Automotive Semiconductor Supply Chain Analysis

DSKUS June 10, 2022

Mitigating COVID-19 Disruptions in the United States and South Korea

Carlos Guzman – Euidam Kim – Cody Le Janghoon Yu – Professor Ilyas Ustun

Semiconductors are everywhere and in everything:

- 25% Smartphones
- 20% Personal Computers
- 20% Electronics
- 15% Severs & Data Storage
- 10% Automotive

World's 4th Most Traded Product.

The average car is packed with 1,400 semiconductors or 'chips' that control everything from airbags to engine.

*Source: Detroit Free Press, Statista 2021

Intel and Samsung Lead Global Semiconductor Production

Market shares of the world's biggest semiconductor producers in 2020

Source: Gartner

Source: Trendforce (March 2021)

Samsung plans to build a \$17B semiconductor factory in Texas,

aiming to begin operations by 2024.

SAMSUNG

Source: CNBC

VISUAL CAPITALIST DATASTREAM

UMC T's

61994 1915 TL

WHERE SEMICONDUCTORS ARE MADE

OHBRINS 54

From automobiles to computers, the global semiconductor chip shortage has rattled various industries.

Here's a look at the largest contract chip manufacturers by market share, and where they come from.

MIC 3%

TSMC makes chips for Apple, Intel, Nvidia, AMD, and Qualcomm.

Estimates suggest that TSMC accounts for >90% of the advanced processors market.

Source: Time

Automotive Semiconductor Supply Chain

TSMC make up 54% and Samsung make up 17% of Manufacturing Production

Did lower levels of production of semiconductors directly affect automotive production?

TOP 6 CHALLENGES OF THE AUTOMOTIVE INDUSTRY POST-COVID ERA

CHALLENGES

Less vehicle

sales

Change in

customer

behavior

\$

Ê

Massive

layoffs

\$

Liquidity

*Source: Datium Insights, 2021 and Global Market Insights, 2022

What key factors influenced disruptions in the automotive semiconductor supply chain?

Did response policies affect the semiconductor and automotive industries differently?

Assumption: COVID-19 response policies impacted production of semiconductors but did not impact production of motor vehicles.

Lockdown style restrictions affected the production of semiconductors in the United States but not in South Korea.

COVID-19 Mitigation Policy Comparison

United	Year			_	_	_	20	20	_	_		_		2021								_	2022						
States	Month	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	2	3	
	Lockdown																												
Stringency Index	(Partial) Closure																												
Border Restriction	Border Restriction																												
Health	Mask mandates																												
Containment Index	Quarantine requirements													10 0	days											5 days			
	Vaccine requirements												No \	/accin	e Rec	luiren	nents												
Economic Ger Support Index Aic	General stimulus check																												
	Aid for small business																												

South	Year		_				20	20	_	_			_	2021								2022						
Korea	Month	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	2	3
	Lockdown			-		-			-			-		No	Lockd	lown					_						-	
Stringency Index	(Partial) Closure																											
	Border Restriction																											
Mask mandates																												
Containment	Quarantine requirements						-	-		-	-		-	1	4 day	/s	-			-		-		-	7 days			
Index Vaco	Vaccine requirements																											
Economic Support Index	General stimulus check																											
	Aid for small business																											

Data Source & Preparation

Trade Production Price Indices Covid-19 Government Response

- Analysis:

Determine if covid features can predict trade, production, or price indices.

Use machine learning techniques to determine salient features for prediction.

Use selected features in a GRU network for forecasting and future projections.

Apply projections to user-interface for government and industry use for future policy and decision making.

Methods:

Feature Selection

Random Forest: Ensemble Learning Method Using Multiple Decision Trees

Support Vector Recursive: Feature elimination method that uses SVM weights for ranking

Regularized Regression: Ridge and Lasso

Evaluation

RMSE < 0.5 = Strong Predictability

Root Mean Square Error (RMSE): Error metric that measures differences between predicted and observed values.

Feature Selection Results:

Semiconductors

		USA		KOR						
RMSE	IP	ICAP	PPI	IP	ICAP	PPI				
RF w/ Ridge	0.09	0.04	0.25	0.77	0.84	0.94				
RF w/ Random Forest Regressor	0.21	0.16	0.46	0.39	0.08	0.83				
Lasso	0.16	0.13	0.26	0.42	0.15	0.90				
SVR	0.19	0.23	0.29	0.36	0.63	1.10				

Random Forest (RF) with Ridge Regression best to predict for U.S. and with RF Regressor best to predict for South Korea.

* Industrial Production (IP): Volume of Production Output

* Industrial Capacity (ICAP): Resources at entity that enables production of goods.

Motor Vehicles

Random Forest with Ridge Regression best to predict for Both U.S. and South Korea. Models could not accurately predict IP.

* **Producer Price Index (PPI):** Average change over time in selling price received by domestic producers for their outputs.

Mathead and		USA		KOR						
RMSE	IP	ICAP	PPI	IP	ICAP	PPI				
RF w/ Ridge	1.86	0.37	0.09	0.78	0.49	0.11				
RF w/ Random Forest Regressor	1.17	0.65	0.15	0.90	0.74	0.22				
RF w/ Lasso	1.13	1.42	1.5	1.1	0.43	0.90				

Comparison of Selected Features

		Se	emico	nduc	tor			N						
Features	USA	Semicond	luctor	KOR	Semicond	luctor	USA	Motor Ve	hicle	KOF	Motor Ve	hicle	Features	
Selected	IP	ICAP	PPI	IP	ICAP	PPI	IP	ICAP	PPI	IP	ICAP	PPI	Selected	
	8	10	6	12	9	4	5	10	10	8	9	14		
Exports MotorV													Exports Semi	
Imports MotorV													Imports Semi	
IP MotorV													IP Semi	
CAPUTL MotorV													CAPUTL Semi	
ICAP MotorV													ICAP Semi	
PPI MotorV													PPI Semi	
EPI MotorV													EPI Semi	
IPI MotorV													IPI Semi	
Total Cases													Total Cases	
New Cases													New Cases	
Total Deaths													Total Deaths	
New Deaths													New Deaths	
ICU Patients													ICU Patients	
Total Tests													Total Tests	
New Tests													New Tests	
Positive Rate													Positive Rate	
Total Vaccinations													Total Vaccinations	
People Vaccinated													People Vaccinated	
People Fully Vaccinated													People Fully Vaccinated	
Total Boosters													Total Boosters	
New Vaccinations													New Vaccinations	
Stringency Index													Stringency Index	
Government Response Index													Government Response Index	
Containment Health Index													Containment Health Index	
Economic Support Index													Economic Support Index	

Key Takeaway from Results

COVID Factors Can Predict: Production and Capacity of Semiconductors

COVID Factors Can Predict: Capacity of Motor Vehicles

Response Policies:

 Not important for determining production and capacity of semiconductors

U.S. & Korea Comparison:

- Testing important for South Korea compared to U.S.
- Vaccinations important for both countries

Forecasting and Projections

Semiconductor Production: United States

Semiconductor Production: South Korea

GRU Autoregression Forecasting Model

 Models evaluated with Mean Absolute Error (MAE).

Mean Absolute Error (MAE) of Best Model

	IP Semi- Conductor	ICAP Semi- Conductor	ICAP Motor Vehicle					
USA	0.29	0.16	0.08					
KOR	0.38	0.20	0.56					

Gated Recurrent Units (GRU) Neural Network

Introducing SCDash

(Semiconductor Diagnostic Accelerator & Supply-Chain Hub)

- Dashboard & Datahub
- Forecasts COVID-19 affects on manufacturing production
- Automatically updates monthly production data across suppliers

Data Synced through API

Private Company and Government Partnership Collaboration between U.S. and South Korea

Prototype and Interface

SCDash

Monthly ICAP_MotorV Forecasting

Forecast Up to 28 Days into the Future

Web-based Dashboard

- Real-Time Data
- Trends Over Time
- Alerts for production and manufacturing capacity

Importance and Benefits

End Users:

- Manufacturers
- Suppliers
- Governments

Planning and Logistics:

- Plan for Inventory
- Plan for Stockpile
- Better Business Strategies

Technology Partnership:

Government & Private Companies Support for Small Businesses

Conclusion

Key Factors for Semiconductor Production and Capacity:

- United States: Vaccinations
- South Korea: Testing, Vaccinations

Key Factors for Motor Vehicle Manufacturing Capacity:

Both Countries: Production and Capacity of Semiconductors

Policy Recommendations:

- Advocacy for vaccinations and continued funding for testing
- Financial support in semiconductor manufacturing

Technology Partnership:

Government and Industry Investment in SCDash

Limitations

Workforce Data Not Considered in Model

Time-Series Methods not applied for Regression

Future

Expand models to predict more industries

Enhance Forecasting to all regions and countries

Develop SCDash to mobile application for wide-scale adoption and use.

Limitations

Workforce Data Not Considered in Model

Time-Series Methods not applied for Regression

Future

Expand models to predict more industries

Enhance Forecasting to all regions and countries

Develop SCDash to mobile application for wide-scale adoption and use.

