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Overview (Non-Technical Summary)

In 2020, breast cancer became the most common cancer worldwide surpassing lung cancer with more
than 2.3 million women diagnosed according to the Breast Cancer Research Foundation (BCRF). Breast
cancer is the most frequently diagnosed cancer in women and now represents one in four of all cancers in
women (BCRF). Globally, in the last decade, diagnosis of breast cancer has increased by more than 20
percent, mortality has also increased by 14 percent, with 685,000 deaths related to breast cancer in 2020
(BCRF). Breast cancer patients with the same stage of the disease and the same clinical characteristics can
have different treatment responses and overall survival. In addition, cancers are associated with genetic
mutations that may affect the outcome of survival. An analysis of breast cancer patients’ clinical and gene
expression attributes as it relates to their survival time may bring better insights into the cancer prognosis and
outcomes. Lastly, is the cause of death in patients solely from cancer? Analyzing the cause of death and
probability of death from cancer may bring further insights to how patients are dying and what contributes to
their death.

In this analysis, the breast cancer gene expression dataset will be explored which was acquired
through the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) database, a project
between Canada and the United Kingdom, and collected by Professor Carlos Caldas from the Cambridge
Research Institute and Professor Sam Aparicio from the British Columbia Cancer Centre, published in Nature
Communications (Pereira et al., 2016). The dataset contains clinical variables and gene expression variables
which after performing a dimensionality reduction through principal component analysis, the genomic
variables were reduced significantly to capture only the most significant gene expressions for the analysis.
The selected clinical variables contained numeric, binary, categorical, and ordinal variables and various
techniques were performed on both clinical and genomic variables to explore their relationships including
factor analysis, cluster analysis, correspondence analysis, and linear discriminant analysis.

During the exploration of the clinical variables, overall survival years were negatively correlated with
all other variables. Once cancer was detected, tumor size and tumor stage played a key role in the suggestion
of therapies including chemotherapy and hormone therapy which can regulate cancer cells. The visualization
of tumor size to overall survival years below shows that tumor stage is a significant variable. Ultimately, the
stage of the tumor allowed for a better understanding of all other clinical variables as the stage of the cancer
directly dictated the results of all other clinical variables.
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During the exploration of the genomic variables, CCCTC-Binding Factor (ctcf) is a transcriptional
regulator protein gene that was not correlated with any other gene variable but was significant because this
gene is directly associated with invasive breast cancer. The genomic variables could be grouped into three
distinct factors: genes associated with the Cyclin Dependent Kinase (CDK) family, genes associated with
tumor suppressors, and genes that are associated with cell growth that may or may not be related to gene
mutation. The genomic variables were not as salient in predicting overall survival years or attributed to the
actual cause of death from cancer. Instead, the genomic variables allowed for key domain knowledge in
understanding cancer progression in patients. Ultimately, the clinical variables, specifically the clinical indexes
taken during medical examinations, stage of tumor, and type of treatment was more salient in the outcome of
the cancer.

Regularized regression was performed to predict the overall survival years of a cancer patient, which
although resulted in a lower-than-expected predictive model, still improved the overall performance of the
model greatly, and did show some correlation between the variables and the parameter of interest. The model
does show that clinical indexes, which is determined during medical examinations and is classified based on
various clinical measurements, in addition to the tumor size and stage of the cancer, has some relation to the
patient's overall survival. Key patient attributes such as general health and well-being of a patient and length
of time of patient’s treatment plans may better predict the parameter of interest. The final model shows that
additional patient clinical data would be needed to explore and produce a more adequate model for predicting
survival years in cancer patients.

Multinomial logistic regression was performed to predict the categorical placement of death from
cancer to the independent variables which showed that the clinical variables played a larger role in
determining the outcome of death from cancer than the genomic variables. The three potential outcomes for
this analysis were death from cancer, death from other causes, or still living and the value of each variable
changes, the probability of each outcome also changes. The final model had an accuracy of 65% and showed
that the Nottingham Prognostic Index and the type of breast surgery are more related to death from cancer.
The Nottingham Prognostic Index encompasses the size of the tumor, the number of involved lymph
nodes, and the grade of the tumor. The relationship of this variable with the probability of death from cancer
can be showcased in a line graph. As we can see, the higher the index, the higher the probability of death
from cancer. The stacked graph of the type of breast surgery and probability of each outcome shows that for
breast conserving breast surgery, the probability of living is very high, while the mastectomy surgery had a
lower probability for living.
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Given that this analysis is an initial and exploratory analysis, the consensus shows that key clinical
indexes which are measures of patient clinical attributes are more significant in modeling survival in breast
cancer patients and shown to be more salient in determining the cause of death as cancer. Ultimately, this
analysis provided a better understanding of the relationship between clinical variables and genomic variables
and how they influence the outcome of cancer patients such as overall survival years and death from cancer.
While the models created were not particularly effective at prediction and may not be effective for practical
use, the results showed that the clinical variables provided greater insight into the parameter of interests than
the genomic variables. Increasing the number of clinical variables, specifically those that gage a patient's
overall health, would be beneficial in modeling a patient's long-term survival. Key genomic variables were
identified from this analysis that are directly associated with tumor suppressors and growth regulators, which
may have influence on cancer outcomes. As gene clustering and bioinformatics is a specific domain, further
research could be performed in gene editing with techniques like CRIPSR, which may improve further
analysis.

Group 2: Cancer, 4
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Technical Analysis and Report
Data Preparation and Preprocessing

The breast cancer gene expression dataset was acquired through the METABRIC database and was
downloaded from_cBioPortal. The dataset comprises a total of 1,904 entries and 693 variables. Each entry
represents a breast cancer patient, the patient’s clinical and medical attributes, and the patient’s gene
expression attributes. There are a total of 663 genomic variables and 30 clinical variables in the original
dataset. The original dataset had missing values, missing descriptions, and blank entries in many of the
clinical variables. These entries were omitted from the analysis. Likewise, 142 of the genomic variables had
missing or zero values, these columns were also omitted from the analysis, reducing the number of genomic
variables to 488 at the start of the analysis.

Clinical Variables

The first variable in the clinical variables, patient_id, an identification marker was removed as it holds
no unique value. Of the remaining 29 variables representing columns [1: 31], 8 of the variables are numeric,
4 of the variables are binary, 16 of the variables are categorical, and 1 variable is ordinal. Using domain
knowledge, all 8 of the numeric variables were selected for the analysis since these variables represented
attributes that could easily be obtained through medical examinations including age of cancer diagnosis and
size of tumor from imaging technologies. Three binary variables were included in the analysis representing if
a patient had a type of treatment for the cancer, which was used as a numeric variable for the analysis. Three
categorical variables were selected: type_of _breast_surgery, cancer_type_detail, and death_from_cancer.
These variables were selected to explore if the type of surgery impacted survival since a surgery type may or
may not be available to a patient or a patient may not choose surgery as a treatment option, and to see if the
specific type of cancer attributed to the death or survival of the patient. Lastly, the ordinal variable,
tumor_stage, a significant variable since the stage of cancer for a patient determines their treatment options
and affects their chances of survival is included in the analysis.

The variable overall_survival_months was transformed from months to years, to maintain consistency
with age_at_diagnosis, which is also measured in years. Keeping the same metric allows for correlations to
be better observed in the data. The variable was renamed as overall_survival_years and was selected as the
main parameter of interest for this analysis. This response variable was selected because of its practical
application to see if there is correlation between clinical and genomic variables and its effect on survival rate
or length of survival after cancer diagnosis. The goal of the analysis is to determine if cancer treatments such
as therapies and surgeries, tumor and lymph node indexes measured during medical examinations, or genetic
mutations of a patient affect their survival and prolonged living after prognosis and intervention. An additional
parameter of interest, death_from_cancer was selected after determining that a multinomial logistic
regression would be insightful using this response variable since the variable has three levels: living, death
due to cancer, and death due to other causes. The goal of this analysis is to determine if the clinical and
genomic variables affect the chances of survival outcome and if that outcome is attributed to the actual cancer
or due to other causes.

In cleaning the clinical variables, mutation_count had significant entries of missing values or non-
applicable variables. These entries were omitted and removed from the dataset. Data cleaning also had to be
performed on the 3 categorical variables: type_of breast surgery, cancer_type_detail, and
death_from_cancer. For all three categorical variables, all blank entries were omitted. Type of Breast Surgery
has two levels: breast conserving (only the part of the breast that contains the cancer is removed) and
mastectomy (remove all of the breast tissue). This variable was transformed as a binary variable and for the
analysis will be treated as numeric. Cancer Type Detail originally had 5 levels: Breast Invasive Ductal
Carcinoma, Breast Mixed Ductal and Lobular Carcinoma, Breast Invasive Lobular Carcinoma, Breast Invasive

Mixed Mucinous Carcinoma, and Metaplastic Breast Cancer. However, very few entries had
Metaplastic Breast Cancer as a cancer type and entries that had this type were removed after cleaning the
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mutation_count variable. This resulted in cancer_type_detail having 4 levels with any entry with missing
description or missing text in the entry, omitted from the analysis. All of the selected clinical variables and
their descriptions can be viewed in the Appendix A1.

Looking at the distribution of the clinical variables and the correlations with the parameter of interest,
overall survival years, a mostly normal distribution can be seen with several variables including
overall_survival_years, age_at_diagnosis, nottingham_prognostic_index, and tumor_stage (see Appendix
A2). Tumor stage is most correlated with the overall survival years. This ordinal variable affects a patient
differently depending on the stage of cancer and due to the correlation plots showing a high correlation to the
parameter of interest, it was determined that tumor stage would be a good variable to use as an interaction
term in the regression models. Variables that have a very skewed distribution included the nodes examined
prognostic index, which is skewed because this index is measured based on patients who have had surgery
as part of their treatment in which some patients may not have gotten surgery as treatment, mutation_count
which is skewed to left, most likely due to the high number of missing values for this variable but also a higher
number of mutations at a certain stage than at other stages may have led to this, and lastly tumor size which
is similar to mutation count in skewed distribution. Due to the nature of the dataset being clinical patient data,
none of the variables will be further normalized. Instead, tumor stage, tumor size, and mutation count will be
analyzed as interaction terms during the model building to see how they improve the model.

Genomic Variables

The 663 genomic variables are numeric and represent m-RNA levels z-score 331 genes and 175 gene
mutations. Each m-RNA z-score represents the relative expression of an individual gene and tumor to the
gene’s expression distribution in a reference population. The reference population is all samples in the study.
The returned value indicates the number of standard deviations away from the mean of expression in the
reference population. This measure is useful to determine whether a gene is up or down regulated relative to
the normal samples of all other tumor samples (CBioPortal). Since all of the genomic variables have been
calculated through a z-score, all of the variables exhibit normal distribution as they have already been z-score
normalized.

Genomic variables in columns [521: 663] had all zero values or missing values. This most likely
represents non-mutated genes or missing values from sampled studies. Since this analysis will focus on
mutated genes, columns [521: 663] have been removed from the analysis. The remaining 488 genomic
variables will be reduced using dimensional reduction through principal component analysis. Due to the large
number of variables and since all of these variables have been z-scored, using principal component analysis
to reduce the dimensionality allows for the capture of 70-90% of the variance within the four to six components
or less. In this initial reduction, the goal is to reduce the number of variables as much as possible and evaluate
the scree plot to determine the number of components. Performing a scaled principal component analysis,
resulted in the following scree plot:
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The scree plot shows that the majority of the variance is captured within the first four components.
Looking at the variance of 10 as a marker, starting at the fifth component, we see an evening out of the
components, this can be argued as the knee of the plot. Moreover, from this we will select variables that
contribute to the variance from the first four components as our reduced variables. Due to the large number
of variables, principal factor analysis at a factor of five was performed for the dimensionality reduction which
will reduce the variables to keep the key components and remove the remaining variables as unexplainable
noise.

The principal factor analysis above shows that at PC4, the cumulative proportion is 0.91 and the
cumulative variance is 0.24. For the dimensionality deduction, all variables with rotated loadings of 0.6 or
higher in each component, PC1, PC2, PC3, and PC4 were retained. PC5 did not have any variables with a
loading above 0.6. All other variables were removed from the analysis. After the dimensionality reduction, the
genomic variables have been reduced from 488 to 25. The 25 selected genomic variables are all protein
coding genes with several of the genes associated with the regulation of Cyclin-Dependent Kinase (CDK)
kinases and other genes associated with growth and cell differentiation. Protein coding sequences account
for only a small percentage, less than 2 percent of the genome but these sequences are critical in the
production of all human proteins. The selected genomic variables and their descriptions can be viewed in
Appendix A3.

After cleaning the data, the cleaned dataset contains 1,283 observations (rows), and 40 variables
(columns). There are a total of 15 clinical variables: 12 are numeric, 2 are categorical, and one is ordinal.
There are a total of 25 genomic variables which are all numeric and selected from the dimensionality
reduction. The main parameter of interest for the analysis is overall survival years, which will predict the
survival time of cancer patients based on the clinical and genomic variables. The secondary parameter of
interest for the analysis is death by cancer, which will predict the probability of placement into one of three
levels with death from other causes used as the reference level that living and death from cancer will be
compared to in determining if clinical or genomic attributes more likely influences the cause of death directly
due to cancer.

Exploration of Clinical Variables

To explore the data, an analysis of the 15 clinical variables selected through the data preparation from
the breast cancer dataset from the METABRIC database will be explored. For this exploratory analysis,
3 binary variables were converted to numeric such as chemotherapy, hormone therapy and radio therapy
indicating whether a person is taking therapy as treatment or not. Summation of all numeric data provided
12 variables to kick start the analysis. For the 2 categorical variables, cancer type detailed and death from
cancer, both these variables are explored using a contingency table. In addition, one final numeric variable,
tumor stage, was determined to be an ordinal factor, due to its high significance and correlation to all other
clinical variables. Polychoric factor analysis has been performed on the ordinal factor to interpret its correlation
and relationship with all other clinical variables.

Principal Factor Analysis & Common Factor Analysis

To determine the number of factors to select for the factor analysis, correlation plots were examined,
and principal component analysis was performed. We start by visualizing the 12 clinical variables through a
correlation plot which transforms the data into a correlation matrix for visualization. Ordering the correlation
by angle of eigenvector and through the ellipse method using statistical software R, displayed 2 clusters of
degree of multicollinearity between the variables around the data. One variable, Nottingham Prognostic Index
showed high collinearity around the data (see Appendix H). Further diving into factor analysis gave us
4 factors from the elbow method to interpret the data which captured around 61.6% variance in data. In
addition, the principal components reveal that the cumulative variance captured at PC4 is 61.6%, with PC3
capturing 49.1% and PC2 capturing 36.3%. The majority of the variance is captured in PC1, which captured
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22.9% of the variance. Thereafter, PC2 captured around 12.8% of the variance, PC3 captured around 12.5%
of the variance, and PC4 only captured around 12.5% of the variance. Subsequent components captured
even less variance, which confirms that four components are sufficient for factor analysis (see Appendix B1)
whereas parallel analysis suggests 5 factors (see Appendix B2). The loadings revealed 4 distinct groups
where overall survival years is negatively correlated. Followed by common factor analysis gives us an
understanding of the correlations between the variables. Thus, analysis has been preceded by taking 4 factors
into consideration for common factor analysis (see Appendix B3) as well which showed that 4 factors were
better than 5 factors in comparison (see Appendix B4).

RC1 represents low survival rates, which the major contribution in this component is nottingham
prognostic index which determines the prognosis following breast cancer surgery. Thus, other components
such as neoplasm histologic grade, lymph nodes examined positive, and tumor size all have contribution to
this component. Chemotherapy is also a significant contribution and lastly survival years is negatively
correlated which illustrates that the tumor has been invaded and chemotherapy may not work as treatment.
RC2 represents hormone therapy, which the major contribution in this component is age at diagnosis and
determines the patient’s age at the time of prognosis. Chemotherapy is negatively correlated here which
shows that determining on age of the patient, hormone therapy may work better as treatment. RC3 represents
cancer characteristics, which both cohort and mutation count are high contributors to this component. These
variables are related to gene variables and represents a shared characteristic of relevant gene mutations.
Lastly, RC4 represents treatment types, surgery or therapy, which type of breast surgery is negatively
correlated in this component and radio therapy has high positive correlation with others.

Correspondence Analysis

Continuing with the categorical variables, correlation has been considered using a contingency table
(see Appendix C1). Through the exploration, we found that the most commonly found cancer type is “Breast
Invasive Ductal Carcinoma”. Also, it is captivating that the rarest cancer type is “Breast Invasive Mixed
Mucinous Carcinoma” which has the highest survival rate of 73%. Evaluating the mosaic plot, showing the
2D representation of the variable’s cancer type detailed and death from cancer confirms the relationship
between the cancer type and survival outcomes.
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Polychoric Correlation Analysis

For the ordinal factor analysis, tumor stage is confirmed to be the ordinal variable to explore its
correlation with all other clinical variables. In the next step, we conducted polychoric correlation to check its
correlation (see Appendix C2). During the analysis, binning has been performed for appropriateness where
tsize refers to tumor size, progindex refers to nottingham prognostic index and agefactor refers to age at
diagnosis. Factor analysis considering 4 factors has been performed to check if any other correlations among
the data are possible or not. In the analysis, we found that almost 90% of the variance is captured with
4 components and is sufficient for analysis. Tumor stage is correlated with almost all other variables in the
first component and shows significant effect on all other variables. Age at diagnosis is captured only in the
second component and it shows correlation with the therapies (chemotherapy, hormone therapy) used for
treatment of breast cancer. As both therapies are negatively correlated with each other, it depends on the
age and the other corresponding factors to determine treatment plans with therapies. Type of breast surgery
is captured only in the third component along with radio therapy which is a similar result discovered in the
factor analysis. Lastly, tumor size is significant with tumor stage and is captured in the fourth component
which is interesting since we did not obtain any information between their correlation from earlier methods.
The interpretation was obtained from performing a polychoric factor analysis (see Appendix C3) and indicates
that 89.4% of the variance around the data was captured within four factors.

Exploration of the clinical variables gave us a better understanding of the relationship of the variables
to the parameters of interest and resulted in key findings through the factor, correspondence, and polychoric
correlation analysis. There is high multicollinearity around Nottingham Prognostic Index which was expected
since this index is measured from other numeric clinical variables. Factor analysis had a good fit with four
factors representing low survival rates, hormone therapy, cancer characteristics, and surgery as treatment
versus therapy as treatment. During categorical analysis, the common type of cancer and highest rate of
survival with another type of cancer were found which were fascinating results. Polychoric correlation analysis
with the most significant factor tumor stage gave the best interpretation of all the other variables. All different
therapies functional for treatment of breast cancer could be analyzed further when other contributing factors
towards this life-threatening disease were provided. Fundamental risk factor is genetic mutations. Yet, many
other contributing factors include the spread of tumor cells, physical activity, alcohol consumption status,
pregnancy history and stress levels which when imparted in the data would have complemented our analysis
unearthing the overall survival rate of women with breast cancer.

Exploration of Genomic Variables

This analysis explores the 25 genomic variables selected through the dimensionality reduction from
principal component analysis on the gene expression variables in the breast cancer gene expression dataset
from the METABRIC database. The selected variables are all protein coding genes which account for only
1.5% of the genome but play a significant role as they ultimately lead to the production of all human proteins.
To explore the relationship between the variables, this analysis will perform principal factor analysis, common
factor analysis, and cluster analysis. The goal of the exploration is to determine significant key genomic
variables to be used in modeling regression and to determine if the genes have any meaning or patterns in
their characteristics. In this analysis, multidimensionality scaling will be discussed to explore the fit of the data
for cluster analysis. In addition, methods for the factor analysis and visualizations will be discussed to show
how the factors were determined, significance of the factors, and interpretation of the loadings. The variables
will be shown as a good fit for factor analysis and provide significant insight for the parameter of interest.

Group 2: Cancer, 9
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Principal Factor Analysis & Common Factor Analysis

To determine the number of factors to select for the factor analysis, correlation plots were examined,
and principal component analysis was performed. We start by visualizing the 25 genomic variables through
a correlation plot which transforms the data into a correlation matrix for visualization. Ordering the correlation
by angle of eigenvector and through the ellipse method using statistical software R, displayed a high degree
of multicollinearity between the variables and showed three distinct factors. One variable, ctcf, was not highly
correlated with any other variable, whereas rheb is correlated with almost all other variables (see Appendix
D1). Ordering the correlation by hierarchical clustering confirmed the existence of three distinct groupings
and ctcf as the variable that showed little or no correlation to all other variables. The correlation plots reveal
that three or four factors exist, which we will explore further by analyzing the principal components.
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Principal component analysis was performed on the 25 genomic variables using the correlation matrix.
The scree plot for the principal components revealed a knee occurring at PC4. Using the variance equals 1
criterion, the first four components are above 1 (see Appendix D2). Moreover, the knee and the variance
equals 1 both confirm four factors. The principal components reveal that the cumulative variance captured at
PC4 is 67.9%, with PC3 capturing 62.7% and PC5 capturing 71.6%. The majority of the variance is captured
in PC1, which captured 30% of the variance. Thereafter, PC2 captured around 19% of the variance, PC3
captured around 14% of the variance, and PC4 only captured around 5% of the variance. Subsequent
components captured even less variance, which confirms that four or three components is sufficient for factor
analysis (see Appendix D3).

An initial principal factor analysis using four factors and varimax rotation was performed. The loadings
revealed three distinct groupings with ctcf separated into its own factor, RC4. RC1 included cdk1, ccnel,
cdc25a, cdkn2a, e2f2, e2f3, qurka, chek1, and fancd2. RC2 included rb1, jak1, adam10, eifde, itgav, reheb,
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tgfbr2, and hsd17b11. RC3 included ccnd2, acvrl1, dab2, foxo1, pdgfrb, rps6ka2, adgra2, and tgfbr2 which
was also included in RC2, and cdk1 in negative relationship which was included in RC1 (see Appendix D4).
Common factor analysis was performed with four components as a comparison and to see if the rotated
components would separate more clearly. The results showed that common factor analysis did not perform
any better than principal factor analysis at four factors. The variables for each factor remained the same, with
the fourth factor including cfcf and eif4e in negative coefficients (see Appendix D5). Since ctcf becomes its
own factor from the factor analysis, we run the factor analysis again but using three factors as a comparison.
The results show that with three factors for both principal factor analysis and common factor analysis, ctcf
falls out completely and is not included in any of the factors. In addition, the variables are grouped more
clearly with three factors, with cdk1 separating to the first factor and only tgfbr2 not separating entirely and
grouped into one of two factors (see Appendix D6).

The results from the initial factor analysis confirms that ctcf is not correlated with any other variable
and becomes its own factor, confirming the initial visualization from the correlation plot. To validate the
goodness of fit of the variables and if factor analysis is appropriate for the data, the Kaiser-Meyer-Olkin (KMO)
factor adequacy was performed with an overall MSA (measure of sample adequacy) of 0.9, which is strong
and shows a high factor stability. All variables had an MSA of over 0.8, except ctcf which had an MSA of 0.47,
confirming that this variable may not be suitable with other factors (see Appendix D7). To interpret the factors
and components we will perform the factor analysis again excluding cfcf.

Performing the principal factor analysis with three factors on the 24 genomic variables, resulted in the
same factor rotations as the initial principal factor analysis (see Appendix D8). Common factor analysis with
three factors on the 24 genomic variables performed better than principal factor analysis in separating the
variables into distinct factors, but the total cumulative variance is slightly lower at around 60%, compared to
65% with principal factor analysis. In both factor analyses, each factor captured around 20% of the variance,
with the first factor capturing a slightly higher percentage.

The first factor (RC1) appears to represent genes that are cyclin-dependent kinase, proteins in the
kinase family, or proteins associated with regulating the cyclin kinase family (see Appendix D9). Cyclin
Dependent Kinase 1(cdk1) is directly associated with breast cancer. The loss of Cyclin Dependent Kinase
Inhibitor 2A(cdkn2a) is directly associated with the development of many cancers. The majority of the genes
in this factor are associated with retinoblastoma (eye cancer), such as E2F Transcription Factor 2 (e2f2) which
is critical in the control of cell cycle and the action of tumor suppressor proteins. Cancers including breast
cancer cause dysregulated CDK/cyclins, which will cause instability in the coordinated cycle of cell growth
and proliferation, contributing to the uncontrolled proliferation of cancer cells (Peyressatre 2015). Moreover,
the first factor represents genes that have been documented to cause cancers or when unregulated results
in mutations causing tumors and cancers.

The next factor (RC3) appears to be receptor, encoder, or adaptor proteins that serve the serine-
threonine kinase domain or subdomain (see Appendix D10). This domain is associated with the CDK/cyclin
family. Majority of the genes in this factor are associated with cell growth or control of cell growth and division.
Cyclin D2 (ccnd?2) is highly associated with cancers if unregulated. Certain genes in this factor such as
Forkhead Box O1(foxo1) do not have known functions yet. This factor includes many genes that encode
proteins for other genes and a loss or non-regulation of these genes may result in cell differentiation. This
factor includes a negative relation with cdk1, which shows that perhaps this factor may be assisting with
suppressing cancer, since cdk1 directly causes cancer.

The last factor (RC2) appears to represent genes that are either tumor suppressors, binding proteins,
and proteins that can stabilize or regulate cancer progression (see Appendix D11). RB Transcriptional
Corepressor 1(rb1) is the first known tumor suppressor gene. Janus Kinase 1(jak7) and Integrin Subunit
Alphia V (itgav) both are genes that can regulate or restrict cancer progression. Moreover, this factor
represents genes that have been documented to suppress or regulate the development and progression of
tumors. Lastly, CCCTC-Binding Factor (ctcf) is a transcriptional regulator protein associated with 11 highly
conserved zinc finger (ZF) domains. Mutations of this gene have been directly associated with invasive breast
cancers. As this gene is in a different domain than most of the other genes, this explains why the gene is not
correlated with other genes.
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Multidimensionality Scaling & Cluster Analysis

To further explore the relationship between the genomic variables, an exploratory cluster analysis was
performed. First, multidimensional scaling was performed on the genomic variables to determine the
goodness of fit for cluster analysis. The stress resulted in a value of 0.187, which is much greater than 0.1
but not greater than 0.2, in other words the genomic variables are most likely not a good fit for cluster analysis
(see Appendix E1). When looking at the Shepherd's Diagram, the distances were wide with no clear step line,
further confirming that the data may not be good for cluster analysis (see Appendix E2). The plot of the
multidimensional scaling on two dimensions did not show any clear distinct clusters, but instead, showed one
dense cluster with possible outliers (see Appendix E3).

As an exploration, the following cluster analysis approaches were performed on the data: density,
k-means, k-medoids, and hierarchical. Density clustering failed and resulted in zero clusters. K-medoids,
which clusters based on the most central object and hierarchical clustering, which clusters based on
subclusters performed the best. To determine the optimal number of clusters, the average silhouette method
and the gap statistic method was used. The average silhouette method measures the quality of the clustering
and determines how well each object lies within its cluster. Using the average silhouette method for the k-
medoids approach resulted in k = 2, which is low, since a high average silhouette width indicates good
clustering (see Appendix E4). The gap statistic method compares the total intracluster variation for different
values of k with their expected values under a distribution with no obvious clustering. Using the gap statistic
method for the hierarchical approach resulted in k = 2, which is the same results from the silhouette method
(see Appendix E5).

For the hierarchical clustering, first the dissimilarity values were obtained using the similarity matrix
on the data and those values were used to plot the hierarchical cluster and obtain the dendrogram (see
Appendix E6). The dendrogram has a tall height with many groupings and even at k = 2, the groupings are
not distinct. The resulting cluster confirms that no distinct clusters were found with the first cluster overlapping
with the majority of the second cluster (see Appendix E7). When increasing to k = 3, one cluster overlaps with
the other two clusters and the cluster plot does visually appear more separated between clusters than with
two clusters, but the first cluster still overlaps heavily with the other two clusters resulting in difficult
interpretation and no clear distinction. K-medoids cluster analysis using k = 2 performed slightly better
although the resulting clusters are very similar to the results from hierarchical clustering with the first cluster
having slightly less overlap to the second cluster (see Appendix E8). With the results of these cluster plots
and with the multidimensional scaling stress test showing a value close to 0.2, we can conclude that distinct
clusters could not be found in the data. K-medoids clustering resulted in the best cluster plots at k = 2 but
heavy overlap between the clusters exists and clear distinctive clusters could not be determined.

The exploration of the genomic variables resulted in several key findings from factor analysis and
cluster analysis. The genomic variables could not be clustered into any distinct clusters and that clustering
was not a good fit for the variables. Gene clustering is a specific domain and more advanced methods for
exploring the genes could be applied than the clustering techniques used in this exploration. For factor
analysis, three distinct factors were determined with the first factor representing genes associated with
CDK/cyclins and genes regulating or controlling proteins associated with the kinase family, which when left
unregulated has been shown to contribute to the proliferation of cancer. Moreover, the first factor can be seen
as genes associated with the development of breast cancer by way of the control or regulation of CDK/cyclins
proteins and their affiliates. The second factor represents genes that are tumor suppressors or genes that
help stabilize or restrict the progression of cancer. Lastly, the last factor represents genes associated with the
serine-threonine kinase domains, which are associated with the kinase family. This factor can be seen as
genes that code or regulate growth and division of cells in these domains, which when left unregulated will
result in cell differentiation. Whereas the first two factors appear to be opposite of each other, first factor
contributing to cancer, and the second factor aiding in the progression of cancer, the third factor is less clear
since it involves genes that potentially could be tumor suppressors but also involves genes when unregulated
could lead to mutations resulting in cancer. Lastly, ctcf was not correlated with any factors, but is associated
with invasive breast cancer and most likely represents a variable aiding in cancer progression.
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Regularized Regression: Overall Survival Years

We attempted to construct a model that would predict survival years of breast cancer patients as this
would be valuable information for patients that have been recently diagnosed. For building this model we
started with 39 variables including 25 genes and 14 clinical variables. From that starting point the first 4 PCA
variables were added from the 25 genes that we had selected out as being important. It is useful to stick to
using the PCA values from these genes since another member of the group is going to do common factor
analysis so we could interpret our final model if it included any of the PCA variables. The categorical variable
“type of breast surgery” was turned into a binary value so that it could be used in the regression. Lastly some
interaction variables noted below were added based on some of our previous analysis and hypothesis.

Radiotherapy and Tumor Size
Radiotherapy and Tumor Stage
Chemotherapy and Tumor Size
Chemotherapy and Tumor Stage
Hormone therapy and Tumor Size
Hormone therapy and Tumor Stage

O 0O O O O O

We looked at multiple different regression techniques which are summarized in the table below. There
is a noticeable gap between the training set and test sets RMSE for the most basic of the models showing
that there is some multicollinearity and overfitting in our data set. Without delving too far into these models
they are generally not very good due to their R? and the difference in RMSE between training and test sets.

Summary table for different regression models explored:

Base Backwards Step | All Subsets Ridge Lasso Relaxed Lasso
Model Regression Regression Regression Regression Regression
Adjusted R-2 | 0.188 0.244 0.236 0.237 0.255 0.2652
Training 5.41 5.58 5.67 N/A N/A N/A
RMSE
Testing 6.45 6.42 6.36 6.20 6.23 6.24
RMSE
Parameters 47 12 6 47 13 7

The best performing regression model was the relaxed lasso regression. Using this model, we get a
parsimonious model with only 7 variables and the highest adjusted R? value along with a lower RMSE on the
testing data set than most of the other models. That being said, our model is still not very useful for predicting
survival years of breast cancer patients. A mean squared error of 6.2 years is way too large to be effective at
predicting the remaining lifespan of a patient. There are clearly some important variables that we are not able
to consider with our data set. Our data set lacks a lot of underlying variables that impact the general health of
a patient. Obesity, fitness level, diet, blood pressure, heart rate and other medical conditions are just a few of
the many variables that we hypothesize could have an impact on the progression of cancer and consequently
patient survival after being diagnosed.
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Final Model

Survival Years = 13.84 — 0.16 Lymph Nodes Examined Positive — 0.28 Nottingham Prognostic Index
—0.004 Tumor Size -1.10 Tumor Stage - 0.01 chek1- 0.614 rheb — 0.17 PC4

One of the clearest signs of bias in our model is shown in the residual plot below. In a useful model
we would expect the residuals to be scattered homoscedasticity around 0, horizontal to the x-axis. Instead,
what we see is that our model generally gives predictions near the average of the data set only slightly
increasing or decreasing its prediction based on the independent variables. Our model performs poorly at
predicting patients' survival years if they differ greatly from the mean.

Residual Plot

15
|

10

Residuals

0 5 10 15 20 25

Patient Survival Years

A more practical use of our model is to look at the variables that ended up being included in our model
and compare them to the factor analysis previously performed. Nottingham Prognostic Index and Lymph
Nodes Examined positive are the two largest factors of the first principle loading in the clinical data. This gives
us confidence in the stability of the model. Tumor size is also in this first factor. It is interesting that PC4 is
included in this model over some of the larger principal components. One reason might be that the rheb gene
is one of the largest contributors to PC2 rendering it less useful. Also, chek1 is a very large contributor to
PC1, PC2 and PC3. So, since the model already selected these genes the first three principal components
could be selected out by Lasso due to their multicollinearity.
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Multinomial Logistic Regression: Death by Cancer

Multinomial logistic regression is a form of regression analysis where the dependent variable is
nominal and has more than two categories. This type of regression can have nominal or continuous
independent variables, which makes it well suited for the data target data set since some of the variables are
categorical. With multinomial logistic regression there are some important considerations, such as needing a
large sample size and checking for empty or small cells. Multinomial logistic regression was used instead of
collapsing the number of categories into two and conducting logistic regression because it would suffer from
information loss. In this analysis, we explored deaths from cancer as the dependent variable, which has three
possible outcomes of “died of disease,” “died of other causes,” and “living.”

To begin, an all-variable model was created to initially explore the data and be used as a base to
compare subsequent models to. In order to create the multinomial logistic model, the package nnet was used
for the function multinom in R. The variable death_from_cancer was re-leveled so “died of other causes” was
the reference level. When applied to the training data set, a model of 71.38% accuracy was created. When it
was reapplied to the test data set, the model had an accuracy of 69.9%, indicating that it may not have
suffered from overfitting due to the low drop in accuracy. This model was also analyzed to assess the most
significant variables at play so we could reduce the number of variables in the model to make it more
parsimonious and easier to interpret. From there, we created and analyzed multiple models to understand
how well these variables work in predicting the outcome of death from cancer.

Summary of the Top Three Models and their Accuracies:

Top Multinomial Logistic Regression Model Accuracy from Accuracy from
Training Test

All Clinical and Genomic Variables 71.38% 69.90%

survival_years, age_at_diagnosis, type_of_breast_surgery, 66.92% 64.86%

nottingham_prognostic_index, e2f2, and aurka

nottingham_prognostic_index, age_at_diagnosis, cohort, mutation_count, 59.29% 55.56%
type_of_breast_surgery, ccnel, cdc25a, chekl, acvrl1, foxo1, and jak1

Of the top three performing models, the model with the fewest variables was selected for visualization
because of its interpretability and accuracy. It included the variables survival_years, age_at_diagnosis,
type_of_breast_surgery, nottingham_prognostic_index, e2f2, and aurka. The accuracy on the test dataset
was 64.86%, which was only a 2% drop from the accuracy of the model on the data used in training. From
here, we can interpret the probability of dying from cancer, dying from other causes, and living based on the
values of the different variables in the model. The clinical variables played the largest role in all of the models.
Clinical variables such as the type of surgery, age, and the Nottingham Prognostic Index play a significantly
bigger role in determining the outcome of dying from cancer than the gene expression variables.
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With an increase in age, the probability of
dying from cancer decreases, but so does
the probability of living. This is because the
probability of dying from other causes
increases dramatically. At the age of 30, the
probability of dying from cancer is relatively
low and slowly increases until about the age
of 60, where it starts to drop again due to
drastic increase in death from other causes.

Another interesting trend is with the
Nottingham Prognostic Index, where we
found that the higher the index number, the
higher the probability of death from disease.
Death from other causes decreases with the
higher index due to the higher likelihood of
dying from cancer. The outcome of living
also goes down slightly with the higher
index number. For example, a Nottingham
Prognostic Index of 2 has a 55% probability
of living and 20% probability of dying from
cancer, but an Index of 6 has a roughly 43%
probability of both living and dying from
cancer.
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Conclusion

Exploration of the breast cancer gene expression dataset through the METABRIC database revealed
key findings in relation to clinical and genomic variables and their significance in predicting the overall survival
years in breast cancer patients. In exploring the clinical variables, it was determined that tumor stage was the
most significant variable through polychoric correlation and linear discriminant analysis. Understanding the
stage of the tumor allowed for a better understanding of all other clinical variables as the stage of the cancer
directly dictated the results of all other clinical variables. The clinical variables were a good fit for factor
analysis with four factors, representing low survival rate, hormone therapy, cancer mutation characteristics,
and type of treatment. All different treatment therapies aiding in the progress of a patient’s treatment
depending on their age of prognosis and the cancer type had impact on the outcome of the disease. The
genomic variables were also a good fit for factor analysis with three factors representing genes associated
with the CDK/Kinase family that when left unregulated results in the proliferation of cancer cells, genes
associated with tumor suppressors, or genes that are growth regulators that may or may not be associated
with cancer progression. One gene, ctcf, is not correlated with any other gene but is directly associated with
invasive breast cancer and is significant in the model.

From the factor analysis, tumor stage and ctcf were shown to be unique and significant in different
ways. Both variables are significant in the final regression model for the overall survival years. Almost all
models that were built to predict overall survival years supported the clinical and genomic data from the factor
analysis. The final regression model is a relaxed LASSO model, with an adjusted R-square of 0.2652 and
included features: Lymph Nodes Examined Positive, Nottingham Prognostic Index, Tumor Size, and Tumor
Stage, jak1, chek1, rheb, and ctcf. Although the adjusted R-square is low for practical use, especially since
the RMSE was 6.24, the model does show that clinical indexes, which is determined during medical
examinations and is classified based on various clinical measurements, in addition to the tumor size and
stage of the cancer, has some relation to patient’s survival. Nottingham Prognostic Index proved to be
significant in multinomial logistic regression for the death from cancer as the higher the index score, the higher
the probability of death from cancer. This index along with key clinical variables such as type of surgery and
age of prognosis had a larger role in determining the outcome of death from cancer than the genomic
variables. This analysis shows that mitigation efforts in the patient's clinical attributes including when the
cancer is diagnosed, the stage of the cancer, and treatment options are more salient in determining the
outcome of the patient. Moreover, prevention is better than a cure and after prognosis, tumor cells need to be
detected early to determine best treatment.

Throughout our analysis the prominence of clinical variables with relation to the well-being of patients
was clear. Without additional medical knowledge about the patients, it is difficult to create a model that can
accurately predict the well-being of a cancer patient. We think that increasing the number of clinical variables,
specifically those that gage a patient's overall health, would be beneficial in modeling a patient's long-term
survival. Outside of gathering additional data for further analysis we did identify some key genes in relationship
to survival of breast cancer patients. Genes like cdk1, rheb, ctfc and cdkn2a have all been identified as
possible targets for new gene editing techniques like CRIPSR. An analysis comparing similar patients that do
and do not have gene editing performed to fix their genes could lead to a better understanding of which gene
mutations are most significant in breast cancer patients. Our analysis just begins to scratch the surface of the
work to be done with regards to breast cancer, but we hope that it can be a starting point for further analysis
that can lead to a cure.
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Appendix A: Data Preparation

Appendix A1: Clinical Variables

Appendix: Technical Analysis

Variable Type Type for Description
Analysis

*overrall_surival_years Numeric Numeric Duration from the time of the intervention to death (in years).

(*parameter of interest) Transformed to years from months.

age_at_diagnosis Numeric Numeric Age of the patient at diagnosis time (in years)

cohort Numeric Numeric Cohort is a group of subjects who share a defining characteristic (value
from 1to 5)

neoplasm_histologic_grade Numeric Numeric Determined by pathology by looking the nature of the cells, and
determining if they look aggressive or not (value from 1 to 3)

lymph_nodes_examined_positive Numeric Numeric Samples of the lymph node during the surgery and see if the lymph
nodes evolved by the cancer.

nottingham prognostic index Numeric Numeric Used to determine prognosis following surgery for breast cancer. Value is
calculated using three pathological criteria: the size of the tumor; the
number of involved lymph nodes; and the grade of the tumor.

mutation_count Numeric Numeric Number of genes that have relevant mutations.

tumor_size Numeric Numeric Tumor size measured by imaging techniques.

tumor_stage Ordinal Ordinal Stage of the cancer based on the involvement of surrounding structures,
lymph nodes and distant spread.

chemotherapy Binary Numeric Whether or not the patient had chemotherapy as a treatment (Binary:
Yes/No)

hormone_therapy Binary Numeric Whether or not the patient had hormonal as a treatment
(Binary: Yes/No)

radiotherapy Binary Numeric Whether or not the patient had radiotherapy as a treatment (Binary:
Yes/No)

type_of_breast_surgery Categorical | Binary/Numeric | Binary: 2 Levels
1 = Breast Conserving (only the part of the breast that contains the
cancer is removed).
2 = Mastectomy (remove all tissue breast, method of treatment or
prevention of cancer)

cancer_type_detail Categorical | Categorical, 4 Levels:

4 Levels Breast Invasive Ductal Carcinoma,

Breast Mixed Ductal and Lobular Carcinoma,
Breast Invasive Lobular Carcinoma,
Breast Invasive Mixed Mucinous Carcinoma

** death_from_cancer Categorical | Categorical, 3 Levels:

(**parameter of interest) 3 Levels Still Living, Death from Cancer, Death from Other Causes
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Appendix A2: Correlation and Distribution of Clinical Variables
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Appendix A3: Genomic Variables

Variable

Description (all protein-coding genes):

rb1

RB Transcriptional Corepressor 1: Protein encoded by this gene is a negative regular of the cell cycle and was first tumor
suppressor gene found. Associated with Retinoblastoma and Small Cell Lung Cancer.

cdki

Cyclin Dependent Kinase 1: Protein encoded by this gene is part of the Ser/Thr protein kinase family. Catalytic subunit of
highly conserved kinase complex, essential for G1/S and G2/M phase transition of eukaryotic cell cycle. Associated with
Retinoblastoma and Breast Cancer.

ccnel

Cyclin E1: Protein encoded by this gene is part of the highly conserved cyclin family. Cyclins function as regulators of
CDK kinases. Overexpression of this gene has been observed in many tumors. Associated with clear cell
Adenocarcinoma of the Ovary and Retinoblastoma.

cdc25a

Cell Division Cycle 25A: Part of the CDC25 family of phosphatases. Required for progression from G1 to the S phase of
the cell cycle. Activates the cyclin-dependent kinase CDC2. Associated with Retinoblastoma and Ataxia-telangiectasia.

cend2

Cyclin D2: Protein coded by this gene belongs to the highly conserved cyclin family. Cyclins function as regulators of CDK
kinases. Has been shown in many cancer types if unregulated.

cdkn2a

Cyclin Dependent Kinase Inhibitor 2A: Gene generates several transcript variants which different in their first exons. Gene
is frequently mutated or deleted in a wide variety of tumors and is known to be an important tumor suppressor gene. Loss
of this gene shown to be significant in many cancers.

e2f2

E2F Transcription Factor 2: Protein encoded by this gene is a part of the E2F family of transcription factors. Plays a
crucial role in control of cell cycle and action of tumor suppressor proteins. Associated with Retinoblastoma and
Encapsulated Thymoma.

e2f3

E2F Transcription Factor 3: Encodes a member of a small family of transcription factors that function through binding of
DP interaction partner proteins. Associated with Retinoblastoma and Bladder Cancer.

jak1

Janus Kinase 1: Encodes a membrane protein that is part of a class of protein-tyrosine kinases (PTK). Gene plays a
crucial role in effecting the expression of genes that mediate inflammation, epithelial remodeling, and metastatic cancer
progression. Associated with Autoinflammation, Immune Dysregulation, and Eosinophilia.

adam10

ADAM Metallopeptidase Doman 10: Cell surface proteins with a unique structure possessing both potential adhesion and
protease domains. Associated with reticulate a Reticulate Pigmentation of Kitamura and Alzheimer Disease.
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acvrlt

Activin A Receptor Like Type 1: Encodes a type 1 cell-surface receptor for the TGF-beta superfamily of ligands. Shares
high degree of similarity. To the serine-threonine kinase subdomains. Associated with Telangiectasia and Hereditary
Hemorrhagic.

aurka

Aurora Kinase A: Protein encoded by this gene is a cell cycle-regulated kinase that appears to be involved in microtubule
formation and/or stabilization at the spindle pole during chromosome segregation. Gene may play a role in tumor
development and progression. Associated with Colorectal Cancer.

chek1

Checkpoint Kinase 1: Protein encoded by this gene is part of the Ser/Th protein kinase family. Required for checkpoint
cell cycle arrest in response to DNA damage or the presence of un-replicated DNA. Associated with Ataxia-
Telangiectasia and Li-Fraumeni Syndrome.

dab2

DAB Adaptor Protein 2: Encodes a mitogen-responsive phosphoprotein. Expressed in a normal ovarian epithelial cell but
is downregulated or absence from ovarian carcinoma cell lines, suggesting its role as a tumor suppressor. Associated
with Teratocarcinoma.

eifde

Eukaryotic Translation Initiation Factor 4E: Protein encoded by this gene is a component of the eukaryotic translation
initiation factor 4F complex, which recognizes the 7-methlguanosine cap structure at 5’ end of messenger RNAs.
Associated with Autism and Pervasive Development Disorder.

foxo1

Forkhead Box O1: Part of the forkhead family of transcription factors. Specific function has not yet been determined, but it
may play a role in myogenic growth and differentiation. Associated with Rhabdomyosarcoma and Glioma.

itgav

Integrin Subunit Alpha V: Product of this gene belongs to the integrin alpha chain family. Integrins are heterodimeric
integral membrane proteins and may regulate angiogenesis and cancer progression. Associated with West Nile Virus and
Herpes Simplex.

pdgfrb

Platelet Derived Growth Factor Receptor Beta: Protein encoded by this gene is a cell surface tyrosine kinase receptor for
the platelet-derived growth factor family. This gene is essential for the normal development of the cardiovascular system
and aids in rearrangement of the actin cytoskeleton. Associated with Premature Aging Syndrome and Kosaki Overgrowth
Syndrome.

rheb

RAS Homolog, HTORC1 Binding: Gene is a member of a small GTPase superfamily and encodes a lipid-anchored, cell
membrane protein with five repeats of the RAS-related GTP-binding region. Associated with Tuberous Sclerosis and
Hemimegaloencephaly.

rps6ka2

Ribosomal Protein S6 Kinase A2: Encodes a member of the RSK (ribosomal S6 kinase) family of the serine/threonine
kinases. Activity of this protein has been implicated in controlling cell growth and differentiation. Associated with Coffin-
Lowry Syndrome and Autism.

tgfbr2

Transforming Growth Factor Beta Receptor 2: The protein encoded by this gene is a transmembrane protein that has a
protein kinase domain and forms a heterodimeric complex with TGF-beta receptor type-1, and binds TGF-beta. Mutations
of this gene have been associated with Marfan Syndrome, Loeys-Deitz Aortic Aneurism Syndrome, and the develop of
various types of tumors. Diseases associated with TGFBR2 include Loeys-Dietz Syndrome, Colorectal Cancer, and
Hereditary Nonpolyposis.

adgra2

Adhesion G Protein-Coupled Receptor A2: Part of the adhesion-GPCR family of receptors. Endothelial receptor which
functions together with RECK to enable brain endothelial cells to selectively respond to the Wnt7 signals and establish
blood-brain barriers.

ctef

CCCTC-Binding Factor: Part of the BORSIS + CTCF gene family and encodes a transcriptional regulator protein with 11
highly conserved zinc finger (ZF) domains. Mutations in this gene have been associated with invasive breast cancers,
prostate cancers, and Wilms’ tumors.

fancd2

FA Complementation Group D2: Part of the Fanconi anemia complementation group (FANC) and required to maintain
chromosomal stability. Plays a role in preventing breakage and loss of mis segregating chromatin at the end of cell
division. Associated with Fanconi Anemia.

hsd17b11

Hydroxysteroid 17-Beta Dehydrogenase 11: A short-chain alcohol dehydrogenases which metabolizes secondary
alcohols and ketones. Associated with Cutaneous T Cell Lymphoma and Lymphoma.
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Appendix B: Clinical Variables — Factor Analysis

> print(pr_clinc$loadings, cutoff=.4, sort=T) #61.6%
Loadings:
RC1 RC2 RC3 RC4
neoplasm_histologic_grade 0.672
Appendix B1: | lymph_nodes_examined_positive 0.698
PFA with 4 Factors | nottingham_prognostic_index 0.925
tumor_size 0.557
age_at_diagnosis 0.838
chemotherapy 0.515 -0.619
hormone_therapy Q.
cohort 0.787
mutation_count 0.739
type_of_breast_surgery -0.832
radio_therapy 0.829
survival_years -0.426
RC1 RC2 RC3 RC4
SS loadings 2.747 1.605 1.539 1.498
Proportion Var 0.229 0.134 0.128 0.125
Cumulative Var 0.229 0.363 0.491 0.616
Parallel Analysis Scree Plots
X —>— PC Actual Data
""" PC Simulated Data
- PC Resampled Data
w | —4—  FA Actual Data
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Appendix B3: CFA with 4 Factors

> print(f_clinc$loadings, cutoff=.4, sort=T) #46.9%

Loadings:

Factorl Factor2 Factor3 Factor4
neoplasm_histologic_grade 0.777
lymph_nodes_examined_positive 0.554 0.507
nottingham_prognostic_index 0.988
type_of_breast_surgery 0.959
radio_therapy -0.532
chemotherapy -0.752  0.522
survival_years
age_at_diagnosis 0.491
cohort
hormone_therapy
mutation_count
tumor_size

Factorl FactorZ Factor3 Factor4
SS loadings 2.324 1.247 1.065 0.988
Proportion Var 0.194 0.104 0.089 0.082
Cumulative Var 0.194 0.298 0.386 0.469

Appendix B4: CFA with 5 Factors

Loadings:

Factorl Factor2 Factor3 Factor4 Factor5
Lymph_nodes_examined_positive 0.758
nottingham_prognostic_index  0.801 0.559
neoplasm_histologic_grade 0.967
type_of _breast_surgery 0.937
radio_therapy -0.547
age_at_diagnosis 0.627
chemotherapy 0.413 -0.683
cohort 0.740
survival_years
hormone_therapy 0.456
mutation_count 0.418
tumor_size 0.402

Factorl Factor2 Factor3 Factor4 FactorS
SS loadings 1.877 1.288 1.224 1.099 0.952
Proportion Var 0.156 0.107 0.102 0.092 0.079
Cumulative Var 0.156 0.264 0.366 0.457 0.537

N
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Appendix C: Clinical Variables — Correspondence Analysis and Polychoric Correlation Analysis

Appendix C1: Contingency Table for Categorical Variables

> conTable
Died of Disease Died of Other Causes Living
Breast Invasive Ductal Carcinoma 362 218 439
Breast Invasive Lobular Carcinoma 29 21 39
Breast Invasive Mixed Mucinous Carcinoma 2 2 11
Breast Mixed Ductal and Lobular Carcinoma 49 47 o4

Appendix C2: Polychoric Correlations

Polychoric Correlation

type_of breast_surgery

chemotherapy

hormone_therapy

des_examined_positive

radio_therapy

tumor_stage

agefactor

progindex

tsize 0.4 . ¥ -0.04 0.35

T T
type_of_breast_surgery  chemotherapy hormone_therapy radio_therapy tumor_stage agefactor progindex tsize
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Appendix C3: Polychoric Factor Analysis

> #Analysis with polychoric correlations
> poly = princomp(covmat = polyCor, cor=T)
> summary(poly)
Importance of components:
Comp.1 Comp.2 Comp.3 Comp .4 Comp.5 Comp .6 Comp .7 Comp .8
Standard deviation 1.9331730 1.3945265 1.2502594 0.89502353 0.70316150 0.49477069 0.33216627 0.32303788
Proportion of Variance 0.4152398 0.2160782 ©.1736832 0.08900746 0.05493734 0.02719978 0.01225938 0.01159483
Cumulative Proportion ©.4152398 0.6313180 0.8050012 0.89400866 0.94894600 0.97614578 0.98840517 1.00000000
Comp.9
Standard deviation 1.933173e-04
Proportion of Variance 4.152398e-09
Cumulative Proportion 1.000000e+00
plot(poly)

v

> #Scree plot gives us 80% for 4 components
> polyl = principal(polyCor, nfactors = 4)
> summary(polyl)

Factor analysis with Call: principal(r = polyCor, nfactors = 4)

Test of the hypothesis that 4 factors are sufficient.
The degrees of freedom for the model is 6 and the objective function was 14.44

The root mean square of the residuals (RMSA) is .05
> print(polyl$loadings, cutoff = .4)

Loadings:

RC1 RC2 RC3 RC4
type_of_breast_surgery -0.891
chemotherapy 0.576 -0.671

hormone_therapy .500 0.701
lymph_nodes_examined_positive 0.920

(S

radio_therapy 0.933
tumor_stage 0.682 0.594
agefactor 0.889

progindex 0.919

tsize 0.928

RC1 RC2 RC3 RC4
SS loadings 2.942 1.768 1.702 1.634
Proportion Var 0.327 0.196 0.189 0.182
Cumulative Var 0.327 0.523 0.712 0.894
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Appendix D: Genomic Variables — Factor Analysis

Appendix D1: Correlation
Plot with all 25

genomic variables —
Angle of Eigenvector
Method

Appendix D2:
Scree Plot of

Principal
Components

Variances

©

hsd17b11 D
tgfbr2 |
ccnd2

foxo1

pdgfrb

adgra2

acvrl1

rps6ka2

dab2
e2f3

e2f2

0.8

0.6

0.4

F 02

r -0.2

ccnel

cdc25a

fancd2

-0.4

aurka

cdkn2a

-0.6

chek1

cdk1

-0.8

ctef
rheb

> plot(p)
> _abline(l, @, col = "purple™)
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Appendix D3: Summary of Principal Components

> p = prcomp(genesDS, scale = T)

> summary(p)
Importance of components:

Standard deviation
Proportion of Variance 0@
Cumulative Proportion

Standard deviation

Proportion of Variance 0.

Cumulative Proportion

Standard deviation

Proportion of Variance 0.

Cumulative Proportion

Appendix D4: PFA with 4 Factors

> pP = principal(genesDS, nfactors = 4, rot = 'varimax') # 4 Factors
> print(pP$loadings, cutoff = .4, sort=T)

Loadings:
RC1
cdkl (7]
ccnel (/]
cdc25a (/]
cdkn2a 0
e2f2 Q.
e2f3 (/]
aurka 0
chekl (]
fancd2 (/]
ccnd2
acvrll
dab2
foxol
pdgfrb
rpséka2
adgra2
rbl
jakl
adam1@
eifde
itgav
rheb
tgfbr2
hsd17b11
ctcf

SS loadings

Proportion Var 0.232 0.200 0.195 0.053
Cumulative Var 0.232 0.432 0.627 0.680

.682
.841
. 804
.645

803

.754
.794
.831
.731

RC3
-0.414

0.722
0.802
0.753
0.788
0.745
0.632
0.779

0.607

RC1

RC2

0.735
0.789
0.751
0.726
0.704
0.687
0.674
0.770

RC3

2.
.3005 0.1876 0.1391 0.05257 0.03628 ©.03198 0.02569 0.02435 0.02084
Q.

0

RC4

PC1 PC2 PC3 PC4 PC5 PC6

PC7

PC8 PC9

7411 2.1655 1.8647 1.14638 0.95233 0.89408 0.80139 0.78019 0.72174

3005 0.4881 0.6272 0.67978 0.71606 0.74804 @.77373 0.79807 0.81891
PCle PC17 PC18

0.54575 0.53952 0.51292

0.01191 0.01164 0.01052

0.92284 0.93448 0.94500
PC25

0.35083

0.00492

1.00000

pC10 PC11 PC12 PC13 PC14

PC19 PC20 PC21 PC22 PC23

Loadings:

cdkl
ccnel
cdc25a
cdkn2a
e2f2
e2f3
aurka
chekl
fancd2
ccnd2
acvrll
dab2
foxol
pdgfrb
rps6ka2
adgra2
rbl
jakl
adam10@
eifde
itgav
rheb
tgfbr2

0.901 hsd17b11

RC2

ctcf
RC4

5.794 5.002 4.876 1.323

PC15
.69764 0.65248 0.62494 0.60279 0.56826 0.55779
01947 0.01703 0.01562 ©.01453 0.01292 0.01245
.83838 0.85541 0.87103 0.88556 0.89848 0.91092
PC24
.49787 ©.47599 0.47050 0.46148 0.43521 0.39195
00992 0.00906 0.00885 0.00852 0.00758 0.00614
.95492 0.96398 0.97284 0.98136 0.98893 0.99508

SS loadings
Proportion Var

693

802

.697
.789
.814
.710

Cumulative Var

-0.400

0.689
0.778
0.723
0.758
0.697
0.565
0.736

0.627

Appendix D5: CFA with 4 Factors

> cFA = factanal(genesDS, 4)
> print(cFA$loadings, cutoff = .4, sort=T)

Factorl Factor2 Factor3 Factor4
0.
0.798
0.789
0.568
Q.
0
0
0
0

0.694
0.754
0.700
0.720 -0.412
0.641
0.653
0.676
0.757
0.640

Factorl Factor2 Factor3 Factor4
5.452
0.218
0.218

4.611 4.507 0.836
0.184 0.180 0.033
0.403 0.583 0.616
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Appendix D6: PFA and CFA with 3 Factors Comparison

> pR = principal(genesDS, nfactors = 3, rot = 'varimax')
> print(pR$loadings, cutoff = .4, sort=T)

> cFA3 = factanal(genesDS, 3)
> print(cFA3%$loadings, cutoff =

.4, sort=T)

Factorl Factor2 Factor3

Loadings: Loadings:
RC1 RC3 RC2
cdkl 0.684 cdkl 0.682
ccnel 0.843 ccnel 0.803
cdc25a 0.805 cdc25a 0.79%
cdkn2a 0.651 cdkn2a 0.569
e2f2 0.804 e2f2 0.805
e2f3 0.757 e2f3 0.700
aurka 0.793 aurka 0.788
chekl 0.831 chekl 0.813
fancd2 0.730 fancd2 0.712
ccnd2 0.741 ccnd2
acvrll 0.799 acvrll
dab2 0.744 dab2
foxol 0.790 foxol
pdgfrb 0.746 pdgfrb
rpséka2 0.624 rps6ka2
tgfbr2 0.645 0.637 tgfbr2
adgra2 0.776 adgra2
rbl 0.739 rbl
jakl 0.781 jakl
adaml10 0.758 adaml1@
eifde 0.738 eifde
itgav 0.691 itgav
rheb 0.693 rheb
hsd17b11 0.748 hsd17b11
ctcf ctcf
RC1 RC3 RC2
SS loadings 5.823 5.058 4.807 SS loadings
Proportion Var 0.233 0.202 0.192 Proportion Var
Cumulative Var 0.233 0.435 0.628 Cumulative Var
Appendix D7: KMO Goodness of Fit
> # Goodness of Fit:
> KMO(genesDS)
Kaiser-Meyer-0lkin factor adequacy
Call: KMO(r = genesDS)
Overall MSA = 0.9
MSA for each item =
rbl cdkl ccnel  cdc25a ccnd2  cdkn2a e2f2 e2f3 jakl  adaml®@ acvrll aurka
0.91 0.89 0.92 0.96 0.91 0.87 0.93 0.90 0.89 0.91 0.90 0.94

pdgfrb rheb rpséka2z tgfbr2 adgra2 ctcf  fancd2 hsd17bll
0.88 0.88 0.93 0.88 0.92 0.47 0.95 0.87

.701
777
717
.759
.700
558
.656
.736

(SIS IS ISR IS IS

5.467
0.219
0.219

chekl
0.93

[SESISIES IS IS IS

.655

.680
.719
.686

724

.634
.671
.751

4.632
0.185
0.404

dab2
0.89

Factorl Factor2 Factor3

4.397
0.176
0.580

eifde foxol itgav
0.83 0.90 0.89
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Appendix D8: PFA and CFA without ctcf, with 4 Factors

> PP = principal(genes2DS, nfactors = 3, rot = 'varimax')
> print(PP$loadings, cutoff = .4, sort=T)

Loadings:
RC1
cdkl (/]
ccnel (/]
cdc25a (/]
cdkn2a (/]
e2f2 Q.
e2f3 (/]
aurka (/]
chekl (/]
fancd2 (/]
ccnd2
acvrll
dab2
foxol
pdgfrb
rps6ka2
adgra2
rbl
jakl
adam10
eifde
itgav
rheb
tgfbr2
hsd17b11l

SS loadings

.687
.841
.803
.652

800

.755
.792
.833
.728

RC3 RC2
-0.403
0.731
0.802
0.752
0.787
0.745
0.630
0.780
0.736
0.783
0.752
0.739
0.698
0.685
0.624 0.661
0.765
RC1  RC3

5.800 5.033 4.835
Proportion Var 0.242 0.210 0.201
Cumulative Var 0.242 0.451 0.653

> CF = factanal(genes2DS, 3)
> print(CF$loadings, cutoff = .4, sort=T)

Loadings:

cdkl
ccnel
cdc25a
cdkn2a
e2f2
e2f3
aurka
chekl
fancd2
ccnd2
acvrll
dab2
foxol
pdgfrb
rps6ka2
adgra2
rbl
jakl
adam10@
eif4e
itgav
rheb
tgfbr2
hsd17b11

SS loadings
Proportion Var
Cumulative Var

690

801

.696
.788
.818
.709

(SIS SIS SIS

.694

781
723
757
701

.563
.741

.638

Factorl Factor2 Factor3
Q.
0.800
0.791
0.574
Q.
0
0
0
0

.679
.721
.680
.723
.638
.658
.674
.763

(SIS SIS ESES)

4.623
0.193
0.420

Factorl Factor2 Factor3
5.455
0.227
0.227

4.410
0.184
0.604

Appendix D9: RC1 — Genes that are CDK/cyclin and proteins in the kinase family that when unregulated
associated with the uncontrolled proliferation of cancer cells. All descriptions from GeneCards.

cdkl:

ccnel:

cdc25a:

cdkn2a:

e2f2

e2f3:

aurka:

chekl:

fancd?2:

Cyclin Dependent Kinase 1: Protein encoded by this gene is part of the Ser/Thr protein kinase family. Catalytic subunit of highly
conserved kinase complex, essential for G1/S and G2/M phase transition of eukaryotic cell cycle. Associated with

Retinoblastoma and Breast Cancer.

Cyclin E1: Protein encoded by this gene is part of the highly conserved cyclin family. Cyclins function as regulators of CDK
kinases. Overexpression of this gene has been observed in many tumors. Associated with clear cell Adenocarcinoma of the

Ovary and Retinoblastoma.

Cell Division Cycle 25A: Part of the CDC25 family of phosphatases. Required for progression from G1 to the S phase of the cell
cycle. Activates the cyclin-dependent kinase CDC2. Associated with Retinoblastoma and Ataxia-telangiectasia.

Cyclin Dependent Kinase Inhibitor 2A: Gene generates several transcript variants which different in their first exons. Gene is
frequently mutated or deleted in a wide variety of tumors and is known to be an important tumor suppressor gene. Loss of this

gene is shown to be significant in many cancers.

E2F Transcription Factor 2: Protein encoded by this gene is a part of the E2F family of transcription factors. Plays a crucial role
in control of cell cycle and action of tumor suppressor proteins. Associated with Retinoblastoma and Encapsulated Thymoma.
E2F Transcription Factor 3: Encodes a member of a small family of transcription factors that function through binding of DP
interaction partner proteins. Associated with Retinoblastoma and Bladder Cancer.
Aurora Kinase A: Protein encoded by this gene is a cell cycle-regulated kinase that appears to be involved in microtubule
formation and/or stabilization at the spindle pole during chromosome segregation. Gene may play a role in tumor development

and progression. Associated with Colorectal Cancer.

Checkpoint Kinase 1: Protein encoded by this gene is part of the Ser/Th protein kinase family. Required for checkpoint cell cycle
arrest in response to DNA damage or the presence of replicated DNA. Associated with Ataxia-Telangiectasia and Li-Fraumeni

Syndrome.

FA Complementation Group D2: Part of the Fanconi anemia complementation group (FANC) and required to maintain
chromosomal stability. Plays a role in preventing breakage and loss of mis segregating chromatin at the end of cell division.

Associated with Fanconi Anemia.
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Appendix D10: RC3 — Genes that are receptor, encoder, or adaptor proteins that serve the serine-
threonine kinase domain or subdomains. All descriptions from GeneCards

cend2:
acvrl1:

dab2:

foxo1:

pdgfrb:

rps6ka2:

tgfbr2:

adgra2:

Cyclin D2: Protein coded by this gene belongs to the highly conserved cyclin family. Cyclins function as regulators of CDK
kinases. Has been shown in many cancer types if unregulated.

Activin A Receptor Like Type 1: Encodes a type 1 cell-surface receptor for the TGF-beta superfamily of ligands. Shares high
degree of similarity. To the serine-threonine kinase subdomains. Associated with Telangiectasia and Hereditary Hemorrhagic.
DAB Adaptor Protein 2: Encodes a mitogen-responsive phosphoprotein. Expressed in a normal ovarian epithelial cell but is
downregulated or absent from ovarian carcinoma cell lines, suggesting its role as a tumor suppressor. Associated with
Teratocarcinoma.

Forkhead Box O1: Part of the forkhead family of transcription factors. Specific function has not yet been determined, but it may
play a role in myogenic growth and differentiation. Associated with Rhabdomyosarcoma and Glioma.

Platelet Derived Growth Factor Receptor Beta: Protein encoded by this gene is a cell surface tyrosine kinase receptor for the
platelet-derived growth factor family. This gene is essential for the normal development of the cardiovascular system and aids in
rearrangement of the actin cytoskeleton. Associated with Premature Aging Syndrome and Kosaki Overgrowth Syndrome.
Ribosomal Protein S6 Kinase A2: Encodes a member of the RSK (ribosomal S6 kinase) family of the serine/threonine

kinases. Activity of this protein has been implicated in controlling cell growth and differentiation. Associated with Coffin-Lowry
Syndrome and Autism.

Transforming Growth Factor Beta Receptor 2: The protein encoded by this gene is a transmembrane protein that has a protein
kinase domain and forms a heterodimeric complex with TGF-beta receptor type-1 and binds TGF-beta. Mutations of this gene
have been associated with Marfan Syndrome, Loeys-Deitz Aortic Aneurism Syndrome, and the develop of various types of
tumors. Diseases associated with TGFBR2 include Loeys-Dietz Syndrome, Colorectal Cancer, and Hereditary Nonpolyposis.
Adhesion G Protein-Coupled Receptor A2: Part of the adhesion-GPCR family of receptors. Endothelial receptor which functions
together with RECK

Appendix D11: RC2 — Genes that are either tumor suppressors, binding proteins, or proteins that can
stabilize or regulate cancer progression. All descriptions from GeneCards.

rb1:

jak1:

adam10:

itgav:

rheb:

tgfbr2:

hsd17b11:

RB Transcriptional Corepressor 1: Protein encoded by this gene is a negative regulator of the cell cycle and was the first tumor
suppressor gene found. Associated with Retinoblastoma and Small Cell Lung Cancer.

Janus Kinase 1: Encodes a membrane protein that is part of a class of protein-tyrosine kinases (PTK). Gene plays a crucial role
in effecting the expression of genes that mediate inflammation, epithelial remodeling, and metastatic cancer

progression. Associated with Autoinflammation, Immune Dysregulation, and Eosinophilia.

ADAM Metallopeptidase Domain 10: Cell surface proteins with a unique structure possessing both potential adhesion and
protease domains. Associated with Reticulate Pigmentation of Kitamura and Alzheimer Disease.

Integrin Subunit Alpha V: Product of this gene belongs to the integrin alpha chain family. Integrins are heterodimeric integral
membrane proteins and may regulate angiogenesis and cancer progression. Associated with West Nile Virus and Herpes
Simplex.

RAS Homolog, HTORC1 Binding: Gene is a member of a small GTPase superfamily and encodes a lipid-anchored, cell
membrane protein with five repeats of the RAS-related GTP-binding region. Associated with Tuberous Sclerosis and
Hemimegaloencephaly.

Transforming Growth Factor Beta Receptor 2: The protein encoded by this gene is a transmembrane protein that has

a protein kinase domain and forms a heterodimeric complex with TGF-beta receptor type-1 and binds TGF-beta. Mutations of
this gene have been associated with Marfan Syndrome, Loeys-Deitz Aortic Aneurism Syndrome, and the develop of various
types of tumors. Diseases associated with TGFBR2 include Loeys-Dietz Syndrome, Colorectal Cancer, and Hereditary
Nonpolyposis.

Hydroxysteroid 17-Beta Dehydrogenase 11: A short-chain alcohol dehydrogenases which metabolizes secondary alcohols and
ketones. Associated with Cutaneous T Cell Lymphoma and Lymphoma
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Appendix E: Genomic Variables — MDS and Cluster Analysis

Appendix E1: Multidimensional Scaling (MDS)

> gene.dist = dist(genesDS)

> gene.mds = isoMDS(gene.dist)
initial value 24.429756

iter 5 value 19.459100

final value 18.698014
converged

> gene.mds$stress

[1] 18.69801

> gene.mds$stress/100

[1] 0.1869801

Appendix E2: Shepard’s Diagram and Stress (Kruskal’s) Function

20
|

gene.sh$y
10
|

gene.sh$x

> gene.sh = Shepard(gene.dist, gene.mds$points)

> plot(gene.sh, pch=".")
> lines(gene.sh$x, gene.sh$y, type="S", col="purple")
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Appendix E3: Multidimensional Scaling (MDS) Plot

> d = dist(genesDS)
> fit = cmdscale(d, eig=TRUE, k=2)
> #plot fit
> x = fit$points[,1]
>y = fit$points[,2]
> plot(x, y, xlab="Coordinate 1", ylab="Coordinate 2", main="Metric MDS™)
> text(x, y, labels = row.names(genesDS), cex=.7)
Metric MDS
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Appendix E4: Average Silhouette Method

> fviz_nbclust(genesDS, pam, method ="silhouette")

0.15

°
S

Average silhouette width

o
=3
o

0.00

Optimal number of clusters

1 2 3 4 5 6 7 8 9 10
Number of clusters k

Appendix E5: Gap Statistics Method

> fviz_nbclust(genesDS, hcut, method ="gap")

0.850

0.825

0.800

Gap statistic (k)

0.775

Optimal number of clusters

Number of clusters k
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Appendix E6: Dendrogram for Hierarchical Clustering

> plot(clusterH, cex = .6, hang = -1)

rrrrrrrrrrrrrrrrr

1 M ﬂr ik Hh, { W !1 M !m! Wﬂ

| rﬁﬁ ﬂ .w w i 1’!‘ m«




DSC424: Spring 2021 - . - -
> geneCut = hcut(genesDS, k = 2, stand=TRUE)

> fviz_cluster(geneCut, data = genesDS)

Cluster plot

10-

Appendix E7: H-Cluster Plot,
k =2

cluster

Dim2 (18.8%)

Dim1 (30.1%)

> genePam = pam(genesDS, k = 2)
> fviz_cluster(genePam, data = genesDS)
Cluster plot

101 8883 844

Dim2 (18.7%)

Appendix E8: K-medoids
(PAM-Cluster) Plot, k =2

902

cluster

1
la| 2

507 521
A a
500
a

-

Dim1 (30.1%)
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Appendix: Individual Project Contribution

Appendix G: Cody Le

Cody’s role in the project included planning and organizing the zoom meetings, discussion, and
progress of the milestones which the team used google drive and workspace to collaborate virtually. The team
met weekly to discuss each milestone, which was divided into individual tasks, which was reviewed throughout
the week and finalized at each subsequent meeting. In the exploration of the dataset, Cody focused on
cleaning and preparing the data in R, specifically performing the dimensionality reduction on the genomic
variables using principal component analysis. For the in-depth analysis, Cody further focused on the genomic
variables by researching the genes, gene functions, and documented mutations and diseases associated with
the genes. Cody performed principal factor analysis, common factor analysis, and cluster analysis on the
genomic variables. Lastly, Cody organized the google slides for the video presentation, formatted the sides,
and prepared the introduction and data preparation sections of the presentation.

The original dataset had 693 columns of which 30 were clinical variables and 663 genomic variables.
Cleaning was performed on the genomic variables to remove columns with all zero values or missing values.
The remaining 488 genomic variables were reduced through principal component analysis and further
reduced through principal factor analysis. The genomic variables were already normalized through z-score
normalization and the dimensionality reduction proved to work well with the data as it optimized the
dimensions and remove the majority of the columns while keeping acceptable cumulative variance. Due to
the high number of dimensions, principal factor analysis to rotate the loadings and select the significant
variables was a little challenging at the beginning. It was decided that five factors would be chosen based on
the knee from the initial principal component analysis. The loadings showed that at four components, 91% of
the variance was captured. Sorting through each of the components, the team set a threshold for selecting
the variables based on the loadings, in this case, loadings with 0.6 or higher was selected. The result was 25
variables from the first four components.

Principal Factor Analysis (PFA) with Varimax, 5 Factors Loadings from PFA > 0.6
PCl PC2 PC3 PC4 PCS Variable PC1 PC2 PC3 PC4

SS loadings 39.12 32.69 27.09 18.62 11.83 hsd17b11 0.81

Proportion Var 0.08 0.07 0.06 0.04 0.02 tgfbr2 0.74

Cumulative Var 0.08 0.15 0.20 0.24 0.26 eifde 0.70

Proportion Explained 0.30 0.25 0.21 0.14 0.09 jakl 0.66

Cumulative Proportion 0.30 0.56 0.76 0.91 1.00 itgav 0.65

Mean item complexity = 2.3 theb 0.62

Test of the hypothesis that 5 components are sufficient. ?gi‘mlo 828

The root mean square of the residuals (RMSR) is @.05 cenel 0.81

with the empirical chi square 1114030 with prob < @ chekl 0.77
aurka 0.73

Fit based upon off diagonal values = 0.86 e2f3 0.73
cdc25a 0.72
e2f2 0.71
cdkn2a 0.61
fancd2 0.61
cdkl 0.61
acvrl1 0.74
adgra2 0.74
dab2 0.72
foxo1 0.69
pdgfrb 0.66
rps6ka2 0.61
ccnd2 0.61
ctcf 0.60
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For cleaning the clinical variables in R, functions such as na.omit were used to omit all ‘NA’ entries. In
addition, a copy of the original dataset was created using the selected genomic and clinical variables based
on the columns of the variables. To clean the categorical clinical variables, the subset function was created
to remove entries with missing text, blanks, or missing information. Categorical variables were transformed
to factors using the as.factor function completing the cleaning and preparation of the data. Cleaning the
dataset and condensing it allowed for a more focused analysis for the project. When working with any dataset,
the data often needs to be prepared or cleaned to optimize the analysis and reporting.

R Code for Data Cleaning and Transformations:

data. frame(colnames(METABRIC_RNA_Mutation)) #obtain column # of all variables

cancerDS = METABRIC_RNA_Mutation[c(24,2,3,5,7,9,12,16,20:22,27,29:30,31,52,57:58,60,64:65,71:72,79,88,145,152,174,180,185,197,210,264,276,280,300,341,366,375,483) ]
# cancerDS contains clinical variables + gene variables selected from PCA (prior to transformations)

#== Variable Transformation:

cancerDS$overall_survival_months = (cancerDS$overall_survival_months)/12 #transform survival_months into years

names(cancerDS)[1] <- "survival_years" #renamed variable to 'survival_years

# remove NAs, Missing Information, Blank Entries

cancerGeneDS <- na.omit(cancerDS) # removes NAs from dataset

cancerGeneDS <- subset(cancerGeneDS, cancer_type_detailed!= "Breast") #remove entries with 'breast' only, missing information
cancerGeneDS <- subset(cancerGeneDS, cancer_type_detailed!= "") #remove entries with blanks

cancerGeneDS <- subset(cancerGeneDS, type_of_breast_surgery!= "") #remove entries with "" only, missing information

cancerGeneDS <- subset(cancerGeneDS, death_from_cancer!= "" ) #remove entries with "" only, missing information
cancerGeneDS$type_of_breast_surgery <- as.factor(cancerGeneDS$type_of_breast_surgery) #transform categorical variable to factors (2 levels)
cancerGeneDS$cancer_type_detailed <- as.factor(cancerGeneDS$cancer_type_detailed) # transform categorical variable to factors (5 levels)
cancerGeneDS$death_from_cancer <- as.factor(cancerGeneDS$death_from_cancer) # transform categorical variable to factors (3 levels)

head(cancerGeneDS) #view variables in cancerGeneDS

For the main analysis, Cody explored in-depth the relationship between the genomic variables by
performing a full factor analysis including evaluating the correlation plots, principal component analysis,
principal factor analysis and compared the results to common factor analysis. Visualizing the variables in a
correlation matrix using hierarchical method, revealed three distinct groupings and one gene, cfcf, in its own
grouping not correlated with any other variable. Performing the principal component analysis resulted in a
knee at four components and the variance equals 1 criterion also confirms four components. At four
components, the cumulative variance captured was 67.9%. The key for the analysis is to look at the
cumulative variance at the component before and after and compare the variance captured at each
component to compare and select the components with the most significance because at a certain point, the
variance will simply level off. In this case, four components were sufficient, and four factors was selected for
the principal factor analysis with varimax rotation. The loadings resulted in three distinct groupings and ctcf
separated into its own factor. Common factor analysis was performed with four factors as a comparison and
resulted in a similar grouping of factors but with ctcf and eif4e negatively related in the fourth factor. Since
ctcf becomes its own factor and not strongly correlated with any other factor, it was clear from the data that
the factor analysis needed to be performed again but with ctcf removed and with three factors. After removing
ctcf and performing the factor analysis again, the results were similar between principal factor analysis and
common factor analysis confirming the three distinct groupings for the loadings:
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#Plot MDS to Check (1[15t<)r‘5_3+)'“°t = 'varimax') > CF = factanal(genes2DS, 3)
plot(gene.mds%points) > print(CF$loadings, cutoff = .4, sort=T)
Loadings: Loadings:

RC1 RC3 RC2 Factorl Factor2 Factor3
cdkl 0.687 -0.403 cdkl 0.690
ccnel 0.841 ccnel 0.800
cdc25a 0.803 cdc25a 0.791
cdkn2a 0.652 cdkn2a 0.574
e2f2 0.800 e2f2 0.801
e2f3 0.755 e2f3 0.696
aurka 0.792 aurka 0.788
chekl 0.833 chekl 0.818
fancd2 0.728 fancd2 0.709
ccnd2 0.731 ccnd2 0.694
acvrll 0.802 acvrll 0.781
dab2 0.752 dab2 0.723
foxol 0.787 foxol 0.757
pdgfrb 0.745 pdgfrb 0.701
rpséka2 0.630 rpséka2 0.563
adgra2 0.780 adgra2 0.741
rbl 0.736 rbl 0.679
jakl 0.783 jakl 0.721
adam10 0.752 adaml0@ 0.680
eif4e 0.739 eif4e 0.723
itgav 0.698 itgav 0.638
rheb 0.685 rheb 0.658
tgfbr2 0.624 0.661 tgfbr2 0.638 0.674
hsd17b11l 0.765 hsd17b11 0.763

RC1 RC3 RC2 Factorl Factor2 Factor3

SS loadings 5.800 5.033 4.835 SS loadings 5.455 4.623 4.410
Proportion Var 0.242 0.210 0.201 Proportion Var ©0.227 ©.193 0.184
Cumulative Var 0.242 ©.451 0.653 Cumulative Var 0.227 0.420 0.604

Interpreting the factors and the loadings required some domain knowledge. Cody researched the
genes specifically protein coding genes, their functions, and specifically their relation to diseases and possible
mutations due to cancer. Several research papers have been published specifically relating to the Cyclin
Dependent Kinase (CDK) family of proteins which all concluded that the inability to regulate proteins
associated with this family, directly results in cell proliferation, and unregulated cell production leads to
mutations which has been documented to lead to cancer. This domain knowledge was used in determining
the interpretation of the loadings, which ultimately the three factors represent genes associated with the CDK
family, genes that have been documented as tumor suppressors or genes that restrict cancer progression,
and lastly, genes that are associated to cell growth and regulates cell division. The last factor was the most
difficult to interpret because some genes did not have documented functions and the factor included genes
that when researched could cause cancer or could stop cancer progression. In summary, the genomic
variables are a good fit for factor analysis and three distinct factors were found, with key attributes in terms of
gene functionality. One variable, ctcf did not correlate with any other variable but this variable is directly
associated with invasive breast cancer, as such, will not be removed from the regression model.

Lastly, Cody performed multidimensionality scaling on the genomic variables to determine if the data
would be a good fit for factor analysis. The stress test and Shepard’s diagram was evaluated. The stress
resulted in a value of 0.187, which is close to 0.2, which means that the variables may not be a good fit. The
Shepard’s diagram also revealed no clear step line with wide distances confirming the fit for cluster analysis.
Lastly, evaluating the MDS plot, showed one large dense cluster with outliers toward the top. If clusters did
exist, there could potentially be two clusters.
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gene.mds$points[,1]

All techniques for cluster analysis including density, k-means, spectral, k-medoids and hierarchical
were performed. Factoextra and cluster packages in R were used for better visualization. The average
silhouette method and the gap statistic method was used to validate and optimize the number of clusters for
k. This method was research and performed as part of the exploration. The average silhouette method
measures the quality of the clustering and determines how well each object lies within its cluster. The gap
statistic method compares the total intracluster variation for different values of k with their expected values
under a distribution with no obvious clustering. Both methods resulted in k = 2, which validates that two
clusters would be most optimal. The results using k-medoids and hierarchical clustering showed that distinct
separated clusters could not be found. With k-medoids, the first cluster overlaps slightly less than with
hierarchical clustering, but both results are very similar, and reveal that cluster analysis may not be the best
fit for the data. For further exploration, k = 3 and k = 4 was also visualized and evaluated for both clustering
methods. In both cases, the clusters overlapped even more, distinct lines of separation were less, and
placements of classifications became more difficult. Exploring the visualization with the factoextra and cluster
packages was interesting because of the different methods to view the clusters. It was easier to view the
clusters and interpret the data with different method for visualization. Moreover, the factoextra and cluster
packages were more advance and had more functionality than the MASS package and it was performed to
visual and perform the cluster analysis using these packages. Lastly, researching about how to optimize k for

cluster analysis was very useful, especially to further confirm if clustering techniques would be appropriate
for the data.
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> fviz_cluster(geneCut, data = QenesDS, ellipse.type = "euclid™)
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> fviz_cluster(genePam, data = genesDS, ellipse.type = "euclid")
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This project allowed for the exploration of a dataset with high dimensionality and with two distinct
types of classified variables: clinical and gene expression. As this was Cody’s first experience with a health
and clinical related dataset, it was a rewarding experience to explore the dataset and understand the
domain. From this project, we observed that dimensionality reduction through principal component analysis
is very powerful and significant especially in reducing the dimensions of the data but retaining the variance.
In addition, factor analysis allows for a deeper understanding of the variables and allows us to interpret the
variables in a practical way, solves the issue of multicollinearity, and provides useful insights into our model
and why certain variables are selected. Factor analysis also allows us to understand key variables that are
significant by either being highly correlated or highly uncorrelated, both often playing significant roles in our
final model. Multidimensional scaling allows us to determine if cluster analysis would be good fit for the
data, which even if the scaling shows that the fit may not be great, we can still try cluster analysis as an
exploration. Cluster analysis allows us to determine if data can be collected that are similar to one another
but dissimilar to objects in other clusters. Clustering can then add an additional layer to understanding the
variables and their relationship with each other. In using the packages in R that have advanced visualization
functions for cluster analysis, visualizing the clusters and evaluating them was challenging but also a great
experience. Ultimately, this project allowed for practice in key advanced analysis techniques and also
provided a great opportunity to present the results in a video presentation with feedback and discussion.
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Appendix H: Varsha Sajja

Varsha’s role in this project includes exploration of all the clinical variables and their significance to
any genomic data. Basic step towards checking the multicollinearity resulted in high variance inflation factor
(VIF) value for nottingham prognostic index which is as expected because it is used for determining prognosis
after the surgery for breast cancer. Tumor size, grade of tumor and positive lymph nodes are used for
calculating prognostic index.

N vif(model) R. Packages used for 9Iinica} [')'ata Analysis:
>install.packages ("mosaic")
GVIF >install.packages ("polycor")
. . >install.packages ("scales")
age_at_dlagn051s 1.596929 >install.packages ("gridExtra™)
>install.packages ("mlbench")
type_of _breast_surgery 1.596708 Sinstall.packages ("kernlab")
cancer_type_detailed 1.106094 >install.packages ("lattice™)
>library (dplyr)
chemotherapy 1.890917 >library (FactoMineR)
>library (factoextra)
cohort 1.307703 Slibrar
y (ca)
] ] >library (ggmosaic)
neoplasm_histologic_grade 3.547561 SR
hormone_therapy 1.370967 >library (polycor)
) - >library (MASS)
lymph_nodes_examined_positive 2.268581 >library (mlbench)
. >library (kernlab)
mutation_count 1.141858 ~1ibracy (dbscan)
nottingham_prognostic_index  7.065330 >library(caret)
. >library(rJava)
radio_therapy 1.547949 >library (openxlsx)
tumor_size 1.492469
[}
tumor_stage 2.241185 2
death_from_cancer 1.443059 & & 8
3 g ¢ 3
5t 2 g
o E é % 7 i' g é > =
§ 8| »g) 5\ g 8 % E‘ El §A @
5 s 9 ¢ O 9 & & &5 g 2
T ¢ 2 s é 5 L < o 0= g b
S o © o [oX = [o% o
;
survival_years /

0.8
cohort /
mutation_count / 0.6

neoplasm_histologic_grade

age_at_diagnosis //// L o4

hormone_therapy /
F 0.2

type_of breast_surgery /
0
tumor_size /
. i F-0.2
lymph_nodes_examined_positive / ’

nottingham_prognostic_index ’ / L 0.4

IV 4
/

chemotherapy /
-0.8
radio_therapy /
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Correlation plot gives high multicollinearity around nottingham prognostic index. | have further
explored its relation with genes which indicates few significant genes to be explored further as follows;

e cdkl
e ccnel ]
e cdc25a nottingham_prognostic_index
e cdkn2a 033210 @ © @ © @ 08
o e2f2 03047 P O O O © 06
e @23 0.320.550.67ic254) @ @ @ o4
0.170.36 0.6 D.441kn24 D
0.330.550.670.750.35:212 @ @ 02
In .accordance w!th different types of 0.20.330.660.560.490.54-213 @) 0
variables prgsept in the dataset., | have 0.330.710.620.640.510.620.56hek 1
performed Principal factor analysis for the 02
principal components followed by Common -0.070.440.140.230.170.1€0.030.32ab2 [ ) o
factor analysis for both 4 and 5 factors of 0.060.450.150.0<0.060.180.12D.180.32:if4¢
numeric data where 4 factors are taken into -0.020.290.070.220.020.170.08-0.10.470.12>x0 1 0.6
consideration for analysis. The principal -0.10.070.210.260.010.380.15 0 0.020.420.18(gaV o8

components obtained are as below. -0.140.440.290.440.210.360.190.3%.580.160.5 0.33dg r

> summary(pclinc)
Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PCO PC10 PC11 PC12
Standard deviation 1.6868 1.3143 1.2577 1.1104 0.96128 0.91200 0.84113 0.82086 0.75283 0.65868 0.60512 0.32921
Proportion of Variance ©0.2371 0.1440 0.1318 0.1027 0.07701 0.06931 0.05896 0.05615 0.04723 0.03616 0.03051 0.00903
Cumulative Proportion 0.2371 0.3811 ©.5129 0.6156 0.69265 0.76196 0.82092 0.87707 ©.92430 ©.96045 ©.99097 1.00000

> print(pr_clincl$loadings, cutoff=.4, sort=T)
Loadings:
RCS RC1  RCZ RC3 RC4

survival_years -0.643
Lymph_nodes_examined_positive 0.668
tumor_size 0.729
neoplasm_histologic_grade 0.915
nottingham_prognostic_index  0.437 0.854
age_at_diagnosis 0.821
chemotherapy -0.667
hormone_therapy 0.650 -0.408
cohort 0.787
mutation_count 0.772
type_of _breast_surgery 0.840
radio_therapy -0.852

RC5 RC1I RCZ RC3 RC4
SS loadings  1.888 1.878 1.572 1.506 1.465
Proportion Var 0.157 0.157 0.131 0.126 0.122
Cumulative Var 0.157 0.314 0.445 0.570 0.692
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Loadings:
Factorl Factor2 Factor3 Factor4 Factor5

Lymph_nodes_examined_positive @.758
nottingham_prognostic_index  ©.801 0.559
neoplasm_histologic_grade 0.967
type_of _breast_surgery 0.937
radio_therapy -0.547
age_at_diagnosis 0.627
chemotherapy 0.413 -0.683
cohort 0.740
survival_years
hormone_therapy 0.456
mutation_count 0.418
tumor_size 0.402

Factorl Factor2 Factor3 Factor4 Factor5
SS loadings 1.877 1.288 1.224 1.099 0.952
Proportion Var 0.156 0.107 ©0.102 0.092 0.079
Cumulative Var 0.156 0.264 ©0.366 0.457 0.537

In the principal factor analysis with 4 factors, the following were interpreted:

o RC1=0.672neoplasm_histologic_grade + 0.698lymph_nodes_examined_positive +

0.925nottingham_prognostic_index + 0.557tumor_size + 0.515chemotherapy - 0.426survival_years
Low survival rate - The major contribution in this component is nottingham_prognostic_index which

determines the prognosis following breast cancer surgery. Thus, other components such as
neoplasm_histologic_grade, lymph_nodes_examined_positive, tumor_size are also having contributions. Also
noticed that chemotherapy has a significant contribution. Survival _years is negatively correlated which
illustrates that tumor has been invaded and chemotherapy doesn’t work.

RC2 = 0.838age_at_diagnosis - 0.619chemotherapy + 0.638hormone_therapy

Hormone Therapy - The major contribution in this component is age_at_diagnosis which determines the
patient’s age at the time of prognosis. Chemotherapy is negatively correlated here whereas
hormone_therapy works better.

RC3 =0.787cohort + 0.739mutation_count
Cancer Characteristics - Both cohort and mutation_count are highly contributed towards this component
which determines the gene variables having shared characteristics of relevant mutations.

RC4 = 0.829radio_therapy - 0.832type_of breast surgery

Surgery Vs. Therapy - type_of breast_surgery is negatively correlated in this component and radio_therapy
has high positive correlation with others.
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Finally, the PFA and CFA have also been performed with 5 factors resulting in 69.2% variance in data.
Although the variance captured is greater than in 4 factors, it doesn’t make a difference that 4 factors are
sufficient for analysis. We can conclude here that the survival years is negatively correlated here as well. CFA
gives an interpretation of forming a factor with cohort and mutation count separately. By taking 4 sufficient
factors into consideration, VARIMAX rotation has been performed and the majority of significant clinical

variables are around the origin.
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The below visualization gives an understanding on the cancer type detailed and survival years.
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Polychoric factor analysis concludes the ordinal variable
tumor stage has its significance on other clinical data. The
factor rotation has been applied to the analysis.

Factor Analysis
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Linear Discriminant Analysis

This dimensionality reduction step is used as a pre-processing step for pattern-classification. In linear
discriminant analysis, linear discriminants are obtained which are later projected in 2 dimensions. Here, tumor
stage is considered as a factor in considering the analysis. We get the 4 tumor stages distinguished clearly.
Also, few of the outliers are detected in tumor stage 3.

3
LD1 (91%)

TumorStage
° 1

A

-

PPN

Cluster Analysis

Multidimensional Scaling is performed to
determine the clusters in data. “isoMDS” function
is extensively used with distance to calculate
stress. Stress is reported to be 0.1281 which is
between 0 and 1 suggesting a good fit.

> clinc_mds = 1soMDS(clinc_dist)

initial wvalue 12.823231
final value 12.819415
converged

> clinc_mds$stress

[1] 12.81941

> clinc_mds$stress/100
[1] 0.1281941
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The plot for MDS concentrates over one cluster with few outliers. On vaguely performing hierarchical
clustering, the plot for MDS is converted with 4 clusters leaving few outliers.

IsoMDS

a0

Goordinate 2
points(.2]

clinc_mds$,

-20

Coordinate 1 clinc_mdsSpoints[,1]

Another clustering technique called Spectral clustering is performed, which distinguishes the outliers by color.
Although Shepard's method is used to distinguish the data which has big initial deviations, but outliers have
been drastically reduced at the end forming the data around the red line.

Spectral Clustering

40
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Now k-means clustering has been performed on the data for clusters. We get two clusters formed up
separating a line between them. This indicates that the clinical data can be distinguished into two clusters.
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Cluster plot
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These findings have been used for regression techniques performed on the data considering the
significance of variables and classification performed which also settles ftumor stage to be an important factor
for its correlation with other variables. In general, the stage of tumor utmost decides the cancer level and cure
for it.

Although the goals of this project lead me to explore the clinical representation of breast cancer and
ways to treat it with diagnosis, | took an initiative in learning how the genomic variables play a key role in the
invasion of tumors in breast cancer patients as well. With the available clinical data in the breast cancer
dataset, | have analyzed how tumor stage affects the overall survival years and also illustrated how
independent therapies such as chemotherapy, hormone therapy and radio therapy aids in treating the patients
depending on their age at prognosis. The model we worked on also consists of the same significant clinical
variables. During the analysis, cancer type also had an impact on death of disease where the common type
of breast cancer has been identified. Applying the major techniques learned through the course work in this
project, gave me complete understanding towards the real-world data and its relationship with significant
terms. The clustering analysis overlooked the tumor stages in my model and distinguished the stages of tumor
in two dimensions. Nevertheless, breast cancer is more likely to be metastatic (spreads to other parts of the
body). If the source dataset had more information on such data, then the analysis of survival rate could be
precise. We believe that prevention is better than cure, but tumor cells need to be detected prior to treatment.
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Appendix I: Aaron Gregory

Aaron’s role was to create a complete regularized regression model that could be used to predict
survival years for breast cancer patients. At the outset of the project, he looked at different corr plots and pair
panels to try and find interaction variables, data transformations and interesting dependent variables to
investigate. Based on our dataset it was intuitive to look at survival and survival length as these variables
would be particularly important to patients recently diagnosed with breast cancer. Analyzing the pair panel,
we can see that the largest correlations for survival years is tumor stage and Nottingham prognostic index.
Both Nottingham prognostic index and tumor stage were prominent variables throughout our analysis and
were confirmed to be important in our CFA/PFA analysis. This early analysis gave us some insight into what
our final model would look like as there are not many highly correlated variables in our data set.
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Figure 1: Pairs Panel of most important clinical data

One transformation we chose was turning breast cancer type into a binary variable so that it could be
used in the regression model. Based on our initial analysis we came up with several interaction variables that
we thought would be useful to explore based on the correlations and hypothesis about cancer growth. These
variables include:

Radiotherapy and tumor size
Radiotherapy and tumor stage
Chemotherapy and tumor size
Chemotherapy and tumor stage
Hormone therapy and tumor size
Hormone therapy and tumor stage

O O O O O O
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We tried several different model building processes in order to find the best possible model for survival
years including, backwards step regression, all-subsets regression, ridge regression, lasso regression and
relaxed lasso regression. In the end we found that a relaxed lasso gave us the best model as it provides
variable selection without depressing the beta values too greatly.

Looking at the most basic three regression models, (full model, backwards stepwise regression and all
subsets) we see a low adjusted R: value along with a sizable increase in the RMSE from the training set to
the test set. This shows that we are overfitting our data and could have some multicollinearity present in our
models. The basic models were not very effective as they did a poor job with variable selection and reducing
multicollinearity.

A summary of the regression models
we looked at are included in the technical
report. Ridge and Lasso techniques
improved our models from the base
model but in the end a relaxed lasso
approach was the most effective model.
What we found is that a lot of variables
have a small impact on our dependent
variable. When manually building the
model, we found that different variables
could be substituted to generate
equivalently efficient models. For
example, if RHEB was removed and
replaced with PCA2 the difference in
RMSE and adjusted R: value was
negligible. Something else that we found
was that when using relaxed lasso our
final model resulted in a very low lambda
value (0.25) as seen in the graph to the
right. This shows that a lot of the T
multicollinearity variables were selected -6 4 -2 0
out of model and there wasn’t much Log(%)
regularization needed on the final set of
variables.
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The main takeaway from this portion of the project was how complicated it can be to model a complex
issue. In class we have frequently used simple data sets with more or less clear-cut relationships and results.
When analyzing our data set and trying to produce a model it really showed how in a real-world situation
having all of the variables and data you would want is not always possible. The issues that our final model
has exemplifies the complexity of our bodies and health in general. There is no dominating factor or gene that
will explain a particular point of interest. Our bodies and health are controlled by an ecosystem of factors that
are hard to replicate in a simple model.
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Model Results

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 21.12324 43715 667 3.72e-16
age_at_diagnosis .B8231 03042 . 706 00723
Lymph_nodes_examined_positive . 24902 .12269 .04334
tumor_size .89162 .03423 00787
jakl .15279 46872 .01453
chekl . 20468 .51932 .02108
rheb 93573 .46356 .04449
chemosTS .B8934 .05215 Q8783 .
chemosTumorStage . 82609 . 83868 .93030
nottingham_prognostic_index . 65862 45731 . 15894
adaml1® .53174 .38254 . 16563
fancd2 .75914 .44895 .09197 .
pcd .56971 . 35007 .10478

Signif. codes: @ ‘***’ 0.001 ‘**' 0.01 ‘** 0.05 ‘.7 0.1 “ ' 1
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Residual standard error: 5.709 on 278 degrees of freedom
Multiple R-squared: @.2758, Adjusted R-squared: ©.2445
F-statistic: 8.822 on 12 and 278 DF, p-value: 2.806e-14

Backwards Stepwise Regression

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 19.13734 87406 10.212 < Ze-16
age_at_diagnhosis 06841 02758 2.481 0.013699
tumor_stage 2.26653 .B2176 3.645 0.0600317
Lymph_nodes_examined_positive .36128 10029 -3.602 0.000372
jakl 17725 .38539 -3.055 0.002467
chekl .04132 41789 2.492 0.013279
rheb .68424 43864 .560 ©.119897

Signif. codes: @ ‘***' 0.001 ‘**' §.01 ‘*' @.05 ‘." 0.1 * ' 1

Residual standard error: 5.742 on 284 degrees of freedom
Multiple R-squared: .2515, Adjusted R-squared: .2357
F-statistic: 15.9 on & and 284 DF, p-value: 9.299%e-16

All Subsets Regression
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Appendix J: Evan Morton

Evan’s contribution to the project focused on exploring multinomial logistic regression for the death
from cancer variable. The model building was done by using the nnet package and the multinom function.
The code below is shown for all variable models.

multi_mod <- multinom(death_from_cancer ~ ., data = CanGeneD_train)

Below is a confusion matrix that shows the predicted values versus the actual values of the model.
The model was created using a training dataset that was split from the original data. This way we can test the
model’s performance on the test set as well. The confusion matrix is for the training set. As shown, it is not

perfect, but is able to correctly categorize a large portion of the data. This model as shown has an accuracy
rate of 71.38%.

Died of Other Causes Living Died of Disease

Died of Other Causes 97 48 45
Living 33 327 41
Died of Disease 27 65 221

To test the model further, it was applied to the test dataset and its performance was compared. The
confusion matrix for the model applied to the test set is shown below. Like the training data, there is a large
portion categorized correctly but many entries are incorrect. It has an accuracy of 69.9%. This is only a drop
of 1.5%, which is good because it does not immediately indicate that there is overfitting.

Died of Other Causes Living Died of Disease

Died of Other Causes 70 14 25
Living 19 95 24
Died of Disease 19 17 104

Shown below is a generated table that gives the coefficients, standard error, z-score, and p-value.
The code to create that table is shown above it. From this table, it is clear that not all of the variables are
needed in the model. Based on the p-values, | could see that survival_years, age_at_diagnosis,

type_of_breast_surgery, nottingham_prognostic_index, e2f2, and aurka were the variables that were
statistically significant.

multi_output <- summary(multinom.fit)

z <- multi_output$coefficients / multi_output$standard.errors

p <- (l-pnorm(abs(z),0,1))%2

Pquality <- rbind(multi_outputScoefficients[2, ],multi_output$standard.errors[2, 1,z[2, 1,p[2, 1)
rownames (Pquality) <- c("Coefficient"”,"Std. Errors"”,"z stat","p value")
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(Intercept) survival_years age_at_diagnosis type_of_breast_surgeryBREAST CONSERVING type_of_breast_surgeryMASTECTOMY

Coefficient 4.566632e+00 -1.652528e-01 -9.252433e-02 2.320130e+00 2.246502e+00
Std. Errors 8.065274e-01  2.228143e-02 1.281775e-02 4.095550e-01 4.359681e-01
z stat 5.662092e+00 -7.416616e+00 -7.218452e+00 5.665002e+00 5.152904e+00
p value 1.495390e-08  1.20126le-13 5.258016e-13 1.470226e-08 2.564828e-07
cancer_type_detailedBreast Invasive Lobular Carcinoma cancer_type_detailedBreast Invasive Mixed Mucinous Carcinoma
Coefficient 0.1811105 -0.3061483
std. Errors 0.4362915 1.5459607
z stat 0.4151135 -0.1980311
p value 0.6780588 0.8430207
cancer_type_detailedBreast Mixed Ductal and Lobular Carcinoma chemotherapy cohort neoplasm_histologic_grade hormone_therapy
Coefficient 0.0428441 0.1030030 -0.06442281 -0.5100432 0.1190524
std. Errors 0.3396891 0.4822196 0.15462493 0.3560085 0.2786532
z stat 0.1261274 0.2136019 -0.41663923 -1.4326714 0.4272421
p value 0.8996311 0.8308575 0.67694231 0.1519518 0.6692030
Tymph_nodes_examined_positive mutation_count nottingham_prognostic_index tumor_size tumor_stage rbl cdkl ccnel cdc25a
Coefficient -0.0008137429 0.0005880726 0.61433930 -0.003877763 0.08070477 -0.02421462 -0.1948422 -0.1313309 0.02057709
std. Errors 0.0490414978 0.0321358160 0.28500210 0.009927817 0.29032868 0.17731895 0.2487860 0.1959857 0.21779502
z stat -0.0165929460 0.0182995996 2.15556058 -0.390595718 0.27797726 -0.13655971 -0.7831718 -0.6701045 0.09447918
p value 0.9867613520 0.9853998469 0.03111799 0.696096091 0.78102982 0.89137883 0.4335263 0.5027912 0.92472852
ccnd2 cdkn2a e2f2 e2f3 jakl adam10 acvril aurka chekl dab2 eif4e foxol itgav
Coefficient 0.04956548 -0.29511039 0.625570631 0.07406947 -0.1798137 -0.05394274 0.001289300 0.47187037 0.2269085 -0.35954174 0.2756818 -0.02894359 0.1060196
Std. Errors 0.19348783 0.17570765 0.232171934 0.17878285 0.1930333 0.16428125 0.203092279 0.23641166 0.2327616 0.20520727 0.2023412 0.19682675 0.1697805
z stat 0.25616845 -1.67955338 2.694428302 0.41429854 -0.9315162 -0.32835605 0.006348348 1.99596912 0.9748539 -1.75209068 1.3624604 -0.14705109 0.6244512
p value 0.79782077 0.09304424 0.007050949 0.67865548 0.3515866 0.74264247 0.994934785 0.04593728 0.3296328 0.07975822 0.1730526 0.88309169 0.5323313

pdgfrb rheb rpsékaz tgfbr2 adgraz ctcf fancd2 hsdl7bll
Coefficient 0.3851251 -0.1132305 0.27054541 -0.2971511 0.3067531 0.008167561 -0.0574864 0.3820272
std. Errors 0.2213317 0.1931664 0.16234939 0.2987293 0.2043368 0.145718357 0.1967805 0.2525122
z stat 1.7400360 -0.5861809 1.66643932 -0.9947172 1.5012128 0.056050326 -0.2921347 1.5129057
p value 0.0818527 0.5577540 0.09562595 0.3198738 0.1333005 0.955301716 0.7701836 0.1303036

The first modified model with selected variables included the variables with a significant p-value. The
variables included were survival_years, age_at_diagnosis, type_of_breast_surgery,
nottingham_prognostic_index, e2f2, and aurka. The first confusion matrix is for the training data set and the
second confusion matrix is for the test set. Like the first model, it is able to accurately classify a significant
proportion of the data, but not all of it. The training set had an accuracy of 66.92% while the test set had an
accuracy of 64.86%. The accuracy is slightly lower than the original model, and the difference between the
training and test set is wider. However, this model is much more parsimonious.

Died of Other Causes Living Died of Disease
Died of Other Causes 79 68 43
Living 39 308 54
Died of Disease 28 67 218

Died of Other Causes Living Died of Disease
Died of Other Causes 52 34 23
Living 13 109 16
Died of Disease 16 34 90

Once again, the coefficients, standard errors, z-scores, and p-values were computed and put into a table.
While all of the clinical variables have significant p-values, the two gene variables do not.

(Intercept) survival_years age_at_diagnosis type_of_breast_surgeryBREAST CONSERVING type_of_breast_surgeryMASTECTOMY nottingham_prognostic_index

coefficient 4.463865e+00 -0.17141525 -0.09728277 2.219082e+00 2.244784e+00 0.4075753298

std. Errors 6.220783e-01 0.02033918 0.01077931 3.136880e-01 3.490100e-01 0.1166187536

z stat 7.175729e+00 -8.42783341 -9.02494997 7.074169e+00 6.431860e+00 3.4949381384

p value 7.192025e-13 0.00000000 0.00000000 1.503464e-12 1.260514e-10 0.0004741716
e2f2 aurka

coefficient 0.1243245 0.29685858

std. Errors 0.1556765 0.16484135

Z stat 0.7986081 1.80087454

p value 0.4245177 0.07172266
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Next, Evan tried to create a model using the variables that were found to be significant in the models
of the rest of the group. The clinical variables include the nottingham_prognostic_index, age_at_diagnosis,
cohort, mutation_count, and type_of_breast_surgery while the gene variables are ccnel, cdc25a, chekl,
acvrl1, foxo1, and jak1. This model did not perform nearly as well. With the training set, there was an accuracy
of 59.29%. The model’s prediction of the test set had an accuracy of 55.56%. The first confusion matrix is for
the test data and the second is for the training. Based on the p-values, the variables that were most significant
were the type_of_breast_surgery, nottingham_prognostic_index, and age_at_diagnosis, which were all
clinical variables.

Died of Other Causes Living Died of Disease

Died of Other Causes 99 52 39
Living 32 283 86
Died of Disease 45 114 154

Died of Other Causes Living Died of Disease

Died of Other Causes 73 20 16
Living 21 71 46
Died of Disease 27 42 71
(Intercept) nottingham_prognostic_index age_at_diagnosis cohort mutation_count type_of_breast_surgeryBREAST CONSERVING
Coefficient 2.660154e+00 6.703763e-01 -0.0868061 -0.1730695 -0.03268204 1.337456e+00
Std. Errors 5.751922e-01 1.137733e-01 0.0102568 0.1199851 0.02728378 2.963956e-01
z stat 4.624808e+00 5.892211e+00 -8.4632716 -1.4424243 -1.19785578 4.512402e+00
p value 3.749449e-06 3.810620e-09 0.0000000 0.1491827 0.23097317 6.409754e-06
type_of_breast_surgeryMASTECTOMY ccnel cdc25a chekl acvrll foxol jakl
Coefficient 1.322698e+00 -0.0722047 0.1800721 0.2601743 0.08080123 0.04949132 0.05652652
Std. Errors 3.196620e-01 0.1442131 0.1661965 0.1694901 0.13921077 0.13892780 0.12067607
z stat 4.137800e+00 -0.5006805 1.0834892 1.5350415 0.58042367 0.35623772 0.46841529
p value 3.506518e-05 0.6165960 0.2785913 0.1247736 0.56162895 0.72166255 0.63948763

With these initial models, we get a good idea that the “clinical” variables tend to be much better
predictors of the death outcome. While certain genes such as aurka may play a role in prediction, their
significance is less than other variables. Moving forward, we will be using the model that was based on the
p-values of the original, which was the first modified model that we have shown. This is because it is simple
to interpret while still having as high of an accuracy as the original.

One of the biggest takeaways from this analysis was that the clinical variables such as the type of
surgery, age, and the Nottingham Prognostic Index play a significantly bigger role in determining the outcome
of dying from cancer than the gene variables do. Moving forward with this, it may be best to research other
clinical variables that play a role in surviving breast cancer. Since the models created here were about 70%
accurate at the highest, there must be other variables at play that can help improve accuracy of prediction.
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