [ 0  0 44  3  0  1  3] 
 [ 0  0  5 12  1  0  0] 
 [ 0  0  0  0 21  0  0] 
 [ 0  4  0  0  0 45  6] 
 [ 0  2  2  0  0  8 17]]  

With the feature selection above, using the top 15% of features, resulted in the classifier

dropping in accuracy to 80.8%. The model does not perform as well as the model using the full

dataset. Class 4 had the highest accuracy at 98%, which is comparable to the full dataset which

predicted class 4 at 100%. Class 6: 'Overweight_Level II' had the lowest accuracy at 58%. This

shows that for the Gen-Z age group, the model is unable to classify 'Overweight_Level II' using

the top 15% of features. Likely, this means that other attributes are required to accurately

classify this obesity level. The model also does not classify Class 1: 'Normal_Weight' or Class 3:

'Obesity_Type_II' as well as the other classes. This is similar to the model using the full dataset

which also had a lower accuracy level for Class 1: 'Normal_Weight' compared to other classes.

The top 15% of features includes weight, gender, family history with obesity, always eating

vegetables with meals (FCVC), and frequently eating food between meals. These features are

the same top features from the model using the full dataset except, for gender only male gender

    if fs_genz.get_support()[i]: 
        print(data_genz.columns.values[i], '\t\t\t\t', fs_genz.scores_[i]) 

In [35]: # Evaluate the Classifier with the top 15% feature set for Gen-Z DF: 
d_tree.fit(genz_train_fs, genz_label_train) 
genz_test_fs = fs_genz.transform(genz_test) 
measure_performance(genz_test_fs, genz_label_test, d_tree, show_confussion_matri
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is included. Only male gender is a top feature for the Gen-Z dataset which is interesting since

both genders were included in the full dataset. Two additional eating habits features are

included in the top features with the Gen-Z age group: not eating high calorie foods frequently

and number of meals consumed daily. Moreover, eating habit features are the most important

features in association with obesity level for Gen-Z age group along with biological and

hereditary features. Similar to the model in the full dataset, physical activity features were not

included in the top features for the classification of obesity levels.

Decision Tree and Feature Selection with Millenials Dataset:

Age Height Weight Gender_Female Gender_Male family_history_with_overweigh

0 Millenials 1.800000 87.000000 0 1

1 Millenials 1.620000 53.000000 0 1

2 Millenials 1.850000 105.000000 0 1

3 Millenials 1.930000 102.000000 0 1

4 Millenials 1.530000 78.000000 1 0

... ... ... ... ... ...

712 Millenials 1.606474 104.954291 1 0

713 Millenials 1.628855 108.090006 1 0

714 Millenials 1.628205 107.378702 1 0

715 Millenials 1.628470 107.218949 1 0

716 Millenials 1.627839 108.107360 1 0

717 rows × 44 columns

Height Weight Gender_Female Gender_Male family_history_with_overweight_no fam

0 1.800000 87.000000 0 1 1

1 1.620000 53.000000 0 1 1

2 1.850000 105.000000 0 1 0

3 1.930000 102.000000 0 1 0

4 1.530000 78.000000 1 0 1

... ... ... ... ... ...

712 1.606474 104.954291 1 0 0

In [36]: # View Millenials Dataset: 
millen_df 

Out[36]:

In [37]: #Remove the age and class label column for Millenials DF: 
data_millen = millen_df.iloc[:,1:43] 
data_millen

Out[37]:
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0       Overweight_Level_I 
1            Normal_Weight 
2           Obesity_Type_I 
3      Overweight_Level_II 
4           Obesity_Type_I 
              ...          
712       Obesity_Type_III 
713       Obesity_Type_III 
714       Obesity_Type_III 
715       Obesity_Type_III 
716       Obesity_Type_III 
Name: NObeyesdad, Length: 717, dtype: object

array([5, 1, 2, 6, 2, 6, 5, 6, 6, 3, 6, 6, 6, 3, 1, 2, 1, 1, 6, 2, 1, 1, 
       1, 1, 5, 2, 1, 2, 1, 1, 5, 6, 1, 1, 5, 6, 1, 6, 3, 1, 1, 1, 5, 2, 
       2, 2, 1, 5, 4, 2, 1, 1, 3, 6, 3, 6, 6, 1, 5, 0, 6, 1, 1, 1, 5, 1, 
       1, 1, 1, 1, 5, 1, 5, 1, 1, 5, 1, 2, 5, 6, 5, 6, 1, 6, 1, 2, 1, 1, 
       6, 4, 1, 1, 1, 1, 6, 2, 5, 2, 6, 5, 1, 1, 1, 6, 6, 1, 4, 4, 4, 4, 
       0, 0, 0, 0, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 
       5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 
       5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 
       6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 
       6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 
       6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 
       6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 2, 2, 2, 2, 
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
       3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
       3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
       3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
       3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
       3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
       3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
       3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
       3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
       3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 

Height Weight Gender_Female Gender_Male family_history_with_overweight_no fam

713 1.628855 108.090006 1 0 0

714 1.628205 107.378702 1 0 0

715 1.628470 107.218949 1 0 0

716 1.627839 108.107360 1 0 0

717 rows × 42 columns

In [38]: # View Class Labels for Millenials DF:  
labels_millen =  millen_df['NObeyesdad'] 
labels_millen 

Out[38]:

In [39]: # Transform class label into numeric:  
le_m = preprocessing.LabelEncoder() 
millen_labels = le_m.fit_transform(labels_millen) 
millen_labels 

Out[39]:
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       3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 
       4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 
       4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 
       4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 
       4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 
       4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 
       4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 
       4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4])

Height Weight Gender_Female Gender_Male family_history_with_overweight_no fam

654 1.624950 111.004920 1 0 0

544 1.836592 118.377601 0 1 0

711 1.626580 105.037203 1 0 0

666 1.611452 102.363149 1 0 0

516 1.805445 119.484614 0 1 0

... ... ... ... ... ...

144 1.550000 62.877347 1 0 1

645 1.607734 102.305767 1 0 0

72 1.650000 71.000000 1 0 0

235 1.837399 95.952027 0 1 0

37 1.770000 85.000000 0 1 0

573 rows × 42 columns

Height Weight Gender_Female Gender_Male family_history_with_overweight_no fam

59 1.650000 50.000000 1 0 1

60 1.700000 78.000000 0 1 1

383 1.765258 114.330023 0 1 0

159 1.680858 71.813380 1 0 0

8 1.790000 90.000000 0 1 1

... ... ... ... ... ...

In [40]: # Build training and test sets for Millenials: 
mi_train, mi_test, mi_label_train, mi_label_test = train_test_split(data_millen,

In [41]: # View Millenials Training Set: 
mi_train 

Out[41]:

In [42]: # View Millenials Testing Set: 
mi_test 

Out[42]:
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array([4, 3, 4, 4, 3, 5, 1, 3, 2, 4, 4, 1, 4, 4, 6, 6, 3, 2, 3, 6, 3, 6, 
       6, 3, 3, 5, 3, 3, 2, 4, 2, 6, 5, 2, 6, 2, 6, 4, 3, 6, 4, 3, 5, 2, 
       4, 2, 4, 3, 3, 2, 6, 4, 1, 3, 4, 4, 3, 5, 3, 3, 2, 3, 3, 3, 2, 1, 
       4, 4, 1, 3, 2, 3, 3, 3, 4, 4, 3, 4, 5, 3, 4, 4, 4, 6, 3, 5, 4, 6, 
       4, 5, 4, 5, 3, 4, 4, 3, 6, 6, 2, 3, 3, 4, 2, 4, 6, 3, 3, 3, 3, 3, 
       3, 2, 6, 6, 4, 3, 3, 3, 3, 3, 4, 3, 2, 5, 1, 5, 1, 2, 1, 4, 5, 3, 
       6, 2, 3, 4, 2, 4, 3, 6, 4, 4, 2, 2, 4, 3, 6, 4, 5, 3, 5, 5, 4, 4, 
       6, 3, 3, 2, 6, 4, 3, 3, 3, 3, 3, 5, 4, 3, 4, 3, 2, 3, 1, 3, 4, 3, 
       3, 2, 3, 5, 6, 0, 3, 4, 2, 3, 5, 4, 5, 2, 4, 6, 3, 5, 6, 4, 4, 6, 
       4, 2, 3, 2, 3, 6, 1, 4, 6, 6, 6, 6, 2, 6, 4, 3, 2, 2, 4, 3, 4, 3, 
       1, 6, 6, 2, 2, 3, 4, 5, 3, 4, 3, 1, 4, 3, 3, 6, 6, 6, 6, 3, 4, 4, 
       3, 2, 6, 5, 4, 5, 4, 4, 4, 6, 6, 3, 2, 4, 5, 3, 4, 6, 3, 4, 3, 5, 
       2, 6, 5, 4, 1, 3, 2, 4, 2, 1, 6, 3, 6, 3, 4, 4, 3, 4, 1, 4, 3, 4, 
       5, 3, 4, 3, 2, 3, 6, 4, 3, 3, 4, 3, 3, 6, 0, 3, 4, 2, 3, 5, 3, 1, 
       4, 3, 3, 6, 2, 3, 5, 3, 6, 4, 6, 2, 3, 3, 5, 5, 4, 1, 6, 0, 2, 2, 
       2, 2, 6, 6, 1, 2, 3, 4, 3, 6, 6, 5, 2, 6, 3, 3, 2, 5, 5, 3, 5, 5, 
       3, 6, 6, 2, 2, 5, 5, 6, 6, 6, 6, 2, 4, 4, 4, 3, 6, 4, 4, 6, 3, 1, 
       2, 3, 4, 6, 3, 4, 4, 6, 3, 3, 2, 2, 0, 5, 6, 6, 3, 1, 4, 5, 2, 6, 
       1, 2, 6, 4, 4, 4, 4, 3, 3, 3, 1, 3, 3, 4, 2, 3, 6, 4, 3, 3, 4, 2, 
       4, 6, 4, 2, 1, 3, 2, 6, 3, 5, 3, 6, 4, 4, 4, 3, 4, 6, 3, 4, 2, 6, 
       4, 4, 3, 2, 1, 6, 3, 4, 4, 6, 2, 6, 3, 4, 2, 3, 5, 2, 4, 3, 4, 6, 
       5, 3, 3, 5, 4, 6, 2, 5, 6, 4, 4, 3, 4, 3, 4, 2, 5, 2, 2, 5, 4, 3, 
       4, 3, 4, 3, 6, 3, 2, 5, 2, 6, 4, 2, 6, 1, 4, 3, 2, 5, 4, 4, 5, 3, 
       3, 2, 5, 1, 4, 2, 3, 3, 2, 6, 5, 2, 3, 2, 4, 2, 1, 4, 2, 3, 3, 4, 
       4, 3, 3, 1, 3, 3, 4, 3, 4, 4, 2, 6, 2, 3, 2, 3, 2, 6, 3, 5, 1, 3, 
       3, 6, 4, 4, 3, 4, 3, 6, 3, 3, 6, 2, 6, 2, 3, 3, 4, 5, 5, 4, 5, 6, 
       6])

array([0, 6, 3, 5, 6, 1, 2, 6, 4, 6, 3, 3, 3, 3, 2, 2, 5, 6, 4, 3, 1, 4, 
       3, 3, 5, 6, 4, 2, 3, 6, 1, 1, 4, 3, 6, 3, 3, 3, 4, 3, 3, 3, 4, 3, 
       3, 4, 4, 6, 6, 3, 4, 3, 3, 5, 6, 4, 2, 5, 2, 4, 3, 3, 6, 2, 2, 4, 
       2, 3, 1, 3, 4, 4, 2, 1, 3, 3, 2, 2, 2, 4, 6, 6, 2, 4, 3, 1, 1, 3, 
       3, 4, 4, 5, 4, 6, 1, 3, 6, 1, 3, 6, 2, 4, 6, 4, 3, 3, 2, 1, 5, 6, 
       2, 4, 3, 3, 5, 6, 4, 0, 5, 3, 1, 3, 4, 4, 5, 4, 1, 3, 4, 5, 3, 3, 
       4, 6, 1, 3, 1, 1, 2, 4, 5, 2, 3, 5])

Height Weight Gender_Female Gender_Male family_history_with_overweight_no fam

635 1.654784 111.933152 1 0 0

118 1.529834 62.903938 1 0 1

273 1.542122 80.000000 1 0 0

448 1.756221 119.117122 0 1 0

34 1.550000 62.000000 1 0 0

144 rows × 42 columns

In [43]: # View Millenials Labels for Training Set: 
mi_label_train 

Out[43]:

In [44]: # View Millenials Labels for Testing Set: 
mi_label_test 

Out[44]:

In [45]: # Train Decision tree Classifier on the Training Data: 
dt_mi = d_tree.fit(mi_train, mi_label_train) 
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Accuracy:0.896  

Classification report 
              precision    recall  f1-score   support 

           0       0.50      1.00      0.67         2 
           1       0.83      0.62      0.71        16 
           2       0.77      0.89      0.83        19 
           3       1.00      0.91      0.95        43 
           4       1.00      1.00      1.00        30 
           5       0.69      0.85      0.76        13 
           6       0.95      0.95      0.95        21 

    accuracy                           0.90       144 
   macro avg       0.82      0.89      0.84       144 
weighted avg       0.91      0.90      0.90       144 
  

Confussion matrix 
[[ 2  0  0  0  0  0  0] 
 [ 2 10  0  0  0  3  1] 
 [ 0  0 17  0  0  2  0] 
 [ 0  0  4 39  0  0  0] 
 [ 0  0  0  0 30  0  0] 
 [ 0  1  1  0  0 11  0] 
 [ 0  1  0  0  0  0 20]]  

Average Test Accuracy:  0.8958333333333334 
Average Train Accuracy:  1.0 

Above, the Decision Tree classifer for the Millenials dataset did not perform as well as the model

for the Gen-Z or the full dataset. The model achieved an accuracy of 89.6%. Similar to the two

previous models, Class 4: 'Obesity_Type_III' had a prediction accuracy of 100%. Unlike the two

previous models, Class 6: 'Overweight_Level II' and Class 3: 'Obesity_Type_II' performed better

in this model with an accuracy of 95%. Class 0: 'Insufficient Weight' had an accuracy of 67%,

which is starkly lower in accuracy compared to the previous two models! Class 1:

'NormalWeight' also had a low accuracy at 71%. This aligns with the two previous models, which

also had the lowest accuracy in predicting Class 1: 'Normal Weight'.

['Weight' 'Gender_Female' 'Gender_Male' 

In [46]: # Predict on Millenials Test Set, View Performance, and Accuracy of Decision Tre
measure_performance(mi_test, mi_label_test, dt_mi, show_confussion_matrix=True, 

In [47]: # View the Accuracy of the Test and Training Sets: 
print('Average Test Accuracy: ', d_tree.score(mi_test, mi_label_test)) 
print('Average Train Accuracy: ', d_tree.score(mi_train, mi_label_train)) 

In [48]: # Perform feature selection for top 15% of Millenials DF:  
fs_mi = feature_selection.SelectPercentile(feature_selection.chi2, percentile=15
mi_train_fs = fs_mi.fit_transform(mi_train, mi_label_train) 

In [49]: # View the top 15% of the most important features for Millenails: 
print(data_millen.columns[fs_mi.get_support()].values) 
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 'family_history_with_overweight_no' 'FCVC_Always' 'CAEC_Frequently' 
 'MTRANS_Automobile'] 

Weight      1599.4360572768592 
Gender_Female      173.42692440859898 
Gender_Male      146.10242506447887 
family_history_with_overweight_no      169.89205402997
59 
FCVC_Always      249.67035685056916 
CAEC_Frequently      166.34169934064465 
MTRANS_Automobile      110.75284152840752 

Accuracy:0.799  

Classification report 
              precision    recall  f1-score   support 

           0       0.40      1.00      0.57         2 
           1       0.82      0.56      0.67        16 
           2       0.58      0.74      0.65        19 
           3       0.95      0.86      0.90        43 
           4       1.00      1.00      1.00        30 
           5       0.56      0.77      0.65        13 
           6       0.76      0.62      0.68        21 

    accuracy                           0.80       144 
   macro avg       0.72      0.79      0.73       144 
weighted avg       0.83      0.80      0.80       144 
  

Confussion matrix 
[[ 2  0  0  0  0  0  0] 
 [ 3  9  0  0  0  3  1] 
 [ 0  0 14  2  0  2  1] 
 [ 0  0  4 37  0  1  1] 
 [ 0  0  0  0 30  0  0] 
 [ 0  1  1  0  0 10  1] 
 [ 0  1  5  0  0  2 13]]  

With the feature selection above, using the top 15% of features, resulted in the classifier

dropping in accuracy to 79.9%. The model performs slightly worse than the model for Gen-Z

age group. Class 4 again, had the highest accuracy at 100%, which is comparable to the full

dataset which also predicted class 4 at 100%. Class 2: 'Obesity_Type_I' and Class 5:

'Overweight_Level_I' had the lowest accuracy at 65%. Class 6:'Overweight_Level_II' has a

significant drop in accuracy, which prior to feature selection had a 95% prediction, and after

feature selection has a 68% prediction. This shows that the features necessarily to predict Class

6 are not included in the top 15% features. The model also does not classify Class 1:

'Normal_Weight' as well as the other classes, which is consistent pattern among all the models.

In [50]: # View scores for each top feature: 
for i in range(len(data_millen.columns.values)): 
    if fs_mi.get_support()[i]: 
        print(data_millen.columns.values[i], '\t\t\t\t', fs_mi.scores_[i]) 

In [51]: # Evaluate the Classifier with the top 15% feature set for Millenials DF: 
d_tree.fit(mi_train_fs, mi_label_train) 
mi_test_fs = fs_mi.transform(mi_test) 
measure_performance(mi_test_fs, mi_label_test, d_tree, show_confussion_matrix=Tr
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In contrast, the model was able to predict Class 3: 'Obesity_Type_II' better than the model for

the Gen-Z age group.

The top 15% of features includes weight, gender both male and female, family history with

obesity, always eating vegetables with meals (FCVC), and frequently eating food between

meals. These features are the same top features from the model using the full dataset. Unlike

the previous two models, this model includes one additional top feature, a physical activity

feature, means of transportation as automobile. This is interesting since previous models did not

include a physical activity feature. Moreover, the model with the top 15% features for both the

Millennials age group and the Gen-Z age group yielded similar accuracy for classification. The

main difference is that a physical activity feature is included in the top features for Millennials

which is not included for Gen-Z.

Decision Tree and Feature Selection with Gen-X & Boomers Dataset:

Age Height Weight Gender_Female Gender_Male family_history_with_overweight_

0 Gen-X &
Boomers

1.800000 99.000000 0 1

1 Gen-X &
Boomers

1.690000 87.000000 1 0

2 Gen-X &
Boomers

1.780000 84.000000 0 1

3 Gen-X &
Boomers

1.650000 66.000000 1 0

4 Gen-X &
Boomers

1.600000 80.000000 0 1

5 Gen-X &
Boomers

1.650000 80.000000 0 1

6 Gen-X &
Boomers

1.630000 77.000000 1 0

7 Gen-X &
Boomers

1.750000 118.000000 0 1

8 Gen-X &
Boomers

1.540000 80.000000 1 0

9 Gen-X &
Boomers

1.590000 50.000000 1 0

10 Gen-X &
Boomers

1.790000 90.000000 0 1

11 Gen-X &
Boomers

1.750000 110.000000 0 1

12 Gen-X &
Boomers

1.800000 92.000000 0 1

13 Gen-X &
Boomers

1.700000 86.000000 0 1

In [52]: # View Gen-X and Boomers Dataset: 
genxboomers_df 

Out[52]:
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Age Height Weight Gender_Female Gender_Male family_history_with_overweight_

14 Gen-X &
Boomers

1.721854 82.919584 1 0

15 Gen-X &
Boomers

1.768231 75.629310 1 0

16 Gen-X &
Boomers

1.769269 80.491339 0 1

17 Gen-X &
Boomers

1.647768 79.165306 1 0

18 Gen-X &
Boomers

1.745528 82.130728 0 1

19 Gen-X &
Boomers

1.733875 86.945380 1 0

20 Gen-X &
Boomers

1.675953 79.668320 1 0

21 Gen-X &
Boomers

1.657221 80.993213 0 1

22 Gen-X &
Boomers

1.718097 88.600878 0 1

23 Gen-X &
Boomers

1.673394 80.400306 0 1

24 Gen-X &
Boomers

1.678610 79.849252 1 0

25 Gen-X &
Boomers

1.743935 84.729197 0 1

26 Gen-X &
Boomers

1.687326 80.413997 1 0

27 Gen-X &
Boomers

1.569234 81.827288 1 0

28 Gen-X &
Boomers

1.583943 81.936398 1 0

29 Gen-X &
Boomers

1.587546 76.126112 1 0

30 Gen-X &
Boomers

1.646390 86.639861 1 0

31 Gen-X &
Boomers

1.643786 81.978743 1 0

32 Gen-X &
Boomers

1.595165 77.354744 1 0

33 Gen-X &
Boomers

1.567973 81.056851 1 0

34 Gen-X &
Boomers

1.571417 81.918809 1 0

35 Gen-X &
Boomers

1.584322 80.986496 1 0
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Age Height Weight Gender_Female Gender_Male family_history_with_overweight_

36 Gen-X &
Boomers

1.582523 81.919454 1 0

37 Gen-X &
Boomers

1.544937 77.053948 1 0

38 Gen-X &
Boomers

1.592316 77.001030 1 0

39 Gen-X &
Boomers

1.750000 116.594351 0 1

40 Gen-X &
Boomers

1.750000 115.806977 0 1

41 rows × 44 columns

Height Weight Gender_Female Gender_Male family_history_with_overweight_no famil

0 1.800000 99.000000 0 1 1

1 1.690000 87.000000 1 0 0

2 1.780000 84.000000 0 1 0

3 1.650000 66.000000 1 0 1

4 1.600000 80.000000 0 1 0

5 1.650000 80.000000 0 1 1

6 1.630000 77.000000 1 0 0

7 1.750000 118.000000 0 1 0

8 1.540000 80.000000 1 0 0

9 1.590000 50.000000 1 0 0

10 1.790000 90.000000 0 1 0

11 1.750000 110.000000 0 1 0

12 1.800000 92.000000 0 1 0

13 1.700000 86.000000 0 1 1

14 1.721854 82.919584 1 0 1

15 1.768231 75.629310 1 0 0

16 1.769269 80.491339 0 1 1

17 1.647768 79.165306 1 0 0

18 1.745528 82.130728 0 1 0

19 1.733875 86.945380 1 0 0

In [53]: #Remove the age and class label column for Millenials DF: 
data_genxb = genxboomers_df.iloc[:,1:43] 
data_genxb 

Out[53]:
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0          Obesity_Type_I 
1          Obesity_Type_I 
2      Overweight_Level_I 
3           Normal_Weight 
4          Obesity_Type_I 
5     Overweight_Level_II 
6     Overweight_Level_II 
7         Obesity_Type_II 
8          Obesity_Type_I 
9           Normal_Weight 
10    Overweight_Level_II 
11        Obesity_Type_II 
12    Overweight_Level_II 
13    Overweight_Level_II 

Height Weight Gender_Female Gender_Male family_history_with_overweight_no famil

20 1.675953 79.668320 1 0 0

21 1.657221 80.993213 0 1 0

22 1.718097 88.600878 0 1 0

23 1.673394 80.400306 0 1 0

24 1.678610 79.849252 1 0 0

25 1.743935 84.729197 0 1 0

26 1.687326 80.413997 1 0 0

27 1.569234 81.827288 1 0 0

28 1.583943 81.936398 1 0 0

29 1.587546 76.126112 1 0 0

30 1.646390 86.639861 1 0 0

31 1.643786 81.978743 1 0 0

32 1.595165 77.354744 1 0 0

33 1.567973 81.056851 1 0 0

34 1.571417 81.918809 1 0 0

35 1.584322 80.986496 1 0 0

36 1.582523 81.919454 1 0 0

37 1.544937 77.053948 1 0 0

38 1.592316 77.001030 1 0 0

39 1.750000 116.594351 0 1 0

40 1.750000 115.806977 0 1 0

41 rows × 42 columns

In [54]: # View Class Labels for Gen-X & Boomers DF:  
labels_genxb =  genxboomers_df['NObeyesdad'] 
labels_genxb 

Out[54]:
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14     Overweight_Level_I 
15     Overweight_Level_I 
16    Overweight_Level_II 
17    Overweight_Level_II 
18    Overweight_Level_II 
19    Overweight_Level_II 
20    Overweight_Level_II 
21    Overweight_Level_II 
22    Overweight_Level_II 
23    Overweight_Level_II 
24    Overweight_Level_II 
25    Overweight_Level_II 
26    Overweight_Level_II 
27         Obesity_Type_I 
28         Obesity_Type_I 
29         Obesity_Type_I 
30         Obesity_Type_I 
31         Obesity_Type_I 
32         Obesity_Type_I 
33         Obesity_Type_I 
34         Obesity_Type_I 
35         Obesity_Type_I 
36         Obesity_Type_I 
37         Obesity_Type_I 
38         Obesity_Type_I 
39        Obesity_Type_II 
40        Obesity_Type_II 
Name: NObeyesdad, dtype: object

array([1, 1, 3, 0, 1, 4, 4, 2, 1, 0, 4, 2, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 
       4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2])

Height Weight Gender_Female Gender_Male family_history_with_overweight_no famil

22 1.718097 88.600878 0 1 0

21 1.657221 80.993213 0 1 0

32 1.595165 77.354744 1 0 0

27 1.569234 81.827288 1 0 0

33 1.567973 81.056851 1 0 0

29 1.587546 76.126112 1 0 0

31 1.643786 81.978743 1 0 0

In [55]: # Transform class label into numeric:  
le_x = preprocessing.LabelEncoder() 
genxb_labels = le_m.fit_transform(labels_genxb) 
genxb_labels 

Out[55]:

In [56]: # Build training and test sets for Gen-X and Boomers: 
xb_train, xb_test, xb_label_train, xb_label_test = train_test_split(data_genxb, 

In [57]: # View Gen-X and Boomers Training Set: 
xb_train 

Out[57]:
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Height Weight Gender_Female Gender_Male family_history_with_overweight_no famil

40 1.750000 115.806977 0 1 0

4 1.600000 80.000000 0 1 0

14 1.721854 82.919584 1 0 1

10 1.790000 90.000000 0 1 0

36 1.582523 81.919454 1 0 0

24 1.678610 79.849252 1 0 0

26 1.687326 80.413997 1 0 0

35 1.584322 80.986496 1 0 0

20 1.675953 79.668320 1 0 0

18 1.745528 82.130728 0 1 0

25 1.743935 84.729197 0 1 0

6 1.630000 77.000000 1 0 0

13 1.700000 86.000000 0 1 1

7 1.750000 118.000000 0 1 0

39 1.750000 116.594351 0 1 0

1 1.690000 87.000000 1 0 0

16 1.769269 80.491339 0 1 1

0 1.800000 99.000000 0 1 1

15 1.768231 75.629310 1 0 0

5 1.650000 80.000000 0 1 1

11 1.750000 110.000000 0 1 0

9 1.590000 50.000000 1 0 0

8 1.540000 80.000000 1 0 0

12 1.800000 92.000000 0 1 0

37 1.544937 77.053948 1 0 0

32 rows × 42 columns

Height Weight Gender_Female Gender_Male family_history_with_overweight_no family

3 1.650000 66.000000 1 0 1

2 1.780000 84.000000 0 1 0

In [58]: # View Gen-X and Boomers Testing Set: 
xb_test 

Out[58]:
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array([4, 4, 1, 1, 1, 1, 1, 2, 1, 3, 4, 1, 4, 4, 1, 4, 4, 4, 4, 4, 2, 2, 
       1, 4, 1, 3, 4, 2, 0, 1, 4, 1])

array([0, 3, 4, 1, 4, 1, 4, 1, 1])

Accuracy:0.667  

Classification report 
              precision    recall  f1-score   support 

           0       0.00      0.00      0.00         1 
           1       0.80      1.00      0.89         4 
           3       0.00      0.00      0.00         1 
           4       0.50      0.67      0.57         3 

    accuracy                           0.67         9 
   macro avg       0.33      0.42      0.37         9 
weighted avg       0.52      0.67      0.59         9 
  

Confussion matrix 
[[0 0 0 1]
 [0 4 0 0]
 [0 0 0 1]
 [0 1 0 2]]  

Height Weight Gender_Female Gender_Male family_history_with_overweight_no family

23 1.673394 80.400306 0 1 0

38 1.592316 77.001030 1 0 0

17 1.647768 79.165306 1 0 0

28 1.583943 81.936398 1 0 0

19 1.733875 86.945380 1 0 0

34 1.571417 81.918809 1 0 0

30 1.646390 86.639861 1 0 0

9 rows × 42 columns

In [59]: # View Gen-X and Boomers Labels for Training Set: 
xb_label_train 

Out[59]:

In [60]: # View Gen-X and Boomers Labels for Testing Set: 
xb_label_test 

Out[60]:

In [61]: # Train Decision tree Classifier on the Training Data: 
dt_xb = d_tree.fit(xb_train, xb_label_train) 

In [62]: # Predict on Gen-X and Boomers Test Set, View Performance, and Accuracy of Decis
measure_performance(xb_test, xb_label_test, dt_xb, show_confussion_matrix=True, 
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Average Test Accuracy:  0.6666666666666666 
Average Train Accuracy:  1.0 

Above, the Decision Tree classifer for the Gen-X and Boomers dataset performed the worse

compared to all previous models. The model achieved an accuracy of 66.7%. This model

resulted in the lowest accuracy score compared to the previous models. This dataset is

significantly smaller than the previous two dataset. As such, not all classes are represented in

this model and due to the limited number of entries, the model does not have as much data for

the classifier to train on compared to previous three models. This model was able to predict

Class 1: 'Normal_weight' at 89% accuracy, which is higher in accuracy compared to all previous

models. This model was unable to predict Class 0: 'Insufficient_Weight or Class 3:

'Obesity_Type_II'.

['Weight' 'FCVC_Always' 'CH2O_More than 2 L' 'SCC_yes' 'FAF_2 or 4 days' 
 'FAF_4 or 5 days' 'MTRANS_Public_Transportation'] 

Weight      59.13977455691617 
FCVC_Always      9.282051282051283 
CH2O_More than 2 L      9.376068376068377 
SCC_yes      31.0 
FAF_2 or 4 days      15.333333333333334 
FAF_4 or 5 days      15.0 
MTRANS_Public_Transportation      31.0 

Accuracy:0.667  

Classification report 
              precision    recall  f1-score   support 

           0       0.00      0.00      0.00         1 
           1       1.00      0.50      0.67         4 
           3       0.50      1.00      0.67         1 
           4       0.60      1.00      0.75         3 

In [63]: # View the Accuracy of the Test and Training Sets: 
print('Average Test Accuracy: ', d_tree.score(xb_test, xb_label_test)) 
print('Average Train Accuracy: ', d_tree.score(xb_train, xb_label_train)) 

In [64]: # Perform feature selection for top 15% of Gen-X and Boomers DF:  
fs_xb = feature_selection.SelectPercentile(feature_selection.chi2, percentile=15
xb_train_fs = fs_xb.fit_transform(xb_train, xb_label_train) 

In [65]: # View the top 15% of the most important features for Millenails: 
print(data_genxb.columns[fs_xb.get_support()].values) 

In [66]: # View scores for each top feature: 
for i in range(len(data_genxb.columns.values)): 
    if fs_xb.get_support()[i]: 
        print(data_genxb.columns.values[i], '\t\t\t\t', fs_xb.scores_[i]) 

In [67]: # Evaluate the Classifier with the top 15% feature set for Gen-X and Boomers DF:
d_tree.fit(xb_train_fs, xb_label_train) 
xb_test_fs = fs_xb.transform(xb_test) 
measure_performance(xb_test_fs, xb_label_test, d_tree, show_confussion_matrix=Tr
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    accuracy                           0.67         9 
   macro avg       0.53      0.62      0.52         9 
weighted avg       0.70      0.67      0.62         9 
  

Confussion matrix 
[[0 0 1 0]
 [0 2 0 2]
 [0 0 1 0]
 [0 0 0 3]]  

With the feature selection above, using the top 15% of features, resulted in the classifier

dropping in accuracy to 66.7%. This model underperformed compared to all previous models

with all classes having accuracy scores of 75% or lower. Again, the model was unable to predict

Class 0: ‘Insufficient_Weight.̓  Since some classes are not represented in this dataset and with a

lower amount of data for training, it is not unexpected that the model was unable to classify

obesity levels as well as the previous models.

The top 15% of features includes weight and always eating vegetables with meals (FCVC) which

are two features also included as top features for the full dataset, Gen-Z dataset, and

Millennialʼs dataset. Additional eating habits features are included as top features: water intake

at more than 2 liters per day and monitoring calories intake daily. In addition, physical activity

features include direct physical activity 1 to 2 days or 3 to 4 days and means of transportation

by public transit. This is interesting since previous models did not include specific eating habit

features such as water intake and direct exercise or direct physical activity. The results are

drastically different from the Gen-Z and Gen-X dataset but since the sample size is significantly

lower, more data would be needed for this population to perform a more detailed and thorough

analysis in validating these top features and determining what key features affect the

classification of obesity for the Gen-X and Boomers age group

Comparsion of Results:
The model with the best accuracy from the Decision Tree classifier is the full dataset. The top

15% features for this model include age, weight, gender, family history with obesity, always

eating vegetables with meals (FCVC) and frequently eating food between meals (CAEC). With

these top features, the model still performed well with an accuracy of 86.3%. Biological features

and family history with obesity are top features that are associated with classifying obesity. With

the full dataset, only two additional eating habit features were top features. The models for Gen-

Z age group and Millenials age group also included weight, gender, family history with obesity,

always eating vegetables with meals (FCVC), and frequently eating food between meals (CAEC)

as top features. Gen-Z includes more eating habit features including not eating high calorie

foods frequently and number of meals consumed daily and Millenials includes a physical activity

feature which is transportation by automobile. The accuracy for the the Gen-Z model is 91.8%

whereas the accuracy for the Millenails model is 89.5%. When evaluating the performance with

th top 15% features, the Millenials model performs slighly better at 80.6% wheras the Gen-Z

model had an accuracy of 80.1%. The model for the Gen-X and Boomers age group performed

the worst at an accuracy of 77.8%. Gen-X and Boomers had different top features compared to

all other models. The top features still included weight, but no longer included gender and
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instead includes both eating habits and physical activity features including water intake of 2

liters or more, calories intake daily, and direct physical activity. The model had significantly

lower amount of data compared to previous models which may contribute to the lower accuracy

and the low performance of the model.

In conclusion, Gen-Z age group is over represented in the full datset compared to Millenials and

Gen-X and Boomers. The classifier model performed better on the full dataset. The classifer

model equally performed well on the Gen-Z and Millenials datset. By looking at the top features

and evaluating the models using the top features, we can see which features are most important

in classifying obesity levels. In this case, for the Gen-Z and Millenials age group, biological and

hirediary features are more associated with obesity levels, with eating habits as additional top

features specifically eating vegetables with meals and eating between meals. Gender appears to

play a role with Gen-Z and Millenials age group. This is expected due to biological factors such

as difference in weight, height, and calorie intake. For Gen-X and Boomers age group, weight

and direct eating habits such as water intake, calorie intake, direct physical activity, and mode

of transportation are top features. More data is needed for Gen-X and Boomers to be able to

analysis and evaluate the models and determine which features affect classification of obesity

levels best.

In [ ]:   
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